首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RtcB is a noncanonical RNA ligase that joins either 2′,3′-cyclic phosphate or 3′-phosphate termini to 5′-hydroxyl termini. The genes encoding RtcB and Archease constitute a tRNA splicing operon in many organisms. Archease is a cofactor of RtcB that accelerates RNA ligation and alters the NTP specificity of the ligase from Pyrococcus horikoshii. Yet, not all organisms that encode RtcB also encode Archease. Here we sought to understand the differences between Archease-dependent and Archease-independent RtcBs so as to illuminate the evolution of Archease and its function. We report on the Archease-dependent RtcB from Thermus thermophilus and the Archease-independent RtcB from Thermobifida fusca. We find that RtcB from T. thermophilus can catalyze multiple turnovers only in the presence of Archease. Remarkably, Archease from P. horikoshii can activate T. thermophilus RtcB, despite low sequence identity between the Archeases from these two organisms. In contrast, RtcB from T. fusca is a single-turnover enzyme that is unable to be converted into a multiple-turnover ligase by Archease from either P. horikoshii or T. thermophilus. Thus, our data indicate that Archease likely evolved to support multiple-turnover activity of RtcB and that coevolution of the two proteins is necessary for a functional interaction.  相似文献   

2.
RNA 3′-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3′-phosphate to form a 2′,3′-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA–AMP and RNA(3′)pp(5′)A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3′-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3′-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3′-phosphate is poised for in-line attack on the P–N bond that links the phosphorous atom of AMP to Nε of His307. Thus, we provide the first insights into RNA 3′-phosphate termini recognition and the mechanism of 3′-phosphate activation by an Rtc enzyme.  相似文献   

3.
RNA terminal phosphate cyclase catalyzes the ATP-dependent conversion of a 3′-phosphate RNA end to a 2′,3′-cyclic phosphate via covalent enzyme-(histidinyl-Nϵ)-AMP and RNA(3′)pp(5′)A intermediates. Here, we report that Escherichia coli RtcA (and its human homolog Rtc1) are capable of cyclizing a 2′-phosphate RNA end in high yield. The rate of 2′-phosphate cyclization by RtcA is five orders of magnitude slower than 3′-phosphate cyclization, notwithstanding that RtcA binds with similar affinity to RNA3′p and RNA2′p substrates. These findings expand the functional repertoire of RNA cyclase and suggest that phosphate geometry during adenylate transfer to RNA is a major factor in the kinetics of cyclization. RtcA is coregulated in an operon with an RNA ligase, RtcB, that splices RNA 5′-OH ends to either 3′-phosphate or 2′,3′-cyclic phosphate ends. Our results suggest that RtcA might serve an end healing function in an RNA repair pathway, by converting RNA 2′-phosphates, which cannot be spliced by RtcB, to 2′,3′-cyclic phosphates that can be sealed. The rtcBA operon is controlled by the σ54 coactivator RtcR encoded by an adjacent gene. This operon arrangement is conserved in diverse bacterial taxa, many of which have also incorporated the RNA-binding protein Ro (which is implicated in RNA quality control under stress conditions) as a coregulated component of the operon.  相似文献   

4.
Desai KK  Raines RT 《Biochemistry》2012,51(7):1333-1335
The RNA ligase RtcB is conserved in all domains of life and is essential for tRNA maturation in archaea and metazoa. Here we show that bacterial and archaeal RtcB catalyze the GTP-dependent ligation of RNA with 3'-phosphate and 5'-hydroxyl termini. Reactions with analogues of RNA and GTP suggest a mechanism in which RtcB heals the 3'-phosphate terminus by forming a 2',3'-cyclic phosphate before joining it to the 5'-hydroxyl group of a second RNA strand. Thus, RtcB can ligate RNA cleaved by RNA endonucleases, which generate 2',3'-cyclic phosphate and then 3'-phosphate termini on one strand, and a 5'-hydroxyl terminus on another strand.  相似文献   

5.
Clp1 proteins are essential components of the eukaryal mRNA 3′ cleavage-polyadenylation machinery. Human Clp1 has an additional function as an RNA-specific 5′-OH polynucleotide kinase, which is implicated in RNA end healing. Yeast Clp1 has no kinase activity, although it binds ATP. Here we report that Clp1-like proteins are extant in archaea. Purification and characterization of Pyrococcus horikoshii Clp1 (PhoClp1) reveals it to be a thermostable 5′-OH polynucleotide kinase optimally active at 55°C to 85°C. PhoClp1 catalyzes transfer of the gamma phosphate from ATP (K m 16 μM) to either 5′-OH RNA or DNA ends, although it prefers RNA in a competitive situation. Increasing the monovalent salt concentration to 250 mM suppresses the DNA kinase without affecting RNA phosphorylation, suggesting that RNA is a likely substrate for this enzyme in vivo. Indeed, we show that expression of PhoClp1 in budding yeast can complement a lethal mutation in the 5′-OH RNA kinase module of tRNA ligase. PhoClp1 is a member of the P-loop phosphotransferase superfamily. Alanine mutations at the P-loop lysine (Lys49) and a conserved aspartate (Asp73) inactivate the kinase. Our studies fortify emerging evidence for an enzymatic RNA repair capacity in archaea and provide a new reagent for polynucleotide phosphorylation at high temperatures.  相似文献   

6.
tRNA ligases are essential components of informational and stress-response pathways entailing repair of RNA breaks with 2′,3′-cyclic phosphate and 5′-OH ends. Plant and fungal tRNA ligases comprise three catalytic domains. Phosphodiesterase and kinase modules heal the broken ends to generate the 3′-OH, 2′-PO4, and 5′-PO4 required for sealing by the ligase. We exploit RNA substrates with different termini to define rates of individual steps or subsets of steps along the repair pathway of plant ligase AtRNL. The results highlight rate-limiting transactions, how repair is affected by active-site mutations, and how mutations are bypassed by RNA alterations. We gain insights to 2′-PO4 specificity by showing that AtRNL is deficient in transferring AMP to pRNAOH to form AppRNAOH but proficient at sealing pre-adenylylated AppRNAOH. This strategy for discriminating 2′-PO4 versus 2′-OH ends provides a quality-control checkpoint to ensure that only purposeful RNA breaks are sealed and to avoid nonspecific “capping” of 5′-PO4 ends.  相似文献   

7.
RNA 2',3'-cyclic phosphate ends play important roles in RNA metabolism as substrates for RNA ligases during tRNA restriction-repair and tRNA splicing. Diverse bacteria from multiple phyla encode a two-component RNA repair cassette, comprising Pnkp (polynucleotide kinase-phosphatase-ligase) and Hen1 (RNA 3'-terminal ribose 2'-O-methyltransferase), that heals and then seals broken tRNAs with 2',3'-cyclic phosphate and 5'-OH ends. The Pnkp-Hen1 repair operon is absent in the majority of bacterial species, thereby raising the prospect that other RNA repair systems might be extant. A candidate component is RNA 3'-phosphate cyclase, a widely distributed enzyme that transforms RNA 3'-monophosphate termini into 2',3'-cyclic phosphates but cannot seal the ends it produces. Escherichia coli RNA cyclase (RtcA) is encoded in a σ(54)-regulated operon with RtcB, a protein of unknown function. Taking a cue from Pnkp-Hen1, we purified E. coli RtcB and tested it for RNA ligase activity. We report that RtcB per se seals broken tRNA-like stem-loop structures with 2',3'-cyclic phosphate and 5'-OH ends to form a splice junction with a 2'-OH, 3',5'-phosphodiester. We speculate that: (i) RtcB might afford bacteria a means to recover from stress-induced RNA damage; and (ii) RtcB homologs might catalyze tRNA repair or splicing reactions in archaea and eukarya.  相似文献   

8.
Programmed RNA breakage is an emerging theme underlying cellular responses to stress, virus infection and defense against foreign species. In many cases, site-specific cleavage of the target RNA generates 2′,3′ cyclic phosphate and 5′-OH ends. For the damage to be repaired, both broken ends must be healed before they can be sealed by a ligase. Healing entails hydrolysis of the 2′,3′ cyclic phosphate to form a 3′-OH and phosphorylation of the 5′-OH to form a 5′-PO4. Here, we demonstrate that a polynucleotide kinase-phosphatase enzyme from Clostridium thermocellum (CthPnkp) can catalyze both of the end-healing steps of tRNA splicing in vitro. The route of tRNA repair by CthPnkp can be reprogrammed by a mutation in the 3′ end-healing domain (H189D) that yields a 2′-PO4 product instead of a 2′-OH. Whereas tRNA ends healed by wild-type CthPnkp are readily sealed by T4 RNA ligase 1, the H189D enzyme generates ends that are spliced by yeast tRNA ligase. Our findings suggest that RNA repair enzymes can evolve their specificities to suit a particular pathway.  相似文献   

9.
10.
Plant and fungal tRNA ligases are trifunctional enzymes that repair RNA breaks with 2′,3′-cyclic-PO4 and 5′-OH ends. They are composed of cyclic phosphodiesterase (CPDase) and polynucleotide kinase domains that heal the broken ends to generate the 3′-OH, 2′-PO4, and 5′-PO4 required for sealing by a ligase domain. Here, we use short HORNA>p substrates to determine, in a one-pot assay format under single-turnover conditions, the order and rates of the CPDase, kinase and ligase steps. The observed reaction sequence for the plant tRNA ligase AtRNL, independent of RNA length, is that the CPDase engages first, converting HORNA>p to HORNA2′p, which is then phosphorylated to pRNA2′p by the kinase. Whereas the rates of the AtRNL CPDase and kinase reactions are insensitive to RNA length, the rate of the ligase reaction is slowed by a factor of 16 in the transition from 10-mer RNA to 8-mer and further by eightfold in the transition from 8-mer RNA to 6-mer. We report that a single ribonucleoside-2′,3′-cyclic-PO4 moiety enables AtRNL to efficiently splice an otherwise all-DNA strand. Our characterization of a fungal tRNA ligase (KlaTrl1) highlights important functional distinctions vis à vis the plant homolog. We find that (1) the KlaTrl1 kinase is 300-fold faster than the AtRNL kinase; and (2) the KlaTrl1 kinase is highly specific for GTP or dGTP as the phosphate donor. Our findings recommend tRNA ligase as a tool to map ribonucleotides embedded in DNA and as a target for antifungal drug discovery.  相似文献   

11.
Trl1 is an essential 827 amino acid enzyme that executes the end-healing and end-sealing steps of tRNA splicing in Saccharomyces cerevisiae. Trl1 consists of two domains—an N-terminal ligase component and a C-terminal 5′-kinase/2′,3′-cyclic phosphodiesterase (CPD) component—that can function in tRNA splicing in vivo when expressed as separate polypeptides. To understand the structural requirements for the kinase-CPD domain, we performed an alanine scan of 30 amino acids that are conserved in Trl1 homologs from other fungi. We thereby identified four residues (Arg463, His515, Thr675 and Glu741) as essential for activity in vivo. Structure–function relationships at these positions, and at four essential or conditionally essential residues defined previously (Asp425, Arg511, His673 and His777), were clarified by introducing conservative substitutions. Biochemical analysis showed that lethal mutations of Asp425, Arg463, Arg511 and His515 in the kinase module abolished polynucleotide kinase activity in vitro. We report that a recently cloned 1104 amino acid Arabidopsis RNA ligase functions in lieu of yeast Trl1 in vivo and identify essential side chains in the ligase, kinase and CPD modules of the plant enzyme. The plant ligase, like yeast Trl1 but unlike T4 RNA ligase 1, requires a 2′-PO4 end for tRNA splicing in vivo.  相似文献   

12.
RtcB enzymes are novel RNA ligases that join 2',3'-cyclic phosphate and 5'-OH ends. The phylogenetic distribution of RtcB points to its candidacy as a tRNA splicing/repair enzyme. Here we show that Escherichia coli RtcB is competent and sufficient for tRNA splicing in vivo by virtue of its ability to complement growth of yeast cells that lack the endogenous "healing/sealing-type" tRNA ligase Trl1. RtcB also protects yeast trl1Δ cells against a fungal ribotoxin that incises the anticodon loop of cellular tRNAs. Moreover, RtcB can replace Trl1 as the catalyst of HAC1 mRNA splicing during the unfolded protein response. Thus, RtcB is a bona fide RNA repair enzyme with broad physiological actions. Biochemical analysis of RtcB highlights the uniqueness of its active site and catalytic mechanism. Our findings draw attention to tRNA ligase as a promising drug target.  相似文献   

13.
RtcB is an essential human tRNA ligase required for ligating the 2',3'‐cyclic phosphate and 5'‐hydroxyl termini of cleaved tRNA halves during tRNA splicing and XBP1 fragments during endoplasmic reticulum stress. Activation of XBP1 has been implicated in various human tumors including breast cancer. Here we present, for the first time, a homology model of human RtcB (hRtcB) in complex with manganese and covalently bound GMP built from the Pyrococcus horikoshii RtcB (bRtcB) crystal structure, PDB ID 4DWQA. The structure is analyzed in terms of stereochemical quality, folding reliability, secondary structure similarity with bRtcB, druggability of the active site binding pocket and its metal‐binding microenvironment. In comparison with bRtcB, loss of a manganese‐coordinating water and movement of Asn226 (Asn202 in 4DWQA) to form metal‐ligand coordination, demonstrates the uniqueness of the hRtcB model. Rotation of GMP leads to the formation of an additional metal‐ligand coordination (Mn‐O). Umbrella sampling simulations of Mn binding in wild type and the catalytically inactive C122A mutant reveal a clear reduction of Mn binding ability in the mutant, thus explaining the loss of activity therein. Our results furthermore clearly show that the GTP binding site of the enzyme is a well‐defined pocket that can be utilized as target site for in silico drug discovery.  相似文献   

14.
15.
RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans for the conserved RNA ligase RtcB and show that RtcB ligates the xbp‐1 mRNA during the IRE‐1 branch of the unfolded protein response. Without RtcB, protein stress results in the accumulation of unligated xbp‐1 mRNA fragments, defects in the unfolded protein response, and decreased lifespan. RtcB also ligates endogenous pre‐tRNA halves, and RtcB mutants have defects in growth and lifespan that can be bypassed by expression of pre‐spliced tRNAs. In addition, animals that lack RtcB have defects that are independent of tRNA maturation and the unfolded protein response. Thus, RNA ligation by RtcB is required for the function of multiple endogenous target RNAs including both xbp‐1 and tRNAs. RtcB is uniquely capable of performing these ligation functions, and RNA ligation by RtcB mediates multiple essential processes in vivo.  相似文献   

16.
Yeast and human Clp1 proteins are homologous components of the mRNA 3′-cleavage-polyadenylation machinery. Recent studies highlighting an association of human Clp1 (hClp1) with tRNA splicing endonuclease and an intrinsic RNA-specific 5′-OH polynucleotide kinase activity of hClp1 have prompted speculation that Clp1 might play a catalytic role in tRNA splicing in animal cells. Here, we show that expression of hClp1 in budding yeast can complement conditional and lethal mutations in the essential 5′-OH RNA kinase module of yeast or plant tRNA ligases. The tRNA splicing activity of hClp1 in yeast is abolished by mutations in the kinase active site. In contrast, overexpression of yeast Clp1 (yClp1) cannot rescue kinase-defective tRNA ligase mutants, and, unlike hClp1, the purified recombinant yClp1 protein has no detectable RNA kinase activity in vitro. Mutations of the yClp1 ATP-binding site do not affect yeast viability. These findings, and the fact that hClp1 cannot complement growth of a yeast clp1Δ strain, indicate that yeast and human Clp1 proteins are not functional orthologs, despite their structural similarity. Although hClp1 can perform the 5′-end-healing step of a yeast-type tRNA splicing pathway in vivo, it is uncertain whether its kinase activity is necessary for tRNA splicing in human cells, given that other mammalian counterparts of yeast-type tRNA repair enzymes are nonessential in vivo.  相似文献   

17.
The signal recognition particle (SRP) is a conserved ribonucleoprotein particle that targets membrane and secreted proteins to translocation channels in membranes. In eukaryotes, the Alu domain, which comprises the 5′ and 3′ extremities of the SRP RNA bound to the SRP9/14 heterodimer, is thought to interact with the ribosome to pause translation elongation during membrane docking. We present the 3.2 Å resolution crystal structure of a chimeric Alu domain, comprising Alu RNA from the archaeon Pyrococcus horikoshii bound to the human Alu binding proteins SRP9/14. The structure reveals how intricate tertiary interactions stabilize the RNA 5′ domain structure and how an extra, archaeal-specific, terminal stem helps constrain the Alu RNA into the active closed conformation. In this conformation, highly conserved noncanonical base pairs allow unusually tight side-by-side packing of 5′ and 3′ RNA stems within the SRP9/14 RNA binding surface. The biological relevance of this structure is confirmed by showing that a reconstituted full-length chimeric archaeal-human SRP is competent to elicit elongation arrest in vitro. The structure will be useful in refining our understanding of how the SRP Alu domain interacts with the ribosome.  相似文献   

18.
Multiple segmental and selective isotope labeling of RNA with three segments has been demonstrated by introducing an RNA segment, selectively labeled with 13C9/15N2/2H(1′, 3′, 4′, 5′, 5′′)-labeled uridine residues, into the central position of the 20 kDa ε-RNA of Duck Hepatitis B Virus. The RNA molecules were produced via two efficient protocols: a two-step protocol, which uses T4 DNA ligase and T4 RNA ligase 1, and a one-pot protocol, which uses T4 RNA ligase 1 alone. With T4 RNA ligase 1 all not-to-be-ligated termini are usually protected to prevent formation of side products. We show that such labor-intensive protection of termini is not required, provided segmentation sites can be chosen such that the segments fold into the target structure or target-like structures and thus are not trapped into stable alternate structures. These sites can be reliably predicted via DINAMelt. The simplified NMR spectrum provided evidence for the presence of a U28 H3-imino resonance, previously obscured in the fully labeled sample, and thus of the non-canonical base pair U28:C37. The demonstrated multiple segmental labeling protocols are generally applicable to large RNA molecules and can be extended to more than three segments.  相似文献   

19.
Clostridium thermocellum polynucleotide kinase-phosphatase (CthPnkp) catalyzes 5′ and 3′ end-healing reactions that prepare broken RNA termini for sealing by RNA ligase. The central phosphatase domain of CthPnkp belongs to the dinuclear metallophosphoesterase superfamily exemplified by bacteriophage λ phosphatase (λ-Pase). CthPnkp is a Ni2+/Mn2+-dependent phosphodiesterase-monoesterase, active on nucleotide and non-nucleotide substrates, that can be transformed toward narrower metal and substrate specificities via mutations of the active site. Here we characterize the Mn2+-dependent 2′,3′ cyclic nucleotide phosphodiesterase activity of CthPnkp, the reaction most relevant to RNA repair pathways. We find that CthPnkp prefers a 2′,3′ cyclic phosphate to a 3′,5′ cyclic phosphate. A single H189D mutation imposes strict specificity for a 2′,3′ cyclic phosphate, which is cleaved to form a single 2′-NMP product. Analysis of the cyclic phosphodiesterase activities of mutated CthPnkp enzymes illuminates the active site and the structural features that affect substrate affinity and kcat. We also characterize a previously unrecognized phosphodiesterase activity of λ-Pase, which catalyzes hydrolysis of bis-p-nitrophenyl phosphate. λ-Pase also has cyclic phosphodiesterase activity with nucleoside 2′,3′ cyclic phosphates, which it hydrolyzes to yield a mixture of 2′-NMP and 3′-NMP products. We discuss our results in light of available structural and functional data for other phosphodiesterase members of the binuclear metallophosphoesterase family and draw inferences about how differences in active site composition influence catalytic repertoire.  相似文献   

20.
A conserved guanosine at position 18 (G18) in the D-loop of tRNAs is often modified to 2′-O-methylguanosine (Gm). Formation of Gm18 in eubacterial tRNA is catalyzed by tRNA (Gm18) methyltransferase (TrmH). TrmH enzymes can be divided into two types based on their substrate tRNA specificity. Type I TrmH, including Thermus thermophilus TrmH, can modify all tRNA species, whereas type II TrmH, for example Escherichia coli TrmH, modifies only a subset of tRNA species. Our previous crystal study showed that T. thermophilus TrmH is a class IV S-adenosyl-l-methionine-dependent methyltransferase, which maintains a topological knot structure in the catalytic domain. Because TrmH enzymes have short stretches at the N and C termini instead of a clear RNA binding domain, these stretches are believed to be involved in tRNA recognition. In this study, we demonstrate by site-directed mutagenesis that both N- and C-terminal regions function in tRNA binding. However, in vitro and in vivo chimera protein studies, in which four chimeric proteins of type I and II TrmHs were used, demonstrated that the catalytic domain discriminates substrate tRNAs from nonsubstrate tRNAs. Thus, the N- and C-terminal regions do not function in the substrate tRNA discrimination process. Pre-steady state analysis of complex formation between mutant TrmH proteins and tRNA by stopped-flow fluorescence measurement revealed that the C-terminal region works in the initial binding process, in which nonsubstrate tRNA is not excluded, and that structural movement of the motif 2 region of the catalytic domain in an induced-fit process is involved in substrate tRNA discrimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号