首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mechanisms of genomic imprinting   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

3.
Genetic conflicts in genomic imprinting   总被引:7,自引:0,他引:7  
The expression pattern of genes in mammals and plants can depend upon the parent from which the gene was inherited, evidence for a mechanism of parent-specific genomic imprinting. Kinship considerations are likely to be important in the natural selection of many such genes, because coefficients of relatedness will usually differ between maternally and paternally derived genes. Three classes of gene are likely to be involved in genomic imprinting: the imprinted genes themselves, trans-acting genes in the parents, which affect the application of the imprint, and trnas-acting genes in the offspring, which recognize and affect the expression of the imprint. We show that coefficients of relatedness will typically differ among these three classes, thus engendering conflicts of interest between Imprinter genes, imprinted genes, and imprint-recognition genes, with probable consequences for the evolution of the imprinting machinery.  相似文献   

4.
Mammalian imprinted genes are clustered in chromosomal domains. Their mono-allelic, parent-of-origin-specific expression is regulated by imprinting control regions (ICRs), which are essential sequence elements marked by DNA methylation on one of the two parental alleles. These methylation “imprints” are established during gametogenesis and, after fertilization, are somatically maintained throughout development. Nonhistone proteins and histone modifications contribute to this epigenetic process. The way ICRs mediate imprinted gene expression differs between domains. At some domains, for instance, ICRs produce long noncoding RNAs that mediate chromatin silencing. Lysine methylation on histone H3 is involved in this developmental process and is particularly important for imprinting in the placenta and brain. Together, the newly discovered chromatin mechanisms provide further clues for addressing imprinting-related pathologies in humans.  相似文献   

5.
6.
Genomic imprinting is an epigenetic phenomenon in which genes are expressed monoallelically in a parent-of-origin-specific manner. Each chromosome is imprinted with its parental identity. Here we will discuss the nature of this imprinting mark. DNA methylation has a well-established central role in imprinting, and the details of DNA methylation dynamics and the mechanisms that target it to imprinted loci are areas of active investigation. However, there is increasing evidence that DNA methylation is not solely responsible for imprinted expression. At the same time, there is growing appreciation for the contributions of post-translational histone modifications to the regulation of imprinting. The integration of our understanding of these two mechanisms is an important goal for the future of the imprinting field. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.  相似文献   

7.
Mechanisms of genomic imprinting.   总被引:14,自引:0,他引:14  
A small number of mammalian genes undergo the process of genomic imprinting whereby the expression level of the alleles of a gene depends upon their parental origin. In the past year, attention has focused on the mechanisms that determine parental-specific expression patterns. Many imprinted genes are located in conserved clusters and, although it is apparent that imprinting of adjacent genes is jointly regulated, multiple mechanisms among and within clusters may operate. Recent developments have also refined the timing of the gametic imprints and further defined the mechanism by which DNA methyltransferases confer allelic methylation patterns.  相似文献   

8.
植物多倍体在自然界中广泛存在,这说明拥有多套遗传物质使得多倍体的适应进化具有优势。新多倍体形成后,一些基因组范围的变化较迅速地发生在多倍体形成开端,另一些在长期进化中发生。由于受到遗传、表观等因素的影响,亲本对于新形成多倍体基因组的贡献不均衡。这种偏向于某个亲本基因组的显性优势,称为基因组印记。植物多倍体中的基因组印记表现为基因组偏向性的序列消除、不均衡基因表达、基因沉默,这些受到基因组合并及DNA甲基化、核仁显性等表观因素影响。本文旨在为多倍体基因组进化及育种的相关研究提供参考。  相似文献   

9.
10.
In mammals, some embryonic genes are expressed differently depending on whether they are inherited from the sperm or egg, a phenomenon known as genomic imprinting. The information on the parental origin is transmitted by an epigenetic mark. Both the molecular mechanisms and evolutionary processes of genomic imprinting have been studied extensively. Here, I illustrate the simplest evolutionary dynamics of imprinting evolution based on the “conflict theory,” by considering the evolution of a gene encoding an embryonic growth factor controlling the maternal resource supply. It demonstrates that (a) the autosomal genes controlling placenta development to modify maternal resource acquisition may evolve a strong asymmetry of gene expression, provided the mother has some chance of accepting multiple males. (b) The genomic imprinting may not evolve if there is a small fraction of recessive deleterious mutations on the gene. (c) The growth-enhancing genes should evolve to paternally expressed, while the growth-suppressing genes should evolve to maternally expressed. (d) The X-linked genes also evolve genomic imprinting, but the main evolutionary force is the sex difference in the optimal embryonic size. I discuss other aberrations that can be explained by the modified versions of the basic model.  相似文献   

11.
Translation of mRNA into a polypeptide is terminated when the release factor eRF1 recognizes a UAA, UAG, or UGA stop codon in the ribosomal A site and stimulates nascent peptide release. However, stop codon readthrough can occur when a near-cognate tRNA outcompetes eRF1 in decoding the stop codon, resulting in the continuation of the elongation phase of protein synthesis. At the end of a conventional mRNA coding region, readthrough allows translation into the mRNA 3’-UTR. Previous studies with reporter systems have shown that the efficiency of termination or readthrough is modulated by cis-acting elements other than stop codon identity, including two nucleotides 5’ of the stop codon, six nucleotides 3’ of the stop codon in the ribosomal mRNA channel, and stem-loop structures in the mRNA 3’-UTR. It is unknown whether these elements are important at a genome-wide level and whether other mRNA features proximal to the stop codon significantly affect termination and readthrough efficiencies in vivo. Accordingly, we carried out ribosome profiling analyses of yeast cells expressing wild-type or temperature-sensitive eRF1 and developed bioinformatics strategies to calculate readthrough efficiency, and to identify mRNA and peptide features which influence that efficiency. We found that the stop codon (nt +1 to +3), the nucleotide after it (nt +4), the codon in the P site (nt -3 to -1), and 3’-UTR length are the most influential features in the control of readthrough efficiency, while nts +5 to +9 had milder effects. Additionally, we found low readthrough genes to have shorter 3’-UTRs compared to high readthrough genes in cells with thermally inactivated eRF1, while this trend was reversed in wild-type cells. Together, our results demonstrated the general roles of known regulatory elements in genome-wide regulation and identified several new mRNA or peptide features affecting the efficiency of translation termination and readthrough.  相似文献   

12.
Epigenetic regulation of mammalian genomic imprinting   总被引:31,自引:0,他引:31  
Imprinted genes play important roles in development, and most are clustered in large domains. Their allelic repression is regulated by 'imprinting control regions' (ICRs), which are methylated on one of the two parental alleles. Non-histone proteins and nearby sequence elements influence the establishment of this differential methylation during gametogenesis. DNA methylation, histone modifications, and also polycomb group proteins are important for the somatic maintenance of imprinting. The way ICRs regulate imprinting differs between domains. At some, the ICR constitutes an insulator that prevents promoter-enhancer interactions, when unmethylated. At other domains, non-coding RNAs could be involved, possibly by attracting chromatin-modifying complexes. The latter silencing mechanism has similarities with X-chromosome inactivation.  相似文献   

13.
The evolution of X-linked genomic imprinting   总被引:1,自引:0,他引:1  
Iwasa Y  Pomiankowski A 《Genetics》2001,158(4):1801-1809
We develop a quantitative genetic model to investigate the evolution of X-imprinting. The model compares two forces that select for X-imprinting: genomic conflict caused by polygamy and sex-specific selection. Genomic conflict can only explain small reductions in maternal X gene expression and cannot explain silencing of the maternal X. In contrast, sex-specific selection can cause extreme differences in gene expression, in either direction (lowered maternal or paternal gene expression), even to the point of gene silencing of either the maternal or paternal copy. These conclusions assume that the Y chromosome lacks genetic activity. The presence of an active Y homologue makes imprinting resemble the autosomal pattern, with active paternal alleles (X- and Y-linked) and silenced maternal alleles. This outcome is likely to be restricted as Y-linked alleles are subject to the accumulation of deleterious mutations. Experimental evidence concerning X-imprinting in mouse and human is interpreted in the light of these predictions and is shown to be far more easily explained by sex-specific selection.  相似文献   

14.
Andrew J Haigh  Vett K Lloyd 《Génome》2006,49(8):1043-1046
Genomic imprinting is a process that genetically distinguishes maternal and paternal genomes, and can result in parent-of-origin-dependent monoallelic expression of a gene that is dependent on the parent of origin. As such, an otherwise functional maternally inherited allele may be silenced so that the gene is expressed exclusively from the paternal allele, or vice versa. Once thought to be restricted to mammals, genomic imprinting has been documented in angiosperm plants (J.L. Kermicle. 1970. Genetics, 66: 69-85), zebrafish (C.C. Martin and R. McGowan. 1995. Genet. Res. 65: 21-28), insects, and C. elegans (C.J. Bean, C.E. Schaner, and W.G. Kelly. 2004. Nat. Genet. 36: 100-105.). In each case, it appears to rely on differential chromatin structure. Aberrant imprinting has been implicated in various human cancers and has been detected in a number of cloned mammals, potentially limiting the usefulness of somatic nuclear transfer. Here we show that genomic imprinting associated with a mini-X chromosome is lost in Drosophila melanogaster clones.  相似文献   

15.
16.
In mammals, most somatic cells contain two copies of each autosomal gene, one inherited from each parent. When a gene is expressed, both parental alleles are usually transcribed. However, a subset of genes is subject to the epigenetic silencing of one of the parental copies by genomic imprinting. In this review, we explore the evidence for variability in genomic imprinting between different tissue and cell types. We also consider why the imprinting of particular genes may be restricted to, or lost in, specific tissues and discuss the potential for high-throughput sequencing technologies in facilitating the characterisation of tissue-specific imprinting and assaying the potentially functional variations in epigenetic marks.  相似文献   

17.

Background  

Genomic imprinting refers to the differential expression of genes inherited from the mother and father (matrigenes and patrigenes). The kinship theory of genomic imprinting treats parent-specific gene expression as products of within-genome conflict. Specifically, matrigenes and patrigenes will be in conflict over treatment of relatives to which they are differently related. Haplodiploid females have many such relatives, and social insects have many contexts in which they affect relatives, so haplodiploid social insects are prime candidates for tests of the kinship theory of imprinting.  相似文献   

18.
19.
Quantifying genomic imprinting in the presence of linkage   总被引:1,自引:0,他引:1  
Vincent Q  Alcaïs A  Alter A  Schurr E  Abel L 《Biometrics》2006,62(4):1071-1080
Genomic imprinting decreases the power of classical linkage analysis, in which paternal and maternal transmissions of marker alleles are equally weighted. Several methods have been proposed for taking genomic imprinting into account in the model-free linkage analysis of binary traits. However, none of these methods are suitable for the formal identification and quantification of genomic imprinting in the presence of linkage. In addition, the available methods are designed for use with pure sib-pairs, requiring artificial decomposition in cases of larger sibships, leading to a loss of power. We propose here the maximum likelihood binomial method adaptive for imprinting (MLB-I), which is a unified analytic framework giving rise to specific tests in sibships of any size for (i) linkage adaptive to imprinting, (ii) genomic imprinting in the presence of linkage, and (iii) partial versus complete genomic imprinting. In addition, we propose an original measure for quantifying genomic imprinting. We have derived and validated the distribution of the three tests under their respective null hypotheses for various genetic models, and have assessed the power of these tests in simulations. This method can readily be applied to genome-wide scanning, as illustrated here for leprosy sibships. Our approach provides a novel tool for dissecting genomic imprinting in model-free linkage analysis, and will be of considerable value for identifying and evaluating the contribution of imprinted genes to complex diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号