首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid speciation events, with taxa generated over a short time period, are among the most investigated biological phenomena. However, molecular systematics often reveals contradictory results compared with morphological/phenotypical diagnoses of species under scenarios of recent and rapid diversification. In this study, we used molecular data from an average of over 29 000 loci per sample from RADseq to reconstruct the diversification history and delimit the species boundary in a short-winged grasshopper species complex (Melanoplus scudderi group), where Pleistocene diversification has been hypothesized to generate more than 20 putative species with distinct male genitalic shapes. We found that, based on a maximum likelihood molecular phylogeny, each morphological species indeed forms a monophyletic group, contrary to the result from a previous mitochondrial DNA sequence study. By dating the diversification events, the species complex is estimated to have diversified during the Late Pleistocene, supporting the recent radiation hypothesis. Furthermore, coalescent-based species delimitation analyses provide quantitative support for independent genetic lineages, which corresponds to the morphologically defined species. Our results also showed that male genitalic shape may not be predicted by evolutionary distance among species, not only indicating that this trait is labile, but also implying that selection may play a role in character divergence. Additionally, our findings suggest that the rapid speciation events in this flightless grasshopper complex might be primarily associated with the fragmentation of their grassland habitats during the Late Pleistocene. Collectively, our study highlights the importance of integrating multiple sources of information to delineate species, especially for a species complex that diversified rapidly, and whose divergence may be linked to ecological processes that create geographic isolation (i.e. fragmented habitats), as well as selection acting on characters with direct consequences for reproductive isolation (i.e. genitalic divergence).  相似文献   

2.
The cyclic climate regime of the late Quaternary caused dramatic environmental change at high latitudes. Although these events may have been brief in periodicity from an evolutionary standpoint, multiple episodes of allopatry and divergence have been implicated in rapid radiations of a number of organisms. Shrews of the Sorex cinereus complex have long challenged taxonomists due to similar morphology and parapatric geographic ranges. Here, multi-locus phylogenetic and demographic assessments using a coalescent framework were combined to investigate spatiotemporal evolution of 13 nominal species with a widespread distribution throughout North America and across Beringia into Siberia. For these species, we first test a hypothesis of recent differentiation in response to Pleistocene climate versus more ancient divergence that would coincide with pre-Pleistocene perturbations. We then investigate the processes driving diversification over multiple continents. Our genetic analyses highlight novel diversity within these morphologically conserved mammals and clarify relationships between geographic distribution and evolutionary history. Demography within and among species indicates both regional stability and rapid expansion. Ancestral ecological differentiation coincident with early cladogenesis within the complex enabled alternating and repeated episodes of allopatry and expansion where successive glacial and interglacial phases each promoted divergence. The Sorex cinereus complex constitutes a valuable model for future comparative assessments of evolution in response to cyclic environmental change.  相似文献   

3.
An accurate understanding of species diversity is essential to studies across a wide range of biological subdisciplines. However, delimiting species remains challenging in evolutionary radiations where morphological diversification is rapid and accompanied by little genetic differentiation or when genetic lineage divergence is not accompanied by morphological change. We investigate the utility of a variety of recently developed approaches to examine genetic and morphological diversity, and delimit species in a morphologically conserved group of Southeast Asian lizards. We find that species diversity is vastly underestimated in this unique evolutionary radiation, and find an extreme case where extensive genetic divergence among lineages has been accompanied by little to no differentiation in external morphology. Although we note that different conclusions can be drawn when species are delimited using molecular phylogenetics, coalescent‐based methods, or morphological data, it is clear that the use of a pluralistic approach leads to a more comprehensive appraisal of biodiversity, and greater appreciation for processes of diversification in this biologically important geographic region. Similarly, our approach demonstrates how recently developed methodologies can be used to obtain robust estimates of species limits in “nonadaptive” or “cryptic” evolutionary radiations.  相似文献   

4.
A molecular analysis was carried out on the European hermit beetles (the Osmoderma eremita species complex) to explore their genetic diversification and the robustness of previous morphologically based taxonomic arrangements. Complete sequences of mtDNA cytochrome C oxidase I gene were obtained from 26 individuals. Mean levels of interspecific sequence divergence ranged from 0.044 to 0.186. The results indicate a clear-cut distinction between two clades. The first one includes the W-European O. eremita Scopoli 1763 ; and the two Italian endemic taxa Osmoderma italicum Sparacio, 2000 and Osmoderma cristinae Sparacio, 1994 ; from southern peninsular Italy and Sicily, respectively. The second one includes the widespread E-European Osmoderma barnabita ; and the southern Balcanic Osmoderma lassallei Baraud and Tauzin, 1991 from Greece and European Turkey. Within the two clades, molecular and morphological data well support a specific rank for O. lassallei and O. barnabita on one side, and for O. eremita and O. cristinae on the other side, while the taxonomic position of O. italicum , more closely related to O. eremita , is still uncertain. Current geographical distribution, interspecific genetic diversification, and very low levels of intraspecific genetic divergence in western European populations of O. eremita sensu stricto are hypothesized to be the result of multiple speciation events (mainly occurred in refugial forest areas of the Italian and Balkan peninsulas and Sicily before and during the Pleistocene glacial peaks), followed by fast post-glacial northward and westward expansion of some species.  相似文献   

5.
Although species delimitation can be highly contentious, the development of reliable methods to accurately ascertain species boundaries is an imperative step in cataloguing and describing Earth's quickly disappearing biodiversity. Spider species delimitation remains largely based on morphological characters; however, many mygalomorph spider populations are morphologically indistinguishable from each other yet have considerable molecular divergence. The focus of our study, the Antrodiaetus unicolor species complex containing two sympatric species, exhibits this pattern of relative morphological stasis with considerable genetic divergence across its distribution. A past study using two molecular markers, COI and 28S, revealed that A. unicolor is paraphyletic with respect to A. microunicolor. To better investigate species boundaries in the complex, we implement the cohesion species concept and use multiple lines of evidence for testing genetic exchangeability and ecological interchangeability. Our integrative approach includes extensively sampling homologous loci across the genome using a RADseq approach (3RAD), assessing population structure across their geographic range using multiple genetic clustering analyses that include structure , principal components analysis and a recently developed unsupervised machine learning approach (Variational Autoencoder). We evaluate ecological similarity by using large‐scale ecological data for niche‐based distribution modelling. Based on our analyses, we conclude that this complex has at least one additional species as well as confirm species delimitations based on previous less comprehensive approaches. Our study demonstrates the efficacy of genomic‐scale data for recognizing cryptic species, suggesting that species delimitation with one data type, whether one mitochondrial gene or morphology, may underestimate true species diversity in morphologically homogenous taxa with low vagility.  相似文献   

6.
The Lycaeides butterfly species complex in North America consists of two nominal, morphologically defined species. These butterflies are ecologically diverse and appear to be distributed as a geographically complex mosaic of locally differentiated populations that may be undergoing adaptive radiation. We asked whether patterns of molecular genetic variation within the species complex are congruent with currently recognized morphological species and whether the distribution of molecular variation is consistent with the hypothesis that Pleistocene climate changes contributed to the process of differentiation within the genus. Variation in the form of the genitalia from 726 males from 59 populations clearly distinguishes both species with only six populations containing morphologically intermediate or ambiguous individuals. However, partitioning of molecular variance in a 236 bp section of the mitochondrial AT-rich region from 628 individuals (57 populations) surveyed using single strand conformation polymorphism analysis (SSCP) indicates that only 26% of the total genetic variation is distributed along nominal species boundaries as defined by morphology. Instead, three phylogeographical groups were detected, represented by three major haplotype clades, which account for 90% of the total genetic variance. Pleistocene glaciations appear to have fostered divergence during glacial maxima, while post-glacial range expansions created opportunities for gene exchange and reticulation along suture zones between geographical groups. Data presented here allow us to make inferences about the history of the species complex. However, evidence of ancestral polymorphism and reticulation limit our ability to define species boundaries based on mitochondrial DNA sequence variation.  相似文献   

7.
Vicariant geographic isolation and resource partitioning have long been independently identified as processes contributing to the morphological divergence of closely-related species. However, little is known about the extent to which vicariant history influences the adaptive ecological divergence associated with resource partitioning and trophic specialization within species. The present study thus quantified the contribution of vicariant historical genetic divergence to the adaptive contemporary morphological divergence of intraspecific feeding specialists in the Rainbow smelt (Pisces: Osmerus mordax ). This species is characterized by the polyphyletic origin of two lacustrine feeding specialists originating in two intraspecific lineages associated with independent glacial refuges. The historical genetic segregation was initiated approximately 350 000 years ago, whereas the lacustrine trophic segregation arose within the past 10 000 years. Wild caught lacustrine smelt populations were grouped a priori based on known historical genetic identities (Acadian and Atlantic mitochondrial DNA clades) and contemporary feeding specializations (microphageous and macrophageous morphotypes). The present study demonstrated that independent suites of correlated morphological traits are associated with either vicariant history or contemporary feeding specializations. Second, functionally-similar feeding specialists exhibit distinct morphologies resulting largely from vicariant historical processes. Although, the evolutionary processes producing historical phenotypes remains unknown, the results obtained demonstrate how adaptive radiation associated with ecological resource partitioning and feeding specializations can be strongly influenced by intraspecific phenotypic diversification resulting from relatively recent vicariant histories.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 140–151.  相似文献   

8.
Butterflies of the genus Polyura form a widespread tropical group distributed from Pakistan to Fiji. The rare endemic Polyura epigenes Godman & Salvin, 1888 from the Solomon Islands archipelago represents a case of marked island polymorphism. We sequenced museum specimens of this species across its geographic range to study the phylogeography and genetic differentiation of populations in the archipelago. We used the Bayesian Poisson tree processes and multispecies coalescent models, to study species boundaries. We also estimated divergence times to investigate the biogeographic history of populations. Our molecular species delimitation and nuclear DNA network analyses unambiguously indicate that Malaita populations form an independent metapopulation lineage, as defined in the generalized lineage concept. This lineage, previously ranked as a subspecies, is raised to species rank under the name Polyura bicolor Turlin & Sato, 1995  stat. nov. Divergence time estimates suggest that this lineage split from its sister taxon in the late Pleistocene. At this time, the bathymetric isolation of Malaita from the rest of the archipelago probably prevented gene flow during periods of lower sea level, thereby fostering allopatric speciation. The combination of molecular species delimitation methods, morphological comparisons, and divergence time estimation is useful to study lineage diversification across intricate geographic regions.  相似文献   

9.
Despite its ancient origin, global distribution and abundance in nearly all habitats, the class Collembola is comprised of only 8000 described species and is estimated to number no more than 50 000. Many morphologically defined species have broad geographical ranges that span continents, and recent molecular work has revealed high genetic diversity within species. However, the evolutionary significance of this genetic diversity is unknown. In this study, we sample five morphological species of the globally distributed genus Lepidocyrtus from 14 Panamanian sampling sites to characterize genetic diversity and test morphospecies against the biological species concept. Mitochondrial and nuclear DNA sequence data were analysed and a total of 58 molecular lineages revealed. Deep lineage diversification was recovered, with 30 molecular lineages estimated to have established more than 10 million years ago, and the origin almost all contemporary lineages preceding the onset of the Pleistocene (~2 Mya). Thirty‐four lineages were sampled in sympatry revealing unambiguous cosegregation of mitochondrial and nuclear DNA sequence variation, consistent with biological species. Species richness within the class Collembola and the geographical structure of this diversity are substantially misrepresented components of terrestrial animal biodiversity. We speculate that global species richness of Collembola could be at least an order of magnitude greater than a previous estimate of 50 000 species.  相似文献   

10.
Sylvietta is a broadly distributed group of African species inhabiting a wide range of habitats and presents an interesting opportunity to investigate the historic mechanisms that have impacted the biogeography of African avian species. We collected sequence data from 50 individuals and used model‐based phylogenetic methods, molecular divergence estimates and ancestral area estimates to construct a time‐calibrated phylogeny and estimation of biogeographic history. We estimate a southern African origin for Sylvietta, with an initial divergence splitting the genus into two clades. The first consists of arid‐adapted species, with a southern African origin and subsequent diversification north into Ethiopia–Somalia. The second clade is estimated as having a Congolian forest origin with an eastward pattern of colonization and diversification as a result of Plio‐Pleistocene forest dynamics. Additionally, two members of the genus Sylvietta display interesting patterns of intraspecific diversification. Sylvietta rufescens is an arid‐adapted species inhabiting southern Africa, and we recover two subclades with a divergence dating to the Pleistocene, a unique pattern for avian species which may be explained via isolation in arid habitat fragments in the early Pleistocene. Second, Sylvietta virens, a species endemic to Afro‐tropical forests, is recovered with geographically structured genetic diversification across its broad range, an interesting result given that recent investigations of several avian forest species have found similar and substantial geographically structured genetic diversity relating to Plio‐Pleistocene forest fragmentation. Overall, Plio‐Pleistocene habitat cycling played a significant role in driving diversification in Sylvietta, and this investigation highlights the substantial impact of climate‐driven habitat dynamics on the history of sub‐Saharan species.  相似文献   

11.
Previous research revealed complex diversification patterns in the parthenogenetic weevil Naupactus cervinus. To understand the origin of clonal diversity and successful spreading of this weevil, we investigated its geographic origin and possible dispersal routes and whether parthenogens can persist in habitats under unsuitable environmental conditions. This study is based on samples taken throughout a broad area of the species’ range. We used both mitochondrial and nuclear markers and applied phylogenetic and network analyses to infer possible relationships between haplotypes. Bayesian phylogeographic analyses and ecological niche modeling were used to investigate the processes that shaped genetic diversity and enabled the colonization of new geographic areas. Southeastern Brazil emerges as the original distribution area of Ncervinus. We detected two range expansions, one along natural corridors during the Pleistocene and the other in countries outside South America during recent times. Isolation due to climate shifts during the early Pleistocene led to diversification in two divergent clades, which probably survived in different refugia of the Paranaense Forest and the Paraná River delta. The origin of the clonal diversity was probably a complex process including mutational diversification, hybridization, and secondary colonization. The establishment of Ncervinus in areas outside its native range may indicate adaptation to drier and cooler conditions. Parthenogenesis would be advantageous for the colonization of new environments by preventing the breakup of successful gene combinations. As in other insect pests, the present distribution of Ncervinus results from both its evolutionary history and its recent history related to human activities.  相似文献   

12.
In this study, we investigated the relative contribution of geographic barriers and Pleistocene refuges in the diversification of the Rhinella crucifer species complex, a group of endemic toads with a widespread distribution in the Brazilian Atlantic Forest (AF). We used intensive sampling and multilocus DNA sequence data to compare nucleotide diversity between refuge and nonrefuge areas, investigate regional demographic patterns, estimate demographic parameters related to genetic breaks and test refuge versus barrier scenarios of diversification using approximate Bayesian computation. We did not find higher levels of genetic diversity in putative refuge areas, either at regional or biome scale. Rather, the demographic history of the species complex supports regional differences with moderate population growth in the north and central regions and stability in southern AF. Genetic breaks were dated to the Plio–Pleistocene; however, our analyses rejected the role of refuges in creating a northern and central divergence, supporting a recent colonization scenario at a smaller scale within the central AF. Overall, our data rule out massive climatically driven fragmentation and large‐scale recolonization events for populations across the biome. We confirmed the importance of geographic barriers in creating main divergences and underscored the importance of searching for cryptic discontinuities in the landscape. Comparison of our results with those of other AF taxa indicates organismal specific responses to moderate shifts in habitat and that multiple refuges may constitute a more realistic model for diversification of Atlantic Forest biota.  相似文献   

13.
Recent studies determined that darters with specialized breeding strategies can exhibit deep lineage divergence over fine geographic scales without apparent physical barriers to gene flow. However, the extent to which intrinsic characteristics interact with extrinsic factors to influence population divergence and lineage diversification in darters is not well understood. This study employed comparative phylogeographic and population genetic methods to investigate the influence of life history on gene flow, dispersal ability, and lineage divergence in two sympatric sister darters with differing breeding strategies. Our results revealed highly disparate phylogeographic histories, patterns of genetic structure, and dispersal abilities between the two species suggesting that life history may contribute to lineage diversification in darters, especially by limiting dispersal among large river courses. Both species also showed striking differences in demographic history, indicating that extrinsic factors differentially affected each species during the Pleistocene. Collectively, our results indicate that intrinsic and extrinsic factors have influenced levels of gene flow among populations within both species examined. However, we suggest that life‐history strategy may play a more important role in lineage diversification in darters than previously appreciated, a finding that has potentially important implications for understanding diversification of the rich North American freshwater fish fauna.  相似文献   

14.
Compared to endemics, widespread species are of particular interest to retrace recent evolutionary history. These species have a large population size which provides a clearer genetic signature of past events. Moreover, their wide geographic range increases the potential occurrence of evolutionary events (expansion, divergence, etc.). Here, we used several coalescent-based methods to disentangle the evolutionary history of a widespread amphidromous goby (Sicyopterus lagocephalus), in the light of sea-level variations during the Pleistocene. Using 75 samples recovered from three biogeographic regions (Western Indian Ocean, Melanesia and Polynesia), we analysed a portion of the cytochromeb gene and confirmed three major haplogroups, each specific to a region. Furthermore, we found that: (1) the Melanesian haplogroup was the oldest while the two peripheral regions hosted daughter haplogroups; (2) two centrifugal colonisation events occurred from Melanesia to the periphery, each synchronised with periods of strong paleo-ENSO episodes; (3) the demographic contraction-expansion events were linked to Pleistocene sea-level changes; (4) Melanesia and Polynesia acted as efficient refuges during the Last Glacial Maximum. These results highlight the importance of studying widespread species to better understand the role of climate changes and paleo-oceanography on the evolution of biodiversity.  相似文献   

15.
It has been proposed that high morphological similarity between closely related species of small-eared shrews resulted from a recent divergence and intermittent population connectivity, presumably due to Pleistocene climatic fluctuations and associated changes in forest habitat distribution. Here we examined the morphological variation of two sister species of small-eared shrews inhabiting cloud forests from Mexico, Cryptotis obscurus and C. mexicanus. We then used ecological niche modelling to provide compelling evidence for current environmental barriers for population connectivity, and for detecting divergent ecological niches between candidate species. Our results indicated that the species boundaries in this clade should be subject to change. High morphological similarity suggested that populations of C. obscurus and C. mexicanus located west of the Isthmus of Tehuantepec, a major geographic barrier for montane species, are conspecific. Niche divergence between these two putative species was not supported indicating niche conservatism across the evolutionary history of these small-eared shrews. In addition, several barriers seem to play a main role for current lineage divergence between populations within this clade. The population located east of the Isthmus, previously referred to C. mexicanus, might prove to represent a new species based on morphological distinction and current geographic isolation. We have highlighted that estimating species’ potential distributions provides insights to evaluating the effect of geographic barriers on lineage divergence and making stronger inferences when delimiting species.  相似文献   

16.
Coregonine fishes are notorious taxonomicproblems due to their extreme morphological andecological variation. In North America, diversity is particularly baffling among ciscoes, and both morphological and phylogenetic analyses have resulted in major polytomy among the 8 taxa of the ``Coregonus artedi' species complex. Ciscoes arealso a devastated group, accounting for 10% ofthe fish species listed by the Committee on theStatus of Endangered Wildlife in Canada. Here,we complete the genetic characterization ofNorth American ciscoes with mitochondrial andmicrosatellites markers previously used toanalyse populations of C. artedi in orderto elucidate the evolutionary history andidentify appropriate conservation units. Ourresults revealed a complex evolutionary historymarked by postglacial reticulation eventscoupled with recent and independent evolutionof similar phenotypes (taxa). Genetic variationreflects geography rather than taxonomy, andconsequently, we recommend that a single taxon,C. artedi (sensu lato) be recognized.Local genetic differentiation is often coupledwith ecophenotypic diversification, and gillraker polymorphisms, depth-related habitatpreference and reproductive behaviour areconsidered as phenotypic traits with probableadaptive value contributing to the nicheexpansion of ciscoes. Ecomorphotypes of eachparticular locale thus represent a uniqueexpression of a diverse genetic pool stillundergoing divergence and sorting.Consequently, ciscoes from lakes with distinctecomorphotypes are recognized as ESUs, as wellas each of sympatric forms when they aregenetically differentiated. We recommend thatan ESU strategy focusing at a very local levelbe adopted for continental ciscoes as a validalternative to protect significant evolutionaryprocesses of divergence encountered inpolytypic species of newly colonized habitats.  相似文献   

17.
Understanding the processes that drive divergence within and among species is a long‐standing goal in evolutionary biology. Traditional approaches to assessing differentiation rely on phenotypes to identify intra‐ and interspecific variation, but many species express subtle morphological gradients in which boundaries among forms are unclear. This intraspecific variation may be driven by differential adaptation to local conditions and may thereby reflect the evolutionary potential within a species. Here, we combine genetic and morphological data to evaluate intraspecific variation within the Nelson's (Ammodramus nelsoni) and salt marsh (Ammodramus caudacutus) sparrow complex, a group with populations that span considerable geographic distributions and a habitat gradient. We evaluated genetic structure among and within five putative subspecies of A. nelsoni and A. caudacutus using a reduced‐representation sequencing approach to generate a panel of 1929 SNPs among 69 individuals. Although we detected morphological differences among some groups, individuals sorted along a continuous phenotypic gradient. In contrast, the genetic data identified three distinct clusters corresponding to populations that inhabit coastal salt marsh, interior freshwater marsh and coastal brackish–water marsh habitats. These patterns support the current species‐level recognition but do not match the subspecies‐level taxonomy within each species—a finding which may have important conservation implications. We identified loci exhibiting patterns of elevated divergence among and within these species, indicating a role for local selective pressures in driving patterns of differentiation across the complex. We conclude that this evidence for adaptive variation among subspecies warrants the consideration of evolutionary potential and genetic novelty when identifying conservation units for this group.  相似文献   

18.
Adaptive radiation involves ecological shifts coupled with isolation of gene pools. However, we know little about what drives the initial stages of divergence. We study a system in which ecological diversification is found within a chronologically well-defined geological matrix to provide insight into this enigmatic phase of radiation. We tested the hypothesis that a period of geographic isolation precedes ecological specialization in an adaptive radiation of host-specialized Hawaiian planthoppers. We examined population structure and history using mitochondrial and multiple independent microsatellite loci in a species whose geographic distribution on the island of Hawaii enabled us to observe the chronology of divergence in its very earliest stages. We found that genetic divergence is associated with geographic features but not different plant hosts and that divergence times are very recent and on the same timescales as the dynamic geology of the island. Our results suggest an important role for geography in the dynamics of the early stages of divergence.  相似文献   

19.
20.
Determining the factors promoting speciation is a major task in ecological and evolutionary research and can be aided by phylogeographic analysis. The Qinling–Daba Mountains (QDM) located in central China form an important geographic barrier between southern subtropical and northern temperate regions, and exhibit complex topography, climatic, and ecological diversity. Surprisingly, few phylogeographic analyses and studies of plant speciation in this region have been conducted. To address this issue, we investigated the genetic divergence and evolutionary histories of three closely related tree peony species (Paeonia qiui, P. jishanensis, and P. rockii) endemic to the QDM. Forty populations of the three tree peony species were genotyped using 22 nuclear simple sequence repeat markers (nSSRs) and three chloroplast DNA sequences to assess genetic structure and phylogenetic relationships, supplemented by morphological characterization and ecological niche modeling (ENM). Morphological and molecular genetic analyses showed the three species to be clearly differentiated from each other. In addition, coalescent analyses using DIYABC conducted on nSSR variation indicated that the species diverged from each other in the late Pleistocene, while ecological niche modeling (ENM) suggested they occupied a larger area during the Last Glacial Maximum (LGM) than at present. The combined genetic evidence from nuclear and chloroplast DNA and the results of ENM indicate that each species persisted through the late Pleistocene in multiple refugia in the Qinling, Daba, and Taihang Mountains with divergence favored by restricted gene flow caused by geographic isolation, ecological divergence, and limited pollen and seed dispersal. Our study contributes to a growing understanding of the origin and population structure of tree peonies and provides insights into the high level of plant endemism present in the Qinling–Daba Mountains of Central China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号