首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Autophagy ensures cellular homeostasis by the degradation of long-lived proteins, damaged organelles and pathogens. This catabolic process provides essential cellular building blocks upon nutrient deprivation. Cellular metabolism, especially mitochondrial respiration, has a significant influence on autophagic flux, and complex I function is required for maximal autophagy. In Parkinson’s disease mitochondrial function is frequently impaired and autophagic flux is altered. Thus, dysfunctional organelles and protein aggregates accumulate and cause cellular damage. In order to investigate the interdependency between mitochondrial function and autophagy, novel tool compounds are required. Herein, we report the discovery of a structurally novel autophagy inhibitor (Authipyrin) using a high content screening approach. Target identification and validation led to the discovery that Authipyrin targets mitochondrial complex I directly, leading to the potent inhibition of mitochondrial respiration as well as autophagy.  相似文献   

2.
Although the underlying cause of Parkinson's disease (PD) is not well characterized, epidemiological studies suggest that exposure to agricultural chemicals is a risk factor for PD. Fluazinam (FZN) is a new active ingredient for the control of grey mould, belonging to the novel broad spectrum phenylpyridinamine fungicides. We used human neuroblastoma SH-SY5Y cells to investigate mechanisms of dopaminergic cell death in response to FZN. FZN treatment produced dose-dependent cytotoxicity, and decreased the tyrosine hydroxylase (TH) expression in SH-SY5Y cells. We provided evidence for the occurrence of oxidative stress and oxidative damage during FZN exposure on dopaminergic cells through the measurement of reactive oxygen species (ROS) in cells with DCFH-DA. The cytotoxic effects of FZN appear to involve an increase in ROS generation since pretreatment with N-acetyl cysteine (NAC), an anti-oxidant, reduced cell death. After FZN treatment, dopamine (DA) levels decreased in both cell and culture media, and oxidative effects of FZN were blocked by NAC pretreatment. We show that cell death in response to FZN was due to apoptosis since FZN exposure results in an increased in cytochrome c release into the cytosol and activated caspase-3 through p38 and JNK signaling. Furthermore, the blocking of p38 or JNK signaling inhibits FZN-induced cell death. Phosphorylation of mitogen-activated protein kinases precedes cytochrome c release and caspase-3 activation. This cellular response is characteristic of mitochondrial dysfunction. Therefore, we also investigated the effect of FZN on mitochondrial complex I activity in FZN-treated cell. Interestingly, we show that FZN inhibited the complex I activity. Thus in this study, we report a new mode of action by which the fungicide FZN could triggers apoptosis.  相似文献   

3.
4.
《Phytomedicine》2014,21(3):315-322
BackgroundResistance of cancer to chemotherapy remains a challenging issue for scientists as well as physicians. Naturally occurring xanthones possess a variety of biological activities such as anti-inflammatory, anti-bacterial, and anti-cancer effects. The present study was aimed at investigating the cytotoxicity and the modes of action of three naturally occurring xanthones namely, morusignin I (1), 8-hydroxycudraxanthone G (2) and cudraxanthone I (3) against a panel of nine cancer cell lines, including various sensitive and drug-resistant phenotypes.MethodsThe cytotoxicity of the compounds was determined using a resazurin reduction assay, whereas the caspase-Glo assay was used to detect the activation of caspases 3/7, caspase 8 and caspase 9 in cells treated with compounds 3. Flow cytometry was used for cell cycle analysis and detection of apoptotic cells, analysis of mitochondrial membrane potential (MMP) as well as measurement of reactive oxygen species (ROS).ResultsCompounds 1 and 3 inhibited the proliferation of all tested cancer cell lines including sensitive and drug-resistant phenotypes. Compound 2 was active on 8/9 cell lines with the IC50 values ranging from 16.65 μM (against leukemia CCRF-CEM cells) to 70.38 μM (against hepatocarcinoma HepG2 cells). The IC50 value ranged from 7.15 μM (against CCRF-CEM cells) to 53.85 μM [against human glioblastoma U87MG.ΔEGFR cells] for compound 1, and from 2.78 μM (against breast cancer MDA-MB231 BCRP cells) to 22.49 μM (against U87MG cells) for compound 3. P-glycoprotein expressing CEM/ADR5000 cells were cross-resistant to compounds 1 and 2 (4.21- to 610-fold) while no cross-resistance or even collateral cross-sensitivity were observed in other drug-resistant cell lines to the three compounds. Normal AML12 liver cells were more resistant to the three compounds than HepG2 liver cancer cells. Compounds 3 arrested the cell cycle between G0/G1 and S phases, strongly induced apoptosis via caspases 3/7, caspase 8, caspase 9 activation and disrupted the MMP in CCRF-CEM cells.ConclusionsThe cytotoxicity of the studied xanthones and especially compound 3 deserve more detailed exploration in the future to develop novel anticancer drugs against sensitive and otherwise drug-resistant phenotypes.  相似文献   

5.
《FEBS letters》2014,588(9):1832-1838
Mammalian complex I is composed of fourteen highly conserved core subunits and additional thirty subunits acquired in the course of evolution. At present, the function of the majority of these supernumerary subunits is poorly understood. In this work, we have studied NDUFA3, NDUFA5 and NDUFA12 supernumerary subunits to gain insight into their role in CI activity and biogenesis. Using human cell lines in which the expression of these subunits was knocked down with miRNAs, we showed that they are necessary for the formation of a functional holoenzyme. Analysis of the assembly intermediates in mitochondria depleted for these subunits further suggested that they are required for assembly and/or stability of the electron transferring Q module in the peripheral arm of the CI.  相似文献   

6.
In Guadeloupe, epidemiological data have linked atypical parkinsonism with fruit and herbal teas from plants of the Annonaceae family, particularly Annona muricata. These plants contain a class of powerful, lipophilic complex I inhibitors, the annonaceous acetogenins. To determine the neurotoxic potential of these substances, we administered annonacin, the major acetogenin of A. muricata, to rats intravenously with Azlet osmotic minipumps (3.8 and 7.6 mg per kg per day for 28 days). Annonacin inhibited complex I in brain homogenates in a concentration-dependent manner, and, when administered systemically, entered the brain parenchyma, where it was detected by matrix-associated laser desorption ionization-time of flight mass spectrometry, and decreased brain ATP levels by 44%. In the absence of evident systemic toxicity, we observed neuropathological abnormalities in the basal ganglia and brainstem nuclei. Stereological cell counts showed significant loss of dopaminergic neurones in the substantia nigra (-31.7%), and cholinergic (-37.9%) and dopamine and cyclic AMP-regulated phosphoprotein (DARPP-32)-immunoreactive GABAergic neurones (-39.3%) in the striatum, accompanied by a significant increase in the number of astrocytes (35.4%) and microglial cells (73.4%). The distribution of the lesions was similar to that in patients with atypical parkinsonism. These data are compatible with the theory that annonaceous acetogenins, such as annonacin, might be implicated in the aetiology of Guadeloupean parkinsonism and support the hypothesis that some forms of parkinsonism might be induced by environmental toxins.  相似文献   

7.
8.
9.
10.
The mechanism of action of heme oxygenase-1 (HO-1) in mitochondrial oxidative stress (MOS)-mediated apoptotic tissue injury was investigated. MOS-mediated gastric mucosal apoptosis and injury were introduced in rat by indomethacin, a non-steroidal anti-inflammatory drug. Here, we report that HO-1 was not only induced but also translocated to mitochondria during gastric mucosal injury to favor repair mechanisms. Furthermore, mitochondrial translocation of HO-1 resulted in the prevention of MOS and mitochondrial pathology as evident from the restoration of the complex I-driven mitochondrial respiratory control ratio and transmembrane potential. Mitochondrial translocation of HO-1 also resulted in time-dependent inhibition of apoptosis. We searched for the plausible mechanisms responsible for HO-1 induction and mitochondrial localization. Free heme, the substrate for HO-1, was increased inside mitochondria during gastric injury, and mitochondrial entry of HO-1 decreased intramitochondrial free heme content, suggesting that a purpose of mitochondrial translocation of HO-1 is to detoxify accumulated heme. Heme may activate nuclear translocation of NF-E2-related factor 2 to induce HO-1 through reactive oxygen species generation. Electrophoretic mobility shift assay and chromatin immunoprecipitation studies indicated nuclear translocation of NF-E2-related factor 2 and its binding to HO-1 promoter to induce HO-1 expression during gastric injury. Inhibition of HO-1 by zinc protoporphyrin aggravated the mucosal injury and delayed healing. Zinc protoporphyrin further reduced the respiratory control ratio and transmembrane potential and enhanced MOS and apoptosis. In contrast, induction of HO-1 by cobalt protoporphyrin reduced MOS, corrected mitochondrial dysfunctions, and prevented apoptosis and gastric injury. Thus, induction and mitochondrial localization of HO-1 are a novel cytoprotective mechanism against MOS-mediated apoptotic tissue injury.  相似文献   

11.
12.
The treatment of triple-negative breast cancer (TNBC) remains a major challenge. The present study aimed to throw more light on the role of copper (I)-nicotinate complex (CNC) as an antitumor as well as a proapoptotic agent. In this study, the HCC-1806 cell line was used as a model for TNBC. Cell cycle, apoptosis assay, and programmed cell death protein-1 were investigated by flowcytometry. Besides, the comet assay was performed using a fluorescence microscope. The enzyme-linked immunosorbent assay technique was used for the detection of phospho-Chk1 at ser 317 and caspase-3. Moreover, the gene expression of survivin was identified by real-time polymerase chain reaction. Finally, superoxide dismutase (SOD) was calorimetrically assayed. The viability of HCC-1806 cells treated with CNC was decreased in a dose-dependent manner. The tendency for apoptotic machinery was observed through the increase in the sub G0 peak, the percentage of early and late apoptotic phases, and the elevation in caspase-3 levels associated with a downregulation of the survivin gene expression. The antioxidant property of the complex, reflected by elevated SOD activity, may contribute to mediate the cell death pathways. Low concentrations of CNC were found to favor the apoptotis-mediated mechanism. However, one cannot neglect the abundance of cell necrosis–mediated death of cells via CNC, especially at higher concentrations.  相似文献   

13.
Mitochondrial complex III is one of the most promising targets for a number of pharmaceuticals and fungicides. Due to the wide-spread use of complex III-inhibiting fungicides, a considerable increase of resistance has occurred worldwide. Therefore, inhibitors with novel scaffolds and potent activity against complex III are still in great demand. In this article, a new series of amide compounds bearing the diaryl ether scaffold were designed and prepared, followed by the biological evaluation. Gratifyingly, several compounds demonstrated potent activity against succinate-cytochrome c reductase (SCR, a mixture of mitochondrial complex II and complex III), with compound 3w possessing the best inhibitory activity (IC50 = 0.91 ± 0.09 μmol/L). Additional studies verified that 3w was a new inhibitor of complex III. Moreover, computational simulations elucidated that 3w should bind to the Qo site of complex III. We believe this work will be valuable for the preparation and discovery of more complex III inhibitors.  相似文献   

14.
Leigh syndrome (LS) is a progressive neurodegenerative disease caused by either mitochondrial or nuclear DNA mutations resulting in dysfunctional mitochondrial energy metabolism. Mutations in genes encoding for subunits of the respiratory chain or assembly factors of respiratory chain complexes are often documented in LS cases. Nicotinamide adenine dinucleotide (NADH):ubiquinone oxidoreductase (complex I) enzyme deficiencies account for a significant proportion of mitochondrial disorders, including LS. In an attempt to expand the repertoire of known mutations accounting for LS, we describe the clinical, radiological, biochemical and molecular data of six patients with LS found to have novel mutations in two complex I subunits (NDUFV1 and NDUFS2). Two siblings were homozygous for the previously undescribed R386C mutation in NDUFV1, one patient was a compound heterozygote for the R386C mutation in NDUFV1 and a frameshift mutation in the same gene, one patient was a compound heterozygote for the R88G and R199P mutations in NDUFV1, and two siblings were compound heterozygotes for an undescribed E104A mutation in NDUFS2. After the novel mutations were identified, we employed prediction models using protein conservation analysis (SIFT, PolyPhen and UCSC genome browser) to determine pathogenicity. The R386C, R88G, R199P, and E104A mutations were found to be likely pathogenic, and thus presumably account for the LS phenotype. This case series broadens our understanding of the etiology of LS by identifying new molecular defects that can result in complex I deficiency and may assist in targeted diagnostics and/or prenatal diagnosis of LS in the future.  相似文献   

15.
Although non steroidal antiinflammatory drugs (NSAIDs) have been shown to be effective as chemopreventive agents, important side-effects limit their clinical use. A promising novel class of drugs, nitric oxide-donating NSAIDs (NO-NSAIDs), has been found to be more active than classical NSAIDs. This study explored the effect of the NO-donating aspirin derivative, NCX 4040, on three human pancreatic adenocarcinoma cell lines (Capan-2, MIA PaCa-2 and T3M4). NCX 4040 activity was compared with that of NCX 4016 (an NO2-positional isomer of NCX 4040), SNAP (a standard NO-releasing molecule), NCX 4042 (denitrated analog of NCX 4040), and aspirin. NCX 4040 showed a striking cytocidal activity in all cell lines, already inducing significant percentages of apoptotic cells at 10 μM in Capan-2 cell lines. This study focused on the biological mechanisms of sensitivity and resistance to NCX 4040, highlighting that the cytotoxic action of this drug may be due to the hyperexpression of Bax, its translocation to the mitochondria, the release of Cytochrome C, and the activation of caspases-9 and -3, overall in a p53-independent manner. Moreover, the use of a specific COX-2 inhibitor (NS 398) in the experimental models showed that COX-2 hyperexpression could partially explain the resistance mechanisms to NCX 4040. This study was supported by Istituto Oncologico Romagnolo, Forlì, and by the Italian, Ministry of Health, 2004.  相似文献   

16.
Plants are still to be explored for new anti-cancer compounds because overall success in cancer treatment is still not satisfactory. As a new possible source for such compounds, the lichens are recently taking a great attention. We, therefore, explored both the genotoxic and anti-growth properties of lichen species Parmelia sulcata Taylor. The chemical composition of P. sulcata was analyzed with comprehensive gas chromatography–time of flight mass spectrometry. Anti-growth effect was tested in human breast cancer cell lines (MCF-7 and MDA-MB-231) by the MTT and ATP viability assays, while the genotoxic activity was studied by assays for micronucleus, chromosomal aberration and DNA fragmentation in human lymphocytes culture. Cell death modes (apoptosis/necrosis) were morphologically assessed. P. sulcata inhibited the growth in a dose-dependent manner up to a dose of 100 μg/ml and induced caspase-independent apoptosis. It also showed genotoxic activity at doses (>125 μg/ml) higher than that required for apoptosis. These results suggest that P. sulcata may induce caspase-independent apoptotic cell death at lower doses, while it may be genotoxic at relatively higher doses.  相似文献   

17.
18.
Breast cancer is the most frequent cause of cancer in women. In the current study, transition metal ruthenium was complexed with flavonoid chrysin to evaluate the chemotherapeutic potential of this compound in Michigan Cancer Foundation-7 (MCF-7) human mammary cancer cell line and 7,12-dimethylbenz(α)anthracene-induced mammary cancer in female Sprague–Dawley rats. The characterizations of the complex were accomplished through UV–visible, NMR, IR, Mass spectra, and XRD techniques and antioxidant activity was assessed by DPPH, FRAP, and ABTS methods. In vitro studies included cell viability, cell cycle analysis, DNA fragmentation, and marker analysis by western blot analysis and found that complex treatment suppressed cell growth-induced cell cycle arrest and enhanced the induction of apoptosis in cancer cells. Moreover, complex treatment modulated signaling pathways including mTOR, VEGF, and p53 in the MCF-7 cells. Acute and subacute toxicity was performed in rats to determine the therapeutic doses. Breast cancer in rats was initiated by the administration of 7,12-dimethylbenz(α)anthracene (0.5 mg/100 g body weight) via single tail vein injection. The histopathological analysis after 24 weeks of carcinogenesis study depicted substantial repair of hyperplastic lesions. Immunohistochemical analysis revealed upregulation of Bax and p53 and downregulation of Bcl2 proteins and TUNEL assay showed an increase in apoptotic index in ruthenium–chrysin-treated groups as compared to the carcinogen control. Our findings from the in vitro and in vivo study support the continued investigation of ruthenium–chrysin complex possesses a potential chemotherapeutic activity against breast cancer and was efficient in reducing hyperplastic lesions in the mammary tissues of rats by inducing apoptosis.  相似文献   

19.
The qualitative screening method used to select complex I mutants in the microalga Chlamydomonas, based on reduced growth under heterotrophic conditions, is not suitable for high‐throughput screening. In order to develop a fast screening method based on measurements of chlorophyll fluorescence, we first demonstrated that complex I mutants displayed decreased photosystem II efficiency in the genetic background of a photosynthetic mutation leading to reduced formation of the electrochemical proton gradient in the chloroplast (pgrl1 mutation). In contrast, single mutants (complex I and pgrl1 mutants) could not be distinguished from the wild type by their photosystem II efficiency under the conditions tested. We next performed insertional mutagenesis on the pgrl1 mutant. Out of about 3000 hygromycin‐resistant insertional transformants, 46 had decreased photosystem II efficiency and three were complex I mutants. One of the mutants was tagged and whole genome sequencing identified the resistance cassette in NDUFAF3, a homolog of the human NDUFAF3 gene, encoding for an assembly factor involved in complex I assembly. Complemented strains showed restored complex I activity and assembly. Overall, we describe here a screening method which is fast and particularly suited for the identification of Chlamydomonas complex I mutants.  相似文献   

20.
In the green alga Chlamydomonas reinhardtii, a mutant deprived of complex I enzyme activity presents a 1T deletion in the mitochondrial nd5 gene. The loss of the ND5 subunit prevents the assembly of the 950 kDa whole complex I. Instead, a low abundant 700 kDa subcomplex, loosely associated to the inner mitochondrial membrane, is assembled. The resolution of the subcomplex by SDS-PAGE gave rise to 19 individual spots, sixteen having been identified by mass spectrometry analysis. Eleven, mainly associated to the hydrophilic part of the complex, are homologs to subunits of the bovine enzyme whereas five (including gamma-type carbonic anhydrase subunits) are specific to green plants or to plants and fungi. None of the subunits typical of the β membrane domain of complex I enzyme has been identified in the mutant. This allows us to propose that the truncated enzyme misses the membrane distal domain of complex I but retains the proximal domain associated to the matrix arm of the enzyme. A complex I topology model is presented in the light of our results. Finally, a supercomplex most probably corresponding to complex I-complex III association, was identified in mutant mitochondria, indicating that the missing part of the enzyme is not required for the formation of the supercomplex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号