首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In bovine cardiac sarcolemmal vesicles, an outward H+ gradient stimulated the initial rate of amiloride-sensitive uptake of 22Na+, 42K+, or 86Rb+. Release of H+ from the vesicles was stimulated by extravesicular Na+, K+, Rb+, or Li+ but not by choline or N-methylglucamine. Uptakes of Na+ and Rb+ were half-saturated at 3 mM Na+ and 3 mM Rb+, but the maximal velocity of Na+ uptake was 1.5 times that of Rb+ uptake. Na+ uptake was inhibited by extravesicular K+, Rb+, or Li+, and Rb+ uptake was inhibited by extravesicular Na+ or Li+. Amiloride-sensitive uptake of Na+ or Rb+ increased with increase in extravesicular pH and decrease in intravesicular pH. In the absence of pH gradient, there were stimulations of Na+ uptake by intravesicular Na+ and K+ and of Rb+ uptake by intravesicular Rb+ and Na+. Similarly, there were trans stimulations of Na+ and Rb+ efflux by extravesicular alkali cations. The data suggest the existence of a nonselective antiporter catalyzing either alkali cation/H+ exchange or alkali cation/alkali cation exchange. Since increasing Na+ caused complete inhibition of Rb+/H+ exchange, but saturating K+ caused partial inhibitions of Na+/H+ exchange and Na+/Na+ exchange, the presence of a Na(+)-selective antiporter is also indicated. Although both antiporters may be involved in pH homeostasis, a role of the nonselective antiporter may be in the control of Na+/K+ exchange across the cardiac sarcolemma.  相似文献   

2.
The pyrazine diuretic amiloride inhibits the Na+/Ca2+ exchange activity of cardiac sarcolemmal vesicles in a concentration-dependent way. A good relationship between the uptake of amiloride by the vesicles and the inhibition of the exchanger has been found. Kinetic analyses indicate that the inhibition of Na+/Ca2+ exchange activity by amiloride is non-competitively removed by Ca2+ and competitively overcome by an outwardly directed Na+ gradient.  相似文献   

3.
Reconstitution of a bacterial Na+/H+ antiporter   总被引:1,自引:0,他引:1  
Membrane proteins from alkalophilic Bacillus firmus RAB were extracted with octylglucoside, reconstituted into liposomes made from alkalophile lipids. The proteoliposomes were loaded with 22Na+. Imposition of a valinomycin-mediated potassium diffusion potential, positive out, resulted in very rapid efflux of radioactive Na+ against its electrochemical gradient. That the Na+ efflux was mediated by the electrogenic Na+/H+ antiporter is indicated by the following characteristics that had been established for the porter in previous studies: dependence upon an electrical potential; pH sensitivity, with activity dependent upon an alkaline pH; inhibition by Li+; and an apparent concentration dependence upon Na+ that correlated well with measurements in cells and membrane vesicles.  相似文献   

4.
The Na+/H+ antiporter of alkaliphilic Bacillus sp.   总被引:1,自引:0,他引:1  
The Na+/H+ antiporter, which appears to predominantly contribute to the alkaliphily of Bacillus halodurans C-125, was studied in an alkali-sensitive mutant of this strain and a transformant with restored alkaliphily. The alkali-sensitive mutant, strain 38154, which has lost the ability to grow above pH 9.5, was found to lack electro-genic Na+/H+ antiport activity driven by ΔΨ (membrane potential, interior negative), and it showed defective regulation of intracellular pH under alkaline conditions. On the other hand, a transformant carrying a 2.0-kb DNA fragment from the parental genome that complemented this defect was able to maintain an intracellular pH lower than that of the external milieu, and it was found to have recovered the Na+/H+ antiport activity driven by ΔΨ. Sequence analyses found that a 5.1-kb DNA region contained four open reading frames (ORF-1 to ORF-4). Direct sequencing of the corresponding region in mutant 38154 revealed a G-to-A substitution, which resulted in an amino acid substitution from Gly-393 to Arg in the putative ORF-1 product. It has been recently found that a region homologous to the DNA fragment responsible for the alkaliphily of strain C-125 exists in the genomes of Bacillus subtilis, Sinorhizobium (Rhizobium) meliloti, and Staphylococcus aureus. These homologues are present as a cluster of seven ORFs in each case. The shaA gene product of B. subtilis shows significant similarity to the ORF-1 product of strain C-125. Disruption of the shaA gene resulted in a decrease in Na+/H+ antiport activity, and growth of the shaA-disrupted strain was impaired when the external Na+ concentration was increased. We conclude that the shaA gene encodes a Na+/H+ antiporter, which plays an important role in extrusion of cytotoxic Na+. Received: May 29, 2000 / Accepted: July 18, 2000  相似文献   

5.
Palytoxin acidifies chick cardiac cells and activates the Na+/H+ antiporter   总被引:2,自引:0,他引:2  
The cardiotoxic action of palytoxin was investigated using embryonic chick ventricular cells. Under normal ionic conditions, palytoxin produced an intracellular acidification which is partially compensated for by the Na+/H+ antiporter thereby leading to an increased rate of ethylisopropylamiloride-sensitive 22Na+ uptake. Under depolarizing membrane conditions, palytoxin produced a cellular acidification, a cellular alkalinization or no change in intracellular pH depending on the value of the extracellular pH. We propose that palytoxin acidifies cardiac cells by opening preexisting H+ conducting pathways in the plasma membrane.  相似文献   

6.
Abstract

Na+/H+ antiporters play a primary role in Na+/H+ homeostasis in cells and many organelles and have long been drug targets. The X-ray structure of NhaA, the main antiporter of Escherichia coli, provided structural insights into the antiport mechanism and its pH regulation and revealed a novel fold; six of the 12 TMs (Trans membrane segments) are organized in two topologically inverted repeats, each with one TM interrupted by an extended chain creating a unique electrostatic environment in the middle of the membrane at the cation binding site. Remarkably, inverted repeats containing interrupted helices with similar functional implications have since been observed in structures of other bacterial secondary transporters with almost no sequence homology. Finally, the structure reveals that NhaA is organized into two functional regions: a ‘pH sensor' – a cluster of amino acyl side chains that are involved in pH regulation; and a catalytic region that is 9 Å removed from the pH sensor. Alternative accessibility of the binding site to either side of the membrane, i.e., functional-dynamics, is the essence of secondary transport mechanism. Because NhaA is tightly pH regulated, structures of the pH-activated and ligand-activated NhaA conformations are needed to identify its functional-dynamics. However, as these are static snapshots of a dynamic protein, the dynamics of the protein both in vitro and in situ in the membrane are also required as reviewed here in detail. The results reveal two different conformational changes characterizing NhaA: One is pH-induced for NhaA activation; the other is ligand-induced for antiport activity.  相似文献   

7.
The role of cAMP in activating the Na+/H+ antiporter in murine macrophage (M phi) system was investigated. Incubation of PU5-1.8 macrophage tumour cells, peritoneal M phi and bone marrow derived macrophages (BMDM phi s) with dibutyryl-cAMP (db-cAMP) or cholera toxin (CT) led to an increase in intracellular pH (pHi). The magnitudes of these responses differed markedly in the three cell types, BMDM phi s being the most sensitive, PU5-1.8 cells the least so. These cells also differed in their responses to inhibitors of Na+/H+ exchange. In PU5-1.8 cells, the db-cAMP- or CT-triggered intracellular alkalinization was abolished by amiloride treatment which, however, was ineffective in BMDM phi s. The chemotactic peptide, N-formyl-methionyl-leucyl-phenylalanine (FMLP), also caused a significant increase in cytoplasmic pH. However, its action was apparently not mediated by cAMP. The significance of these observations is discussed.  相似文献   

8.
Purified canine cardiac sarcolemmal membrane vesicles exhibit a sodium ion for proton exchange activity (Na+/H+ exchange). Na+/H+ exchange was demonstrated both by measuring rapid 22Na uptake into sarcolemmal vesicles in response to a transmembrane H+ gradient and by following H+ transport in response to a transmembrane Na+ gradient with use of the probe acridine orange. Maximal 22Na uptake into the sarcolemmal vesicles (with starting intravesicular pH = 6 and extravesicular pH = 8) was approximately 20 nmol/mg protein. The extravesicular Km of the Na+/H+ exchange activity for Na+ was determined to be between 2 and 4 mM (intravesicular pH = 5.9, extravesicular pH = 7.9), as assessed by measuring the concentration dependence of the 22Na uptake rate and the ability of extravesicular Na+ to collapse an imposed H+ gradient. All results suggested that Na+/H+ exchange was reversible and tightly coupled. The Na+/H+ exchange activity was assayed in membrane subfractions and found most concentrated in highly purified cardiac sarcolemmal vesicles and was absent from free and junctional sarcoplasmic reticulum vesicles. 22Na uptake into sarcolemmal vesicles mediated by Na+/H+ exchange was dependent on extravesicular pH, having an optimum around pH 9 (initial internal pH = 6). Although the Na+/H+ exchange activity was not inhibited by tetrodotoxin or digitoxin, it was inhibited by quinidine, quinacrine, amiloride, and several amiloride derivatives. The relative potencies of the various inhibitors tested were found to be: quinacrine greater than quinidine = ethylisopropylamiloride greater than methylisopropylamiloride greater than dimethylamiloride greater than amiloride. The Na+/H+ exchange activity identified in purified cardiac sarcolemmal vesicles appears to be qualitatively similar to Na+/H+ exchange activities recently described in intact cell systems. Isolated cardiac sarcolemmal vesicles should prove a useful model system for the study of Na+/H+ exchange regulation in myocardial tissue.  相似文献   

9.
Extremely alkalophilic bacteria that grow optimally at pH 10.5 and above are generally aerobic bacilli that grow at mesophilic temperatures and moderate salt levels. The adaptations to alkalophily in these organisms may be distinguished from responses to combined challenges of high pH together with other stresses such as salinity or anaerobiosis. These alkalophiles all possess a simple and physiologically crucial Na+ cycle that accomplishes the key task of pH homeostasis. An electrogenic, secondary Na+/H+ antiporter is energized by the electrochemical proton gradient formed by the proton-pumping respiratory chain. The antiporter facilitates maintenance of a pHin that is two or more pH units lower than pHout at optimal pH values for growth. It also largely converts the initial electrochemical proton gradient formed by respiration into an electrochemical sodium gradient that energizes motility as well as a plethora of Na+/solute symporters. These symporters catalyze solute accumulation and, importantly, reentry of Na+. The extreme nonmarine alkalophiles exhibit no primary sodium pumping dependent upon either respiration or ATP. ATP synthesis is not part of their Na+ cycle. Rather, the specific details of oxidative phosphorylation in these organisms are an interesting analogue of the same process in mitochondria, and may utilize some common features to optimize energy transduction.  相似文献   

10.
11.
A non-alkalophilic mutant strain of Bacillusalcalophilus grows on L-malate over a pH range from 5.0 to 9.0. The mutant does not exhibit the energy-dependent efflux of Na+ that has been used to assay a Na+H+ antiporter in the wild type organism. The mutant also fails to transport α-aminoisobutyric acid, at pH 9.0, either in the presence or absence of Na+; at pH 5.5, the amino acid analogue is taken up by a Na+-independent mechanism. The properties of the mutant constitute strong evidence that the Na+H+ antiporter is involved in maintaining an acidified cytoplasm in B. alcalophilus.  相似文献   

12.
As a first step in the isolation of a stable Na+/H+ antiporter, its reaction in sonicated membrane vesicles of thermophilic bacterium PS3 has been characterized. The sonicated vesicles showed quenching of quinacrine fluorescence in either NADH oxidation or ATP hydrolysis. The quenching was reversed by the addition of Na+, Li+, Mn2+, Cd2+, and Co2+, but not of choline+ or Ca2+, regardless of their counter anions.22Na+ was taken up into the vesicles by NADH oxidation, and the22Na+ uptake was inhibited by the addition of an uncoupler. H+ release was observed on addition of Na+ to sonicated vesicles. The magnitude of the pH difference across the membrane induced by NADH oxidation was constant at pH 7.0 to 9.1, but the Na+/H+ antiport was affected by the pH of the medium (optimum pH=8.5). TheK m 's of the antiporter for Na+ and Li+ were 2.5 and 0.1 mM, respectively, but theV max values for the two ions were the same at pH 8.0. In the presence of Li+, no further decrease of fluorescence quenching was observed on addition of Na+ andvice versa. The Na+/H+ antiporter activity in PS3 was stable at 70°C, and the optimum temperature for activity was 55–60°C. In contrast to mesophilic cation/H+ antiporters, this antiporter was not inhibited by a thiol reagent.Abbreviations Tricine N-tris(hydroxymethyl)methylglycine - MOPS morpholinopropane sulfonic acid - TMAHO tetramethylammonium hydroxide - DCCD N,N-dicyclohexylcarbodiimide - FCCP carbonyl cyanidep-trifluoromethoxyphenylhydrazone - H+ — ATPase proton-translocating adenosine triphosphatase - electrochemical proton gradient across membrane - electrochemical Na+ gradient across membrane - pH pH difference across membrane  相似文献   

13.
The functional expression of membrane transport proteins that are responsible for exchanging sodium and protons is a ubiquitous phenomenon. Among vertebrates the Na+/H+ antiporter occurs in plasma membranes of polarized epithelial cells and non-polarized cells such as red blood cells, muscle cells, and neurons, and in each cell type the transporter exchanges one sodium for one hydrogen ion, is inhibited by amiloride, and regulates intracellular pH and sodium concentration within tight limitations. In polarized epithelial cells this transporter occurs in two isoforms, each of which is restricted to either the brush border or basolateral cell membrane, and perform somewhat different tasks in the two locations. In prokaryotic cells, sodium/proton exchange occurs by an electrogenic 1Na+/2H+ antiporter that is coupled to a primary active proton pump and together these two proteins are capable of tightly regulating the intracellular concentrations of these cations in cells that may occur in environments of 4 M NaCl or pH 10-12. Invertebrate epithelial cells from the gills, gut, and kidney also exhibit electrogenic sodium/proton exchange, but in this instance the transport stoichiometry is 2Na+/1H+. As with vertebrate electroneutral Na+/H+ exchange, the invertebrate transporter is inhibited by amiloride, but because of the occurrence of two external monovalent cation binding sites, divalent cations are able to replace external sodium and also be transported by this system. As a result, both calcium and divalent heavy metals, such as zinc and cadmium, are transported across epithelial brush border membranes in these animals and subsequently undergo a variety of biological activities once accumulated within these cells. Absorbed epithelial calcium in the crustacean hepatopancreas may participate in organismic calcium balance during the molt cycle and accumulated heavy metals may undergo complexation reactions with intracellular anions as a detoxification mechanism. Therefore, while the basic process of sodium/proton exchange may occur in invertebrate cells, the presence of the electrogenic 2Na+/1H+ antiporter in these cells allows them to perform a wide array of functions without the need to develop and express additional specialized transport proteins. J. Exp. Zool. 289:232-244, 2001.  相似文献   

14.
1. Harmaline was found to inhibit the Na+-Ca2+ exchange mechanism present in cardiac sarcolemmal vesicles. 2. The inhibition was dose-dependent and was observed in the range 10(-5) M-10(-2) M harmaline. 3. The effect was demonstrated on both 45Ca2+-uptake and 45Ca2+-efflux. 4. The observed Ki value for harmaline inhibition of 45Ca2+-uptake was found to be 2.5 X 10(-4) M.  相似文献   

15.
In the thermohalophilic bacterium Rhodothermus marinus, the NADH:quinone oxidoreductase (complex I) is encoded by two single genes and two operons, one of which contains the genes for five complex I subunits, nqo10-nqo14, a pterin carbinolamine dehydratase, and a putative single subunit Na+/H+ antiporter. Here we report that the latter encodes indeed a functional Na+/H+ antiporter, which is able to confer resistance to Na+, but not to Li+ to an Escherichia coli strain defective in Na+/H+ antiporters. In addition, an extensive amino acid sequence comparison with several single subunit Na+/H+ antiporters from different groups, namely NhaA, NhaB, NhaC, and NhaD, suggests that this might be the first member of a new type of Na+/H+ antiporters, which we propose to call NhaE.  相似文献   

16.
In quiescent Ha-ras-transfected NIH 3T3 cells, addition of serum growth factors, bombesin or 12-O-tetradecanoylphorbol-13-acetate (TPA) leads to a dimethylamiloride-sensitive intracellular alkalinization which can be inhibited by staurosporine, a potent inhibitor of protein kinase C. Expression of the transforming Ha-ras gene causes a growth factor-independent increase in cytoplasmic pH. This Ha-ras-induced alkalinization is sensitive to dimethylamiloride but is not affected by staurosporine concentrations which prevent the pH response after addition of growth factors or TPA. Protein kinase C depletion by long term exposure to TPA eliminates the pH response to bombesin and phorbol ester but does not effect the Ha-ras-induced intracellular alkalinization. It is concluded that expression of Ha-ras causes an activation of the Na+/H+ antiporter by an as yet unknown protein kinase C-independent mechanism.  相似文献   

17.
Mitochondria contain two Na+/H+ antiporters, one of which transports K+ as well as Na+. The physiological role of this non-selective Na+/H+ (K+/H+) antiporter is to provide mitochondrial volume homeostasis. The properties of this carrier have been well documented in intact mitochondria, and it has been identified as an 82,000-dalton inner membrane protein. The present studies were designed to solubilize and reconstitute this antiporter in order to permit its isolation and molecular characterization. Proteins from mitoplasts made from rat liver mitochondria were extracted with Triton X-100 in the presence of cardiolipin and reconstituted into phospholipid vesicles. The reconstituted proteoliposomes exhibited electroneutral 86Rb+ transport which was reversibly inhibited by Mg2+ and quinine with K0.5 values of approximately 150 and 300 microM, respectively. Incubation of reconstituted vesicles with dicyclohexylcarbodiimide resulted in irreversible inhibition of 86Rb+ uptake into proteoliposomes. Incubation of vesicles with [14C]dicyclohexylcarbodiimide resulted in labeling of an 82,000-dalton protein. These properties, which are also characteristic of the native Na+/H+ (K+/H+) antiporter, lead us to conclude that this mitochondrial carrier has been reconstituted into proteoliposomes with its known native properties intact.  相似文献   

18.
In cardiacsarcolemmal vesicles, MgATP stimulatesNa+/Ca2+exchange with the following characteristics:1) increases 10-fold the apparentaffinity for cytosolic Ca2+;2) a Michaelis constant for ATP of~500 µM; 3) requires micromolar vanadate while millimolar concentrations are inhibitory;4) not observed in the presence of20 µM eosin alone but reinstated when vanadate is added;5) mimicked by adenosine5'-O-(3-thiotriphosphate), without the need for vanadate, but not by ,-methyleneadenosine 5'-triphosphate; and 6) notaffected by unspecific protein alkaline phosphatase but abolished by aphosphatidylinositol-specific phospholipase C (PI-PLC). The PI-PLCeffect is counteracted by phosphatidylinositol. In addition, in theabsence of ATP,L--phosphatidylinositol4,5-bisphosphate (PIP2) was ableto stimulate the exchanger activity in vesicles pretreated with PI-PLC.This MgATP stimulation is not related to phosphorylation of thecarrier, whereas phosphorylation appeared in the phosphoinositides,mainly PIP2, thatcoimmunoprecipitate with the exchanger. Vesicles incubated with MgATPand no Ca2+ show a markedsynthesis ofL--phosphatidylinositol4-monophosphate (PIP) with little production ofPIP2; in the presence of 1 µM Ca2+, the net synthesis of PIP issmaller, whereas that of PIP2increases ninefold. These results indicate thatPIP2 is involved in the MgATPstimulation of the cardiacNa+/Ca2+exchanger through a fast phosphorylation chain: aCa2+-independent PIP formationfollowed by a Ca2+-dependentsynthesis of PIP2.

  相似文献   

19.
The rapid Ca2+ increase shown by quin2-loaded platelets was found to be an artifact, probably due to light scattering elicited by collagen. Further findings as to fura2-loaded platelets offered additional support, demonstrating that the initial activation of phospholipase A2 (PLA2) does not require cytoplasmic Ca2+ mobilization. A possible role of the Na+/H+ antiporter as a trigger for collagen-induced activation of PLA2 in rat platelets was presented for the first time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号