首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The applicability of succession models from temperate and tropical wet forests to threatened seasonally dry tropical forests (SDTFs) is questioned. Plant phenology affects ecosystem functions and changes along forest regeneration gradient. To investigate the recovery of ecological functions after disturbances in a SDTF, we recorded the vegetative and reproductive phenologies for trees (DBH >5 cm) for 17 months in southeast Brazil in three successional stages: early (10–15 years after clearing), intermediate (25–30) and late (>50). The vegetative phenology of the 523 individuals was strongly seasonal, with 3% of individuals presenting green leaves in a deciduous dry season. Besides structural and floristic differences, phenological trends were similar between the later stages. Reproduction occurred with higher intensities in the early stage and in the advanced stages only in the dry season, providing key resources to local fauna. The studied SDTF is resilient to ecological functions, rapidly recovering functional processes. The integration of structural and functional knowledge of succession of STDFs may lead to better management of its secondary remnants. Our study suggests that classical forest succession theory developed for other ecosystems may not fully reflect the pattern of SDTF succession, an ecosystem that originally covered 42% of the earth's tropical and subtropical landmass.  相似文献   

2.
Studies of the variation in tropical plant species diversity and itsrelationship with environmental factors are largely based on research intropical moist/wet forests. Seasonally dry tropical forests (SDTFs), incontrast, have been poorly investigated. In this paper we present data from 20Mexican SDTF sites sampled to describe the magnitude of floristic diversity inthese forests and to address the following questions: (i) to what extent isspecies diversity related to rainfall? (ii) Are there other climatic variablesthat explain variation in species diversity in SDTFs? (iii) How does speciesidentity vary spatially (species turnover) within the country? We found thatspecies diversity was consistently greater (a ca. twofold difference) than wouldbe expected according to the sites' precipitation. Rainfall did notsignificantly explain the variation in species diversity. Likewise, the numberof dry and wet months per year was unrelated to species diversity. In contrast,a simple measure of potential evapotranspiration (Thornthwaite's index)significantly explained the variation in species diversity. In addition to thegreat diversity of species per site (local diversity), species turnover wasconsiderable: of a total of 917 sampled species, 72% were present only in asingle site and the average similarity (Sorensen's index) among sites wasonly 9%. These aspects of floristic diversity and the high deforestation ratesof these forests in Mexico indicate that conservation efforts should be directedto tropical forests growing in locations of low and seasonal rainfall.  相似文献   

3.
ABSTRACT The main cause of nest mortality for most bird species is predation and nest survival rates often vary in relation to time‐specific variables. Few investigators have examined time‐specific patterns of nest survival in Neotropical birds, and most such studies have focused on tropical and subtropical species. To better understand age‐related patterns of nest survival, we studied nest survival of Red‐crested Cardinals (Paroaria coronata, Thraupidae) in a south‐temperate forest in Argentina. We modeled daily nest survival rates (DSR) using program MARK. We examined the relationship between nest age and nest survival rate, controlling for the effects of physical characteristics of nest sites and progression of the breeding season. We monitored 367 nests for a total of 4018 exposure days. We found that DSR increased with nest age and was higher in small isolated patches than in large continuous patches of forests. The increase of DSR with nest age could be a consequence of more vulnerable nests being predated early in the nesting cycle or a result of parents defending nests more vigorously as nestlings age because of their increasing reproductive value. Open areas of grassland that surrounded the small isolated patches of forests in our study may have been a barrier to predator movements, possibly explaining the lower predation rates. Nest survival rates in our study were lower than those reported for tropical or Nearctic temperate birds, but similar to those reported in other studies of Neotropical temperate birds. Reasons for the low nest survival rates of Neotropical temperate birds remain unclear, and additional studies of predator communities are needed to help elucidate this topic.  相似文献   

4.
Seasonally dry tropical plant formations (SDTF) are likely to exhibit phylogenetic clustering owing to niche conservatism driven by a strong environmental filter (water stress), but heterogeneous edaphic environments and life histories may result in heterogeneity in degree of phylogenetic clustering. We investigated phylogenetic patterns across ecological gradients related to water availability (edaphic environment and climate) in the Caatinga, a SDTF in Brazil. Caatinga is characterized by semiarid climate and three distinct edaphic environments – sedimentary, crystalline, and inselberg –representing a decreasing gradient in soil water availability. We used two measures of phylogenetic diversity: Net Relatedness Index based on the entire phylogeny among species present in a site, reflecting long-term diversification; and Nearest Taxon Index based on the tips of the phylogeny, reflecting more recent diversification. We also evaluated woody species in contrast to herbaceous species. The main climatic variable influencing phylogenetic pattern was precipitation in the driest quarter, particularly for herbaceous species, suggesting that environmental filtering related to minimal periods of precipitation is an important driver of Caatinga biodiversity, as one might expect for a SDTF. Woody species tended to show phylogenetic clustering whereas herbaceous species tended towards phylogenetic overdispersion. We also found phylogenetic clustering in two edaphic environments (sedimentary and crystalline) in contrast to phylogenetic overdispersion in the third (inselberg). We conclude that while niche conservatism is evident in phylogenetic clustering in the Caatinga, this is not a universal pattern likely due to heterogeneity in the degree of realized environmental filtering across edaphic environments. Thus, SDTF, in spite of a strong shared environmental filter, are potentially heterogeneous in phylogenetic structuring. Our results support the need for scientifically informed conservation strategies in the Caatinga and other SDTF regions that have not previously been prioritized for conservation in order to take into account this heterogeneity.  相似文献   

5.
Seasonally dry tropical forests are an important global climatic regulator, a main driver of the global carbon sink dynamics and are predicted to suffer future reductions in their productivity due to climate change. Yet, little is known about how interannual climate variability affects tree growth and how climate-growth responses vary across rainfall gradients in these forests. Here we evaluate changes in climate sensitivity of tree growth along an environmental gradient of seasonally dry tropical vegetation types (evergreen forest – savannah – dry forest) in Northeastern Brazil, using congeneric species of two common neotropical genera: Aspidosperma and Handroanthus. We built tree-ring width chronologies for each species × forest type combinations and explored how growth variability correlated with local (precipitation, temperature) and global (the El Niño Southern Oscillation - ENSO) climatic factors. We also assessed how growth sensitivity to climate and the presence of growth deviations varied along the gradient. Precipitation stimulates tree growth and was the main growth-influencing factor across vegetation types. Trees in the dry forest site showed highest growth sensitivity to interannual variation in precipitation. Temperature and ENSO phenomena correlated negatively with growth and sensitivity to both climatic factors were similar across sites. Negative growth deviations were present and found mostly in the dry-forest species. Our results reveal a dominant effect of precipitation on tree growth in seasonally dry tropical forests and suggest that along the gradient, dry forests are the most sensitivity to drought. These forests may therefore be the most vulnerable to the deleterious effects of future climatic changes. These results highlight the importance of understanding the climatic sensitivity of different tropical forests. This understanding is key to predict the carbon dynamics in tropical regions, and sensitivity differences should be considered when prioritizing conservation measures of seasonally dry topical forests.  相似文献   

6.

Aim

Seasonally dry tropical forest (SDTF) of the Caribbean Islands (primarily West Indies) is floristically distinct from Neotropical SDTF in Central and South America. We evaluate whether tree species composition was associated with climatic gradients or geographical distance. Turnover (dissimilarity) in species composition of different islands or among more distant sites would suggest communities structured by speciation and dispersal limitations. A nested pattern would be consistent with a steep resource gradient. Correlation of species composition with climatic variation would suggest communities structured by broad‐scale environmental filtering.

Location

The West Indies (The Bahamas, Cuba, Hispaniola, Jamaica, Puerto Rico, US Virgin Islands, Guadeloupe, Martinique, St. Lucia), Providencia (Colombia), south Florida (USA) and Florida Keys (USA).

Taxon

Seed plants—woody taxa (primarily trees).

Methods

We compiled 572 plots from 23 surveys conducted between 1969 and 2016. Hierarchical clustering of species in plots, and indicator species analysis for the resulting groups of sites, identified geographical patterns of turnover in species composition. Nonparametric analysis of variance, applied to principal components of bioclimatic variables, determined the degree of covariation in climate with location. Nestedness versus turnover in species composition was evaluated using beta diversity partitioning. Generalized dissimilarity modelling partitioned the effect of climate versus geographical distance on species composition.

Results

Despite a set of commonly occurring species, SDTF tree community composition was distinct among islands and was characterized by spatial turnover on climatic gradients that covaried with geographical gradients. Greater Antillean islands were characterized by endemic indicator species. Northern subtropical areas supported distinct, rather than nested, SDTF communities in spite of low levels of endemism.

Main conclusions

The SDTF species composition was correlated with climatic variation. SDTF on large Greater Antillean islands (Hispaniola, Jamaica and Cuba) was characterized by endemic species, consistent with their geological history and the biogeography of plant lineages. These results suggest that both environmental filtering and speciation shape Caribbean SDTF tree communities.  相似文献   

7.
Both mass (as a measure of body reserves) during breeding and adult survival should reflect variation in food availability. Those species that are adapted to less seasonally variable foraging niches and so where competition dominates during breeding, will tend to have a higher mass increase via an interrupted foraging response, because their foraging demands increase and so become more unpredictable. They will then produce few offspring per breeding attempt, but trade this off with higher adult survival. In contrast, those species that occupy a more seasonal niche will not gain mass because foraging remains predictable, as resources become superabundant during breeding. They can also produce more offspring per breeding attempt, but with a trade-off with reduced adult survival. We tested whether the then predicted positive correlation between levels of mass gained during seasonal breeding and adult survival was present across 40 species of tropical bird measured over a 10-year period in a West African savannah. We showed that species with a greater seasonal mass increase had higher adult survival, controlling for annual mass variation (i.e. annual variation in absolute food availability) and variation in the timing of peak mass (i.e. annual predictability of food availability), clutch size, body size, migratory status and phylogeny. Our results support the hypothesis that the degree of seasonal mass variation in birds is probably an indication of life history adaptation: across tropical bird species it may therefore be possible to use mass gain during breeding as an index of adult survival.  相似文献   

8.
We test the hypotheses proposed by Gentry and Schnitzer that liana density and basal area in tropical forests vary negatively with mean annual precipitation (MAP) and positively with seasonality. Previous studies correlating liana abundance with these climatic variables have produced conflicting results, warranting a new analysis of drivers of liana abundance based on a different dataset. We compiled a pan-tropical dataset containing 28,953 lianas (≥2.5 cm diam.) from studies conducted at 13 Neotropical and 11 Paleotropical dry to wet lowland tropical forests. The ranges in MAP and dry season length (DSL) (number of months with mean rainfall <100 mm) represented by these datasets were 860–7250 mm/yr and 0–7 mo, respectively. Pan-tropically, liana density and basal area decreased significantly with increasing annual rainfall and increased with increasing DSL, supporting the hypotheses of Gentry and Schnitzer. Our results suggest that much of the variation in liana density and basal area in the tropics can be accounted for by the relatively simple metrics of MAP and DSL.  相似文献   

9.
The tree species composition of seasonally dry tropical forests (SDTF) in north-eastern and central Brazil is analyzed to address the following hypotheses: (1) variations in species composition are related to both environment (climate and substrate) and spatial proximity; (2) SDTF floristic units may be recognized based on peculiar composition and environment; and (3) the Arboreal Caatinga, a deciduous forest occurring along the hinterland borders of the Caatinga Domain, is one of these units and its flora is more strongly related to the caatinga vegetation than to outlying forests. The study region is framed by the Brazilian coastline, 50th meridian west and 21st parallel south, including the Caatinga Domain and extensions into the Atlantic Forest and Cerrado Domains. Multivariate and geostatistic analyses were performed on a database containing 16,226 occurrence records of 1332 tree species in 187 georeferenced SDTF areas and respective environmental variables. Tree species composition varied significantly with both environmental variables and spatial proximity. Eight SDTF floristic units were recognized in the region, including the Arboreal Caatinga. In terms of species composition, its tree flora showed a stronger link with that of the Cerrado Dry Forest Enclaves. On the other hand, in terms of species frequency across sample areas, the links were stronger with two other units: Rock Outcrops Caatinga and Agreste and Brejo Dry Forests. There is a role for niche-based control of tree species composition across the SDTFs of the region determined primarily by the availability of ground water across time and secondarily by the amount of soil mineral nutrients. Spatial proximity also contributes significantly to the floristic cohesion of SDTF units suggesting a highly dispersal-limited tree flora. These units should be given the status of eco-regions to help driving the conservation policy regarding the protection of their biodiversity.  相似文献   

10.
For seasonally migrating birds, aspects of migratory behavior, such as the use of temperate versus tropical wintering areas, may influence their ability to respond to environmental change. Here, we infer potential flexibility in songbird migration from variation in two alternative stopover behaviors. Hierarchical Bayesian mark–recapture modeling was used to quantify stopover decisions over 19 years for four temperate and four tropical migratory species at a stopover site in southern Canada. Short-distance temperate migrants exhibited higher variability in behavior and greater responses to local weather than longer-distance tropical migrants, as measured by transience (the proportion of birds stopping <24 h, i.e. seeking brief sanctuary or subsequently relocating) and departure (re-initiation of migration by birds that stopped over for >24 h). In contrast to many previous works on climate–migration associations, annual variation in stopover behavior did not show strong links to broad-scale climatic fluctuations for either temperate or tropical migrants, nor was there any indication of directional changes in stopover behavior over the past two decades. In addition to suggesting that migratory songbirds—particularly tropical-wintering species—may face increasing threats with future climatic variability, our study highlights the potential importance of flexibility in en-route behavior for resilience to environmental change.  相似文献   

11.
Neotropical seasonally dry forests and Quaternary vegetation changes   总被引:6,自引:0,他引:6  
Seasonally dry tropical forests have been largely ignored in discussions of vegetation changes during the Quaternary. We distinguish dry forests, which are essentially tree‐dominated ecosystems, from open savannas that have a xeromorphic fire‐tolerant, grass layer and grow on dystrophic, acid soils. Seasonally dry tropical forests grow on fertile soils, usually have a closed canopy, have woody floras dominated by the Leguminosae and Bignoniaceae and a sparse ground flora with few grasses. They occur in disjunct areas throughout the Neotropics. The Chaco forests of central South America experience regular annual frosts, and are considered a subtropical extension of temperate vegetation formations. At least 104 plant species from a wide range of families are each found in two or more of the isolated areas of seasonally dry tropical forest scattered across the Neotropics, and these repeated patterns of distribution suggest a more widespread expanse of this vegetation, presumably in drier and cooler periods of the Pleistocene. We propose a new vegetation model for some areas of the Ice‐Age Amazon: a type of seasonally dry tropical forest, with rain forest and montane taxa largely confined to gallery forest. This model is consistent with the distributions of contemporary seasonally dry tropical forest species in Amazonia and existing palynological data. The hypothesis of vicariance of a wider historical area of seasonally dry tropical forests could be tested using a cladistic biogeographic approach focusing on plant genera that have species showing high levels of endemicity in the different areas of these forests.  相似文献   

12.
Few data exist on seed dispersal by frugivorous birds in fragmented landscapes, originating from tropical dry forests, in contrast to more abundant data from tropical rain forests. In this study, we assessed the effect of frugivorous birds in a fragmented landscape of Veracruz, Mexico, now occupied by remnant fragments of tropical semi‐deciduous forest and dry deciduous forest, grassland, and shrubby patches on sand dunes. We determined four characteristics related to seed dispersal by birds: the interacting species of plants and birds, the characteristics of these species, spatio‐temporal variation in the dispersal system, and the outcome of the process. During one year, we recorded 54 frugivorous bird species and 33 ornithochorous plant species, which engaged in 176 different bird‐plant species interactions. Similarity (Sorensen index) of frugivorous bird communities using different vegetation types was high (>70%), suggesting that many bird species used all of the vegetation types. In contrast, the similarity of ornithochorous plant communities among vegetation types commonly was low (<37%), suggesting that most plant species were restricted to particular sites in this landscape. At the landscape level, as well as for tropical deciduous forest, we detected a significant positive relationship (Spearman's correlation of rank coefficient >0.65, P <0.05) among richness per month of frugivorous birds and plant species bearing fleshy fruits. Seeds of many plant species previously detected in studies of seed rain at the site were eaten by birds during this study. Most seeds of zoochorous species, which are deposited in the dry and decidous tropical forests patches, are produced within these vegetation types (i.e., they are autochthonous species), whereas bird‐dispersed seeds arriving in grassland and shrubby patches are produced outside (i.e., allochthonous) and are mostly woody species. Birds are important seed dispersers among vegetation types in this landscape but they have different effects in each one. The four characteristics studied, as well as the landscape approach of this research, allowed us to detect spatial and temporal patterns that otherwise would have remained undetected.  相似文献   

13.
Climate change is predicted to impact tropical mangrove forests due to decreased rainfall, sea‐level rise, and increased seasonality of flooding. Such changes are likely to influence habitat quality for migratory songbirds occupying mangrove wetlands during the tropical dry season. Overwintering habitat quality is known to be associated with fitness in migratory songbirds, yet studies have focused primarily on territorial species. Little is known about the ecology of nonterritorial species that may display more complex movement patterns within and among habitats of differing quality. In this study, we assess within‐season survival and movement at two spatio‐temporal scales of a nonterritorial overwintering bird, the prothonotary warbler (Protonotaria citrea), that depends on mangroves and tropical lowland forests. Specifically, we (a) estimated within‐patch survival and persistence over a six‐week period using radio‐tagged birds in central Panama and (b) modeled abundance and occupancy dynamics at survey points throughout eastern Panama and northern Colombia as the dry season progressed. We found that site persistence was highest in mangroves; however, the probability of survival did not differ among habitats. The probability of warbler occupancy increased with canopy cover, and wet habitats were least likely to experience local extinction as the dry season progressed. We also found that warbler abundance is highest in forests with the tallest canopies. This study is one of the first to demonstrate habitat‐dependent occupancy and movement in a nonterritorial overwintering migrant songbird, and our findings highlight the need to conserve intact, mature mangrove, and lowland forests.  相似文献   

14.
? Mesoamerican arid biomes epitomize neotropical rich and complex biodiversity. To document some of the macroevolutionary processes underlying the vast species richness of Mesoamerican seasonally dry tropical forests (SDTFs), and to evaluate specific predictions about the age, geographical structure and niche conservatism of SDTF-centered woody plant lineages, the diversification of Bursera is reconstructed. ? Using a nearly complete Bursera species-level phylogeny from nuclear and plastid genomic markers, we estimate divergence times, test for phylogenetic and temporal diversification heterogeneity, test for geographical structure, and reconstruct habitat shifts. ? Bursera became differentiated in the earliest Eocene, but diversified during independent early Miocene consecutive radiations that took place in SDTFs. The late Miocene average age of Bursera species, the presence of phylogenetic geographical structure, and its strong conservatism to SDTFs conform to expectations derived from South American SDTF-centered lineages. ? The diversification of Bursera suggests that Mesoamerican SDTF richness derives from high speciation from the Miocene onwards uncoupled from habitat shifts, during a period of enhanced aridity resulting mainly from global cooling and regional rain shadows.  相似文献   

15.
Abstract Predators are thought to play a key role in controlling herbivory, thus having positive indirect effects on plants. However, evidence for terrestrial trophic cascades is still fragmentary, perhaps due to variation in top‐down forces created by environmental heterogeneity. We examined the magnitude of predation effects on foliar damage by chewing insects and mean leaf size, by excluding birds from saplings in ‘dry’ and ‘wet’Nothofagus pumilio forests in the northern Patagonian Andes, Argentina. The experiment lasted 2 years encompassing a severe drought during the La Niña phase of a strong El Niño/Southern Oscillation event, which was followed by unusually high background folivory levels. Insect damage was consistently higher in wet than in dry forest saplings. In the drought year (1999), bird exclusion increased folivory rates in both forests but did not affect tree leaf size. In the ensuing season (2000), leaf damage was generally twice as high as in the drought year. As a result, bird exclusion not only increased the extent of folivory but also significantly decreased sapling leaf size. The latter effect was stronger in the wet forest, suggesting compensation of leaf area loss by dry forest saplings. Overall, the magnitude of predator indirect effects depended on the response variable measured. Insectivorous birds were more effective at reducing folivory than at facilitating leaf area growth. Our results indicate that bird‐initiated trophic cascades protect N. pumilio saplings from insect damage even during years with above‐normal herbivory, and also support the view that large‐scale climatic events influence the strength of trophic cascades.  相似文献   

16.
Mistletoes are hemiparasitic flowering plants that function as keystone resources in forests and woodlands of temperate regions, where a positive relationship between mistletoe density and avian species richness has been observed. Mistletoes have been less studied in tropical regions and the relationship between birds and mistletoes has seldom been explored in tropical agricultural systems. Therefore, we studied the presence of infected trees and infection prevalence (i.e., number of parasitized trees/total number of trees) by Psittacanthus (Loranthaceae) mistletoes in 23 hedgerows located in an agricultural landscape of central Mexico during the dry and rainy seasons, and investigated the relationship between bird species richness and abundance and the abundance of mistletoes. We found a mean of 74 mistletoe plants per 100-m transect of only one species, Psittacanthus calyculatus. Thirty-one percent of the trees surveyed were infected and tree species differed in infection prevalence, mesquite (Prosopis laevigata) being the most infected species with 86% of the surveyed trees infected. For both seasons, we found a positive and significant association between bird species richness and number of mistletoe plants. The same pattern was observed for total bird abundance. Many resident and Neotropical migratory birds were observed foraging on mistletoes. Our results show that mistletoes are important in promoting a higher bird species richness and abundance in tropical agricultural landscapes.  相似文献   

17.
Tree species distribution in lowland tropical forests is strongly associated with rainfall amount and distribution. Not only plant water availability, but also irradiance, soil fertility, and pest pressure covary along rainfall gradients. To assess the role of water availability in shaping species distribution, we carried out a reciprocal transplanting experiment in gaps in a dry and a wet forest site in Ghana, using 2,670 seedlings of 23 tree species belonging to three contrasting rainfall distributions groups (dry species, ubiquitous species, and wet species). We evaluated seasonal patterns in climatic conditions, seedling physiology and performance (survival and growth) over a 2‐year period and related seedling performance to species distribution along Ghana's rainfall gradient. The dry forest site had, compared to the wet forest, higher irradiance, and soil nutrient availability and experienced stronger atmospheric drought (2.0 vs. 0.6 kPa vapor pressure deficit) and reduced soil water potential (?5.0 vs. ?0.6 MPa soil water potential) during the dry season. In both forests, dry species showed significantly higher stomatal conductance and lower leaf water potential, than wet species, and in the dry forest, dry species also realized higher drought survival and growth rate than wet species. Dry species are therefore more drought tolerant, and unlike the wet forest species, they achieve a home advantage. Species drought performance in the dry forest relative to the wet forest significantly predicted species position on the rainfall gradient in Ghana, indicating that the ability to grow and survive better in dry forests and during dry seasons may allow species to occur in low rainfall areas. Drought is therefore an important environmental filter that influences forest composition and dynamics. Currently, many tropical forests experience increase in frequency and intensity of droughts, and our results suggest that this may lead to reduction in tree productivity and shifts in species distribution.  相似文献   

18.
The intermediate disturbance hypothesis (IDH) predicts local species diversity to be maximal at an intermediate level of disturbance. Developed to explain species maintenance and diversity patterns in species-rich ecosystems such as tropical forests, tests of IDH in tropical forest remain scarce, small-scale and contentious. We use an unprecedented large-scale dataset (2504 one-hectare plots and 331 567 trees) to examine whether IDH explains tree diversity variation within wet, moist and dry tropical forests, and we analyse the underlying mechanism by determining responses within functional species groups. We find that disturbance explains more variation in diversity of dry than wet tropical forests. Pioneer species numbers increase with disturbance, shade-tolerant species decrease and intermediate species are indifferent. While diversity indeed peaks at intermediate disturbance levels little variation is explained outside dry forests, and disturbance is less important for species richness patterns in wet tropical rain forests than previously thought.  相似文献   

19.
Aim This research examines environmental theories and remote sensing methods that have been hypothesized to be associated with tropical dry forest structure. Location Tropical dry forests of South Florida and the Neotropics. Methods Field measurements of stand density, basal area and tree height were collected from 22 stands in South Florida and 30 stands in the Neotropics. In South Florida, field measurements were compared to climatic (temperature, precipitation, hurricane disturbance) and edaphic (rockiness, soil depth) variables, spectral indices (NDVI, IRI, MIRI) from Landsat 7 ETM+, and estimates of tree height from the Shuttle Radar Topography Mission (SRTM) and the National Elevation Dataset (NED). Environmental variables associated with tropical dry forest structure in South Florida were compared to tropical dry forest in other Neotropical sites. Results There were significant correlations among temperature and precipitation, and stand density and tree height in South Florida. There were significant correlations between (i) stand density and mean NDVI and standard deviation of NDVI, (ii) MIRI and stand density, basal area and mean tree height, and (iii) estimates of tree height from SRTM with maximum tree height. In the Neotropics, there were no relationships between temperature or precipitation and tropical dry forest structure, however, Neotropical sites that experience hurricane disturbance had significantly shorter tree heights and higher stand densities. Main conclusions It is possible to predict and quantify the forest structure characteristics of tropical dry forests using climatic data, Landsat 7 ETM+ imagery and SRTM data in South Florida. However, results based on climatic data are region‐specific and not necessarily transferable between tropical dry forests at a continental spatial scale. Spectral indices from Landsat 7 ETM+ can be used to quantify forest structure characteristics, but SRTM data are currently not transferable to other regions. Hurricane disturbance has a significant impact on forest structure in the Neotropics.  相似文献   

20.
Mexico is considered an exceptional biogeographic area with a varied endemic flora, however spatial phylogenetic measures of biodiversity have not yet been estimated to understand how its flora assembled to form the current vegetation. Patterns of species richness, endemism, phylogenetic diversity, phylogenetic endemism and centers of neo‐ and paleo‐endemism were determined to examine differences and congruence among these measures, and their implications for conservation. Of 24 360 vascular plant species 10 235 (42%) are endemic. Areas of endemism and phylogenetic endemism were associated with dry forests in zones of topographic complexity in mountain systems, in deserts, and in isolated xeric vegetation. Every single locality where seasonally tropical dry forests have been reported in Mexico was identified as an area of endemism. Significant phylogenetic diversity was the most restricted and occurred in the Trans‐Mexican Volcanic Belt and in the Sierra de Chiapas. Notably, the highest degree of phylogenetic clustering comprising neo‐, paleo‐, and super‐endemism was identified in southernmost Mexico. Most vascular plant lineages diverged in the Miocene (5–20 mya) when arid environments expanded across the world. The location of Mexico between two very large landmasses and the fact that more than fifty percent of its surface is arid favored the establishment of tropical lineages adapted to extreme seasonality and aridity. These lineages were able to migrate from both North and South America across Central America presumably during the Miocene and to diversify, illustrating the signature of the flora of Mexico of areas of endemism with a mixture of neo‐ and paleo‐endemism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号