首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Amides and acidic amino acids represent the major long distance transport forms of organic nitrogen. Six amino acid permeases (AAPs) from Arabidopsis mediating transport of a wide spectrum of amino acids were isolated. AAPs are distantly related to plasma membrane amino acid transport systems N and A and to vesicular transporters such as VGAT from mammals. A detailed comparison of the properties by electrophysiology after heterologous expression in Xenopus oocytes shows that, although capable of recognizing and transporting a wide spectrum of amino acids, individual AAPs differ with respect to specificity. Apparent substrate affinities are influenced by structure and net charge and vary by three orders of magnitude. AAPs mediate cotransport of neutral amino acids with one proton. Uncharged forms of acidic and basic amino acids are cotransported with one proton. Since all AAPs are differentially expressed, different tissues may be supplied with a different spectrum of amino acids. AAP3 and AAP5 are the only transporters mediating efficient transport of the basic amino acids. In vivo competition shows that the capability to transport basic amino acids in planta might be overruled by excess amides and acidic amino acids in the apoplasm. With the exception of AAP6, AAPs do not recognize aspartate; only AAP6 has an affinity for aspartate in the physiologically relevant range. This property is due to an overall higher affinity of AAP6 for neutral and acidic amino acids. Thus AAP6 may serve a different role either in cooperating with the lower affinity systems to acquire amino acids in the low concentration range, as a system responsible for aspartate transport or as an uptake system from the xylem. In agreement, a yeast mutant deficient in acidic amino acid uptake at low aspartate concentrations was complemented only by AAP6. Taken together, the AAPs transport neutral, acidic and cationic amino acids, including the major transport forms, i.e. glutamine, asparagine and glutamate. Increasing proton concentrations strongly activate transport of amino acids. Thus the actual apoplasmic concentration of amino acids and the pH will determine what is transported in vivo, i.e. major amino acids such as glutamine, asparagine, and glutamate will be mobilized preferentially.  相似文献   

6.
7.
高羊肚菌菌丝球液体培养的研究   总被引:4,自引:0,他引:4  
本文探讨了高羊肚菌菌丝球在不同液体培养基中的生长情况。结果表明,在黄豆芽玉米玢培养基中菌丝球最多,大小均匀,菌丝生长量最大,在麦麦夫蛋白胨培养基上菌丝的糖含量最高。  相似文献   

8.
Amino acids are available to plants in some soils in significant amounts, and plants frequently make use of these nitrogen sources. The goal of this study was to identify transporters involved in the uptake of amino acids into root cells. Based on the fact that high concentrations of amino acids inhibit plant growth, we hypothesized that mutants tolerating toxic levels of amino acids might be deficient in the uptake of amino acids from the environment. To test this hypothesis, we employed a forward genetic screen for Arabidopsis thaliana mutants tolerating toxic concentrations of amino acids in the media. We identified an Arabidopsis mutant that is deficient in the amino acid permease 1 (AAP1, At1g58360) and resistant to 10 mm phenylalanine and a range of other amino acids. The transporter was localized to the plasma membrane of root epidermal cells, root hairs, and throughout the root tip of Arabidopsis. Feeding experiments with [(14)C]-labeled neutral, acidic and basic amino acids showed significantly reduced uptake of amino acids in the mutant, underscoring that increased tolerance of aap1 to high levels of amino acids is coupled with reduced uptake by the root. The growth and uptake studies identified glutamate, histidine and neutral amino acids, including phenylalanine, as physiological substrates for AAP1, whereas aspartate, lysine and arginine are not. We also demonstrate that AAP1 imports amino acids into root cells when these are supplied at ecologically relevant concentrations. Together, our data indicate an important role of AAP1 for efficient use of nitrogen sources present in the rhizosphere.  相似文献   

9.
10.
花脸香蘑菌丝体氨基酸分析   总被引:1,自引:1,他引:1  
以花脸香蘑菌丝体为实验材料,用美国戴安AAA型氨基酸分析仪测定了18种氨基酸的组成及含量,得出花脸香蘑菌丝体18种氨基酸质量分数为259.7 g.kg-1干样,其中100 g干样中谷氨酸2.84 g,天冬氨酸2.56 g,亮氨酸2.24 g,赖氨酸1.79 g,苯丙氨酸1.76 g,蛋氨酸0.47 g,人体必需氨基酸质量分数为133.7 g.kg-1干样,占所测氨基酸的51.49%,因此花脸香蘑菌丝体具有很高的营养价值。  相似文献   

11.
Amino acid transport via phloem is one of the major source‐to‐sink nitrogen translocation pathways in most plant species. Amino acid permeases (AAPs) play essential roles in amino acid transport between plant cells and subsequent phloem or seed loading. In this study, a soybean AAP gene, annotated as GmAAP6a, was cloned and demonstrated to be significantly induced by nitrogen starvation. Histochemical staining of GmAAP6a:GmAAP6a‐GUS transgenic soybean revealed that GmAAP6a is predominantly expressed in phloem and xylem parenchyma cells. Growth and transport studies using toxic amino acid analogs or single amino acids as a sole nitrogen source suggest that GmAAP6a can selectively absorb and transport neutral and acidic amino acids. Overexpression of GmAAP6a in Arabidopsis and soybean resulted in elevated tolerance to nitrogen limitation. Furthermore, the source‐to‐sink transfer of amino acids in the transgenic soybean was markedly improved under low nitrogen conditions. At the vegetative stage, GmAAP6a‐overexpressing soybean showed significantly increased nitrogen export from source cotyledons and simultaneously enhanced nitrogen import into sink primary leaves. At the reproductive stage, nitrogen import into seeds was greatly enhanced under both sufficient and limited nitrogen conditions. Collectively, our results imply that overexpression of GmAAP6a enhances nitrogen stress tolerance and source‐to‐sink transport and improves seed quality in soybean. Co‐expression of GmAAP6a with genes specialized in source nitrogen recycling and seed loading may represent an interesting application potential in breeding.  相似文献   

12.
Transport processes across the plasma membrane of leaf vascular tissue are essential for transport and distribution of assimilates. In potato, leaves are the predominant sites for nitrate reduction and amino acid biosynthesis. From there, assimilated amino acids are exported through the phloem to supply tubers with organic nitrogen. To study the role of amino acid transporters in long-distance transport and allocation of organic nitrogen in potato plants, a gene encoding a functional, leaf-expressed amino acid permease StAAP1 was isolated. Similar to the sucrose transporter SUT1, StAAP1 expression was induced during the sink-to-source transition, indicating a role in phloem loading. To test the role of StAAP1, expression was inhibited by an antisense approach. Transgenic plants with reduced StAAP1 expression were phenotypically indistinguishable from wild type, as were photosynthetic capacity and tuber yield. However, tubers from antisense StAAP1 plants showed up to 50% reduction in free amino acid contents. In comparison, starch content was not affected or tended to increase relative to wild type. The reduction in all amino acids except aspartate in the antisense plants is consistent with the properties of amino acid permeases (AAPs) found in heterologous systems. The results demonstrate an important role for StAAP1 in long-distance transport of amino acids and highlight the importance of plasma membrane transport for nutrient distribution in plants.  相似文献   

13.
Binding protein for N-1-naphthylphthalamic acid (NPA), an auxin transport inhibitor, was studied by analysis of the effects of reactions which modify particular amino acid side chains upon their binding activity. Na2SO3, N-ethylmaleimide (NEM) and dithiobisnitrobenzoic acid all inhibited the specific binding of NPA to its binding protein fromAcer pseudoplatanus L. cells. The presence of 10-6 M Na2SO3 in the binding assay reduced the affinity of the binding protein to NPA from Kd of 1.5 £ 10-8 M to Kd of 2.1 £ 10-8 M, while concentration of the binding protein was not significantly changed. When the same analysis was applied to NPA binding to the NEM-treated membrane particles, it was found that NEM inactivated binding without changing the affinity for NPA. This study revealed the importance of sulphydryl group(s) in the maintenance of NPA binding protein activity.  相似文献   

14.
We investigated the function of ASN2, one of the three genes encoding asparagine synthetase (EC 6.3.5.4), which is the most highly expressed in vegetative leaves of Arabidopsis thaliana. Expression of ASN2 and parallel higher asparagine content in darkness suggest that leaf metabolism involves ASN2 for asparagine synthesis. In asn2‐1 knockout and asn2‐2 knockdown lines, ASN2 disruption caused a defective growth phenotype and ammonium accumulation. The asn2 mutant leaves displayed a depleted asparagine and an accumulation of alanine, GABA, pyruvate and fumarate, indicating an alanine formation from pyruvate through the GABA shunt to consume excess ammonium in the absence of asparagine synthesis. By contrast, asparagine did not contribute to photorespiratory nitrogen recycle as photosynthetic net CO2 assimilation was not significantly different between lines under both 21 and 2% O2. ASN2 was found in phloem companion cells by in situ hybridization and immunolocalization. Moreover, lack of asparagine in asn2 phloem sap and lowered 15N flux to sinks, accompanied by the delayed yellowing (senescence) of asn2 leaves, in the absence of asparagine support a specific role of asparagine in phloem loading and nitrogen reallocation. We conclude that ASN2 is essential for nitrogen assimilation, distribution and remobilization (via the phloem) within the plant.  相似文献   

15.
The consumption of protein supplements containing amino acids is increasing around the world. Aspartate (Asp) and asparagine (Asn) are amino acids metabolized by skeletal muscle. This metabolism involves biochemical pathways that are involved in increasing Krebs cycle activity via anaplerotic reactions, resulting in higher glutamine concentrations. A connection between amino acid supplementation, glycogen concentration, and glucose uptake has been previously demonstrated. The purpose of this study was to evaluate the effect of Asp and Asn supplementation on glucose uptake in rats using three different glycogen concentrations. The results indicate that Asp and Asn supplementation in rats with high glycogen concentrations (fed state) further increased the glycogen concentration in the muscle, and decreased in vitro 2‐deoxyglucose (a glucose analog) uptake by the muscle at maximal insulin concentrations. When animals had a medium glycogen concentration (consumed lard for 3 days), glucose uptake was higher in the supplemented group at sub‐maximal insulin concentrations. We conclude that supplementation of Asp and Asn reduced glucose transport in rat muscle only at higher levels of glycogen. The ingestion of lard for 3 days changed the responsiveness and sensitivity to insulin, and that group had higher levels of insulin sensitivity with Asp and Asn supplementation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Total and protein nitrogen in bark and wood of parent stems of mulberry ( Morns alba L. cv. Ichinose) decreased readily and to the same extent during leafing-out of the buds, but the decrease in wood was less marked than in bark. Simultaneously, soluble nitrogen in both bark and wood also declined but the depletion was less marked than that of total and protein nitrogen. During the same period total nitrogen in the new shoots and adventitious roots increased drastically; however, the increase in total nitrogen in the growing parts during rooting was almost the same as the decrease in total nitrogen in the parent stems. Proline, the prevalent amino acid in wood and bark of the parent stems, decreased drastically during rooting, whereas during the same period asparagine in the developing buds, callus and adventitious roots increased markedly and became the predominant amino acid. The amount of arginine was relatively high in bark of the parent stems but Low in wood and the buds. The level of arginine in bark decreased considerably during the experiments (as did that of proline). The results suggest that the nitrogen required by the growing parts (sinks) in the rooting cuttings comes mainly from protein breakdown in bark of the parent stems (source), although stored protein in wood (source) and soluble nitrogen in bark and wood (sources) also play a part in storage of nitrogen. Asparagine is suggested to be the main nitrogen transport compound in the new growth of the tree and the initiating roots of cuttings.  相似文献   

17.
The embryo of Arabidopsis seeds is symplasmically isolated from the surrounding seed coat and endosperm, and uptake of nutrients from the seed apoplast is required for embryo growth and storage reserve accumulation. With the aim of understanding the importance of nitrogen (N) uptake into developing embryos, we analysed two mutants of AAP1 (At1g58360), an amino acid transporter that was localized to Arabidopsis embryos. In mature and desiccated aap1 seeds the total N and carbon content was reduced while the total free amino acid levels were strongly increased. Separately analysed embryos and seed coats/endosperm of mature seeds showed that the elevated amounts in amino acids were caused by an accumulation in the seed coat/endosperm, demonstrating that a decrease in uptake of amino acids by the aap1 embryo affects the N pool in the seed coat/endosperm. Also, the number of protein bodies was increased in the aap1 endosperm, suggesting that the accumulation of free amino acids triggered protein synthesis. Analysis of seed storage compounds revealed that the total fatty acid content was unchanged in aap1 seeds, but storage protein levels were decreased. Expression analysis of genes of seed N transport, metabolism and storage was in agreement with the biochemical data. In addition, seed weight, as well as total silique and seed number, was reduced in the mutants. Together, these results demonstrate that seed protein synthesis and seed weight is dependent on N availability and that AAP1-mediated uptake of amino acids by the embryo is important for storage protein synthesis and seed yield.  相似文献   

18.
SYNOPSIS. Low concentrations of chlorpromazine (~0.01 mM) inhibit growth and nucleic acid synthesis in the ciliate Tetrahymena pyriformis. Brief exposure of the cells to, e.g. 0.018 mM chlorpromazine, had very little effect on 14CO2 production or on label incorporation into glycogen from [1-14C]glucetate, [6–14C]glucose, or [1-14C]leucine, but 17-h exposure of stationary phase cultures to this drug caused marked alterations in metabolism, including an almost complete loss of ability to decarboxylate L-[1-14C]leucine and L-[1-14C]tyrosine. It was shown that loss of ability to decarboxylate these amino acids results from loss of ability to transport them.  相似文献   

19.
AIMS: This study set out to investigate the effect of amino acids on the uptake of glucose by Micromonospora eichinospora (ATCC 15837). METHODS AND RESULTS: The specific rate of glucose uptake was found to be reduced when organic nitrogen components were present in the medium. Radioactive uptake studies revealed that the Km for glucose in this organism was 53 mm, indicating a low affinity for uptake compared with other actinomycete sugar transport systems. Individual amino acids negatively influenced the rate of glucose transport, suggesting a relationship between amino acid metabolism and glucose uptake in this organism. The sugar transport system was found to be an active process being inhibited by ionophores and KCN. CONCLUSIONS: The data suggest a direct link between amino acid metabolism and glucose uptake at the level of sugar transport. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that the uptake of glucose, a major carbon source for many antibiotic fermentations, is significantly reduced in the presence of amino acids. This fact should inform the medium design and feeding regimes of fermentations involving similar actinomycetes.  相似文献   

20.
A pair of sheep twins each had two populations of red cells. Population 1 was positive for antigens Aa, Ma and Mb, was low-potassium type, possessed an amino acid transport system and was lysine-negative phenotype. Population 2 was negative for antigens Aa, and Mb, was high-potassium type, lacked the amino acid transport system and was lysine-positive phenotype. Population 2 disappeared from both sheep over a period of 8 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号