首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular biology methods have elucidated pathogenic processes in several fungal biocontrol agents including two of the most commonly applied entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana. In this review, we describe how a combination of molecular techniques has: (1) identified and characterized genes involved in infection; (2) manipulated the genes of the pathogen to improve biocontrol performance; and (3) allowed expression of a neurotoxin from the scorpion Androctonus australis. The complete sequencing of four exemplar species of entomopathogenic fungi including B. bassiana and M. anisopliae will be completed in 2010. Coverage of these genomes will help determine the identity, origin, and evolution of traits needed for diverse lifestyles and host switching. Such knowledge combined with the precision and malleability of molecular techniques will allow design of multiple pathogens with different strategies to be used for different ecosystems and avoid the possibility of the host developing resistance.  相似文献   

2.
Transgenic modification of Bombyx mori silkworms is a benign approach for the production of silk fibers with extraordinary properties and also to generate therapeutic proteins and other biomolecules for various applications. Silk fibers with fluorescence lasting more than a year, natural protein fibers with strength and toughness exceeding that of spider silk, proteins and therapeutic biomolecules with exceptional properties have been developed using transgenic technology. The transgenic modifications have been done primarily by modifying the silk sericin and fibroin genes and also the silk producing glands. Although the genetic modifications were typically performed using the sericin 1 and other genes, newer techniques such as CRISPR/Cas9 have enabled successful modifications of both the fibroin H-chain and L-chain. Such modifications have led to the production of therapeutic proteins and other biomolecules in reasonable quantities at affordable costs for tissue engineering and other medical applications. Transgenically modified silkworms also have distinct and long-lasting fluorescence useful for bioimaging applications. This review presents an overview of the transgenic techniques for modifications of B. mori silkworms and the properties obtained due to such modifications with particular focus on production of growth factors, fluorescent proteins, and high performance protein fibers.  相似文献   

3.

Bombyx mori is a poikilothermic insect and is economically important for silk production. Drastic changes in the ambient temperature have a negative impact on sericulture. However, the reason as to why high temperature is associated with the occurrence of diseases in silkworm and the response of silkworm to low temperature remain unclear and were the focus of the present study. Dazao silkworm exposed to 13 °C (DZ-13), 25 °C (DZ-25), and 37 °C (DZ-37) were used for RNA-seq analysis. There were 478 and 194 upregulated differentially expressed genes (DEGs) in DZ-13 and DZ-37 while 49 and 273 downregulated DEGs in DZ-13 and DZ-37, respectively. Eight DEGs were co-upregulated, in which seven genes were for heat shock proteins (Hsps), implying that Hsps play important roles in the tolerance of silkworm to high and low temperature. Gene ontology analysis revealed that the developmental process was downregulated in DZ-13. All the DEGs in the oxidative phosphorylation and insulin signaling pathways were upregulated in DZ-13. Several cuticular proteins and ATP synthesis-related genes were upregulated in DZ-13, suggesting that thickening of the cuticle and increase in the ATPase expression would help silkworms to protect themselves from low temperature-induced stress. Several immune-related genes, such as BmRel and BmSerpin-2, were downregulated in DZ-37, revealing that the resistance of silkworm is decreased under high temperature shock resulting in susceptibility to pathogens. Thus, the increase in the thermo-tolerance of silkworm should be related to the enhancement in the pathogen resistance.

  相似文献   

4.
5.
Molecular methods allow the detection of pathogen nucleic acids (DNA and RNA) and, therefore, the detection of contamination in food is carried out with high selectivity and rapidity. In the last 2 decades molecular methods have accompanied traditional diagnostic methods in routine pathogen detection, and might replace them in the upcoming future. In this review the implementation in diagnostics of four of the most used molecular techniques (PCR, NASBA, microarray, LDR) are described and compared, highlighting advantages and limitations of each of them. Drawbacks of molecular methods with regard to traditional ones and the difficulties encountered in pathogen detection from food or clinical specimen are also discussed. Moreover, criteria for the choice of the target sequence for a secure detection and classification of pathogens and possible developments in molecular diagnostics are also proposed.  相似文献   

6.
Bombyx mori nucleopolyhedrovirus (BmNPV) that infects the silkworm, B. mori, accounts for >50% of silk cocoon crop losses globally. We speculated that simultaneous targeting of several BmNPV essential genes in transgenic silkworm would elicit a stable defense against the virus. We introduced into the silkworm germline the vectors carrying short sequences of four essential BmNPV genes in tandem, either in sense or antisense or in inverted-repeat arrangement. The transgenic silkworms carrying the inverted repeat-containing transgene showed stable protection against high doses of baculovirus infection. Further, the antiviral trait was incorporated to a commercially productive silkworm strain highly susceptible to BmNPV. This led to combining the high-yielding cocoon and silk traits of the parental commercial strain and a very high level of refractoriness (>75% survival rate as compared to <15% in nontransgenic lines) to baculovirus infection conferred by the transgene. We also observed impaired infectivity of the occlusion bodies derived from the transgenic lines as compared to the wild-type ones. Currently, large-scale exploitation of these transgenic lines is underway to bring about economic transformation of sericulture.  相似文献   

7.
Filamentous cosmopolitan fungi of the genus Aspergillus can be harmful in two ways, directly they can be opportunistic pathogens causing aspergillosis and indirectly due to aflatoxin production on food products which can lead to aflatoxicosis. Therefore, a number of methods have been proposed so far for detection of the fungi with lowest possible concentration at the earliest. Molecular methods such as PCR and/or in combination with certain techniques have been found to be useful for Aspergillus detection. We discuss here various technologies that have emerged in recent years and can possibly be used for the molecular detection of Aspergillus in an efficient way. These methods like RSIC, C-probe, and inversion probe with pyrosequencing or direct ss/dsDNA detection have been used for the identification of fungal or bacterial pathogens and thus formulate a ‘gold standard’ for Aspergillus detection.  相似文献   

8.
Xue R  Chen H  Cui L  Cao G  Zhou W  Zheng X  Gong C 《Transgenic research》2012,21(1):101-111
The silk gland of the silkworm is a highly specialized organ that has the wonderful ability to synthesize and secrete silk protein. To express human granucyto-macrophage colony-stimulating factor (hGM-CSF) in the posterior silk glands of gene-targeted silkworms, a targeting vector pSK-FibL-L-A3GFP-PH-GMCSF-LPA-FibL-R was constructed, harboring a 1.2 kb portion of the left homogenous arm (FibL-L), a 0.5 kb portion of the right homogenous arm (FibL-R), fibroin H-chain-promoter-driven hGM-CSF and silkworm actin 3-promoter-driven gfp. The targeting vector was then introduced into the eggs of silkworm, and the transgenic silkworms were verified by PCR and DNA hybridization after being screened for the gfp gene. Western blotting analysis using an antibody against hGM-CSF demonstrated a specific band with a molecular weight of 22 kD in the silk glands of the G3 generation transgenic silkworms. The level of expression of hGM-CSF in the posterior silk glands of the G3 generation transgenic silkworms was approximately 2.70 ng/g of freeze-dried powdered posterior silk gland. These results showed that the heterologous gene could be introduced into the silkworm genome and expressed successfully. Further more, the exogenous genes existing in the G5 transgenic silkworm identified by PCR confirmed its integration stability. In addition, the silk glands containing expressed hGM-CSF performed the function of significantly increasing leukocyte count of CY-treated mice in a time-and-dose-dependent manner.  相似文献   

9.
There are many kinds of silks spun by silkworms and spiders, which are suitable to study the structure-property relationship for molecular design of fibers with high strength and high elasticity. In this review, we mainly focus on the structural determination of two well-known silk fibroin proteins that are from the domesticated silkworm, Bombyx mori, and the wild silkworm, Samia cynthia ricini, respectively. The structures of B. mori silk fibroin before and after spinning were determined by using an appropriate model peptide, (AG)(15), with several solid-state NMR methods; (13)C two-dimensional spin-diffusion solid-state NMR and rotational echo double resonance (REDOR) NMR techniques along with the quantitative use of the conformation-dependent (13)C CP/MAS chemical shifts. The structure of S. c. ricini silk fibroin before spinning was also determined by using a model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical repeated sequence of the silk fibroin, with the solid-state NMR methods. The transition from the structure of B. mori silk fibroin before spinning to the structure after spinning was studied with molecular dynamics calculation by taking into account several external forces applied to the silk fibroin in the silkworm.  相似文献   

10.

Background  

Mulberry trees are the most important host for rearing mulberry silkworms in sericulture. Improved varieties of mulberry tree have been developed through traditional breeding procedures. Not much work, however, has been carried out on the molecular characterization of these varieties. Random Amplified Polymorphic DNA (RAPD) and Directed Amplification of Minisatellite DNA (DAMD) methods based on Polymerase Chain Reaction are important tools to analyze genetic diversity of mulberries. These have been used to determine variation amongst nine varieties of Morus spp. maintained at Banthra Research Station of National Botanical Research Institute, Lucknow.  相似文献   

11.
绿脓杆菌是一种常见的人畜共患机会致病菌,广泛存在于自然界,是造成实验动物污染和医院内感染的重要病原菌之一。分子分型方法是病原菌流行病学分析的重要手段,对于确定感染来源和途径,检测交叉污染和流行菌株方面非常有效。本文主要对绿脓杆菌分子分型方法的研究进展进行综述。  相似文献   

12.
The use of treated municipal wastewater residues (biosolids) as fertilizers is an attractive, inexpensive option for growers and farmers. Various regulatory bodies typically employ indicator organisms (fecal coliforms, E. coli and Salmonella) to assess the adequacy and efficiency of the wastewater treatment process in reducing pathogen loads in the final product. Molecular detection approaches can offer some advantages over culture-based methods as they can simultaneously detect a wider microbial species range, including non-cultivable microorganisms. However, they cannot directly assess the viability of the pathogens. Here, we used bacterial enumeration methods together with molecular methods including qPCR, 16S rRNA and cpn60 gene amplicon sequencing and shotgun metagenomic sequencing to compare pre- and post-treatment biosolids from two Canadian wastewater treatment plants (WWTPs). Our results show that an anaerobic digestion WWTP was unsuccessful at reducing the live indicator organism load (coliforms, generic E. coli and Salmonella) below acceptable regulatory criteria, while biosolids from a dewatering/pelletization WWTP met these criteria. DNA from other pathogens was detected by the molecular methods, but these species were considered less abundant. Clostridium DNA increased significantly following anaerobic digestion treatments. In addition to pathogen DNA, genes related to virulence and antibiotic resistance were identified in treated biosolids. Shotgun metagenomics revealed the widest range of pathogen DNA and, among the approaches used here, was the only approach that could access functional gene information in treated biosolids. Overall, our results highlight the potential usefulness of amplicon sequencing and shotgun metagenomics as complementary screening methods that could be used in parallel with culture-based methods, although more detailed comparisons across a wider range of sites would be needed.  相似文献   

13.
Spider dragline silk is a unique fibrous protein with a combination of tensile strength and elasticity, but the isolation of large amounts of silk from spiders is not feasible. In this study, we generated germline-transgenic silkworms (Bombyx mori) that spun cocoons containing recombinant spider silk. A piggyBac-based transformation vector was constructed that carried spider dragline silk (MaSp1) cDNA driven by the sericin 1 promoter. Silkworm eggs were injected with the vector, producing transgenic silkworms displaying DsRed fluorescence in their eyes. Genotyping analysis confirmed the integration of the MaSp1 gene into the genome of the transgenic silkworms, and silk protein analysis revealed its expression and secretion in the cocoon. Compared with wild-type silk, the recombinant silk displayed a higher tensile strength and elasticity. The results indicate the potential for producing recombinant spider silk in transgenic B. mori.  相似文献   

14.
15.
Obtaining inferences on disease dynamics (e.g., host population size, pathogen prevalence, transmission rate, host survival probability) typically requires marking and tracking individuals over time. While multistate mark–recapture models can produce high‐quality inference, these techniques are difficult to employ at large spatial and long temporal scales or in small remnant host populations decimated by virulent pathogens, where low recapture rates may preclude the use of mark–recapture techniques. Recently developed N‐mixture models offer a statistical framework for estimating wildlife disease dynamics from count data. N‐mixture models are a type of state‐space model in which observation error is attributed to failing to detect some individuals when they are present (i.e., false negatives). The analysis approach uses repeated surveys of sites over a period of population closure to estimate detection probability. We review the challenges of modeling disease dynamics and describe how N‐mixture models can be used to estimate common metrics, including pathogen prevalence, transmission, and recovery rates while accounting for imperfect host and pathogen detection. We also offer a perspective on future research directions at the intersection of quantitative and disease ecology, including the estimation of false positives in pathogen presence, spatially explicit disease‐structured N‐mixture models, and the integration of other data types with count data to inform disease dynamics. Managers rely on accurate and precise estimates of disease dynamics to develop strategies to mitigate pathogen impacts on host populations. At a time when pathogens pose one of the greatest threats to biodiversity, statistical methods that lead to robust inferences on host populations are critically needed for rapid, rather than incremental, assessments of the impacts of emerging infectious diseases.  相似文献   

16.
Aspergillus flavus is the second most important Aspergillus species causing human infections. The importance of this fungus increases in regions with a dry and hot climate. Small phylogenetic studies in Aspergillus flavus indicate that the morphological species contains several genetically isolated species. Different genotyping methods have been developed and employed in order to better understand the genetic and epidemiological relationships between environmental and clinical isolates. Understanding pathogen distribution and relatedness is essential for determining the epidemiology of nosocomial infections and aiding in the design of rational pathogen control methods. Typing techniques can also give us a deeper understanding of the colonization pattern in patients. Most of these studies focused on Aspergillus fumigatus because it is medically the most isolated species. To date, there has not been any publication exclusively reviewing the molecular typing techniques for Aspergillus flavus in the literature. This article reviews all these different available methods for this organism.  相似文献   

17.
Molecular biological methods for the detection and characterisation of microorganisms have revolutionised diagnostic microbiology and are now part of routine specimen processing. Polymerase chain reaction (PCR) techniques have led the way into this new era by allowing rapid detection of microorganisms that were previously difficult or impossible to detect by traditional microbiological methods. In addition to detection of fastidious microorganisms, more rapid detection by molecular methods is now possible for pathogens of public health importance. Molecular methods have now progressed beyond identification to detect antimicrobial resistance genes and provide public health information such as strain characterisation by genotyping. Treatment of certain microorganisms has been improved by viral resistance detection and viral load testing for the monitoring of responses to antiviral therapies. With the advent of multiplex PCR, real-time PCR and improvements in efficiency through automation, the costs of molecular methods are decreasing such that the role of molecular methods will further increase. This review will focus on the clinical utility of molecular methods performed in the clinical microbiology laboratory, illustrated with the many examples of how they have changed laboratory diagnosis and therefore the management of infectious diseases.  相似文献   

18.
Highlights? Spider silk a biopolymer of great strength, toughness, and elasticity as well as biodegradability and biocompatibility. ? Various host systems ranging from bacteria to animal systems have been employed for the production of recombinant spider silk proteins. ? Ultra-high molecular weight spider silk protein showing Kevlar strength could be produced in E. coli by systems metabolic engineering. ? Transgenic silkworms producing recombinant or chimera spider silk have great potential for actual production in large scale.  相似文献   

19.
20.
Silkworm, Bombyx mori (B. mori) belongs to the Lepidoptera family. The silk produced from this insect, mulberry silk, gained lot of importance as a fabric. Silk is being exploited as a biomaterial due to its surprising strength and biocompatibility. Polyamines (PA) are important cell growth regulators. In the present work the effect of treatment of polyamines, putrescine (Put), spermidine (Spd), and spermine (Spm) on the quantity and quality of silk produced was assessed. Results showed that exogenous feeding of Spd at a concentration of 50 µM increased fiber length significantly. Analysis by Fourier transform infrared (FTIR) on the properties of silk obtained from Spd treated silkworms revealed an increase in percentage of absorption with no difference in peak positions of amide I and amide III groups. Scanning electron microscopy (SEM) revealed an increase in diameter of silk. Further, analysis at molecular level showed an increase in fibroin expression in Spd treated silk glands. However, the Spd treatment showed no significant difference with respect to fibroin to sericin ratio per unit weight of cocoon, silk tenacity, and percent elongation. Thus, the present results show that polyamine treatment would influence silk quality at structural, mechanical, and molecular level in the Bombyx mori, which can be exploited in silk biomaterial production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号