首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly- and perfluoroalkyl compounds (PFASs) are ubiquitous in the environment, but their influences on microbial community remain poorly known. The present study investigated the depth-related changes of archaeal and bacterial communities in PFAS-contaminated soils. The abundance and structure of microbial community were characterized using quantitative PCR and high-throughput sequencing, respectively. Microbial abundance changed considerably with soil depth. The richness and diversity of both bacterial and archaeal communities increased with soil depth. At each depth, bacterial community was more abundant and had higher richness and diversity than archaeal community. The structure of either bacterial or archaeal community displayed distinct vertical variations. Moreover, a higher content of perfluorooctane sulfonate (PFOS) could have a negative impact on bacterial richness and diversity. The rise of soil organic carbon content could increase bacterial abundance but lower the richness and diversity of both bacterial and archaeal communities. In addition, Proteobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, and Acidobacteria were the major bacterial groups, while Thaumarchaeota, Euryarchaeota, and unclassified Archaea dominated in soil archaeal communities. PFASs could influence soil microbial community.  相似文献   

2.
Understanding the links between plant diversity and soil communities is critical to disentangling the mechanisms by which plant communities modulate ecosystem function. Experimental plant communities varying in species richness, evenness, and density were established using a response surface design and soil community properties including bacterial and archaeal abundance, richness, and evenness were measured. The potential to perform a representative soil ecosystem function, oxidation of ammonium to nitrite, was measured via archaeal and bacterial amoA genes. Structural equation modeling was used to explore the direct and indirect effects of the plant community on soil diversity and potential function. Plant communities influenced archaea and bacteria via different pathways. Species richness and evenness had significant direct effects on soil microbial community structure, but the mechanisms driving these effects did not include either root biomass or the pools of carbon and nitrogen available to the soil microbial community. Species richness had direct positive effects on archaeal amoA prevalence, but only indirect impacts on bacterial communities through modulation of plant evenness. Increased plant evenness increased bacterial abundance which in turn increased bacterial amoA abundance. These results suggest that plant community evenness may have a strong impact on some aspects of soil ecosystem function. We show that a more even plant community increased bacterial abundance, which then increased the potential for bacterial nitrification. A more even plant community also increased total dissolved nitrogen in the soil, which decreased the potential for archaeal nitrification. The role of plant evenness in structuring the soil community suggests mechanisms including complementarity in root exudate profiles or root foraging patterns.  相似文献   

3.
Nitrification within estuarine sediments plays an important role in the nitrogen cycle, both at the global scale and in individual estuaries. Although bacteria were once thought to be solely responsible for catalyzing the first and rate-limiting step of this process, several recent studies have suggested that mesophilic Crenarchaeota are capable of performing ammonia oxidation. Here we examine the diversity (richness and community composition) of ammonia-oxidizing archaea (AOA) and bacteria (AOB) within sediments of Bahía del Tóbari, a hypernutrified estuary receiving substantial amounts of ammonium in agricultural runoff. Using PCR primers designed to specifically target the archaeal ammonia monooxygenase α-subunit (amoA) gene, we found AOA to be present at five sampling sites within this estuary and at two sampling time points (January and October 2004). In contrast, the bacterial amoA gene was PCR amplifiable from only 40% of samples. Bacterial amoA libraries were dominated by a few widely distributed Nitrosomonas-like sequence types, whereas AOA diversity showed significant variation in both richness and community composition. AOA communities nevertheless exhibited consistent spatial structuring, with two distinct end member assemblages recovered from the interior and the mouths of the estuary and a mixed assemblage from an intermediate site. These findings represent the first detailed examination of archaeal amoA diversity in estuarine sediments and demonstrate that diverse communities of Crenarchaeota capable of ammonia oxidation are present within estuaries, where they may be actively involved in nitrification.  相似文献   

4.
Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.  相似文献   

5.
新疆天山北坡不同盐湖微生物菌群结构及其影响因子   总被引:1,自引:0,他引:1  
李二阳  马雪莉  吕杰  马媛  吕光辉 《生态学报》2021,41(18):7212-7225
新疆分布的众多湖泊由于干旱气候成盐作用强烈,近半数已演化到盐湖发展阶段,不同盐湖中也因此蕴含着丰富的耐盐及嗜盐微生物资源。为更好的掌握新疆盐湖微生物资源分布规律及对环境因子变化的响应规律,利用高通量测序技术对新疆天山北坡5个不同演化阶段盐湖湖底沉积物中细菌、古菌多样性和菌群结构及其主要驱动因子进行研究,探讨盐湖演化过程中原核微生物群落结构变化规律。分别采集5个盐湖湖底沉积物样本,进行理化因子测试与细菌和古菌16S rRNA扩增子测序分析,比较不同盐湖理化性质和原核微生物菌群差异,并对原核微生物丰度与环境因子进行关联分析。实验结果表明:5个盐湖湖底沉积物总盐和Na+含量顺序为:巴里坤湖 > 伊吾湖 > 艾比湖 > 盐湖 > 柴窝堡湖,除艾比湖外其他四个盐湖沉积物均呈碱性。Alpha多样性结果显示5个盐湖细菌richness、chao1、ACE和shannon丰富度指数均大于古菌相应丰富度指数,不同盐湖细菌丰富度指数差异较大,古菌丰富度指数差异相对较小。从5个盐湖湖底沉积物中共检测获得细菌58门、68纲、138目、253科和560属,古菌4门、8纲、12目、21科和60属,细菌以变形菌门为主,古菌以广古菌门为主。不同盐湖细菌和古菌优势属种类均不相同,巴里坤湖主要是一些嗜盐和耐盐细菌属,而伊吾湖主要是嗜盐和耐盐古菌属,PCoA分析结果也表明不同盐湖微生物在OTUs水平有其独特菌群结构类型。RDA和Bioenv分析结果表明,盐湖湖底沉积物中微生物菌群群落结构主要受Na+和总盐(TS)浓度的影响,对细菌菌群结构影响较大,而古菌菌群结构可能受多种理化因子共同调节。此外,盐湖特殊卤水成分会对微生物群落结构产生重大影响。  相似文献   

6.
The objective of this work was to study the effect of plant presence (Phragmites australis) and inoculant origin on wetland mesocosm start-up dynamics. Eight mesocosms were studied based on a duplicated 22 factorial design tracking bacterial community and hydrological changes during an 8 month start-up period. The mesocosms were characterized in terms of their hydrological character based on evapotranspiration (ET), porosity, and a dispersion coefficient. The microbiological regime was characterized using a microbial activity measure and community-level physiological profiling (CLPP) employing BIOLOG™ ECO plates. CLPP-related indices such as substrate richness, substrate diversity, over-all community profile, and community divergence are also presented. It was found that mesocosm porosities decreased over time as a result of media-related biofilm development. This biofilm development also contributed to a substantial increase in the dispersion coefficient in the mesocosms over the start-up period. Dispersion coefficients in planted systems reached values of ∼50-55 cm2/min whereas in the unplanted systems values of ∼30-35 cm2/min were observed. Bacterial community divergence in the mesocosms was quantified using a Euclidean-based divergence metric. All mesocosms showed a sharp increase in community divergence until day 75, at which point a steady state was reached. The interstitial communities were also characterized in terms of similarity based on the experimental design treatments. Four stages of mesocosm development were identified that can be described by an initial community state based on the origins of the initial inoculum [days 0-6]; a dynamic period where adjustments and shifts in the bacterial community occurred in all mesocosms [days 7-26]; a period where all interstitial CLPPs were quite similar [days 27-73]; and finally a shift towards unplanted and planted mesocosm CLPP groupings [days 74-232].  相似文献   

7.
Mining negatively affects the environment by producing large quantities of metallic tailings, such as those contaminated with arsenic, with harmful consequences for human and aquatic life. A culture-independent molecular analysis was performed to assess the prokaryotic diversity and community structural changes of the tropical historically metal-contaminated Mina stream (MS) and the relatively pristine Mutuca stream (MTS) sediments. A total of 234 bacterial operational taxonomic units (OTUs) were affiliated with 14 (MS) and 17 (MTS) phyla and 53 OTUs were associated with two archaeal phyla. Although the bacterial community compositions of these sediments were markedly distinct, no significant difference in the diversity indices between the bacterial communities was observed. Additionally, the rarefaction and diversity indices indicated a higher bacterial diversity than archaeal diversity. Most of the OTUs were affiliated with the Proteobacteria and Bacteroidetes phyla. Alphaproteobacteria, Gemmatimonadetes and Actinobacteria were only found in the MS clone library. Crenarchaeal 16S rDNA sequences constituted 75 % of the MS archaeal clones, whereas Euryarchaeota were dominant in the MTS clones. Despite the markedly different characteristics of these streams, their bacterial communities harbor high diversity, suggesting that historically mining-impacted sediments promote diversity. The findings also provide basis for further investigation of members of Alphaproteobacteria as potential biological indicators of arsenic-rich sediments.  相似文献   

8.
Over the last decades, the demand for pork products has increased significantly, along with concern about suitable waste management. Anaerobic-lagoon fermentation for swine-sludge stabilization is a good strategy, although little is known about the microbial communities in the lagoons. Here, we employed a cloning- and sequencing-based analysis of the 16S rRNA gene to characterize and quantify the prokaryotic community composition in a swine-waste-sludge anaerobic lagoon (SAL). DNA sequence analysis revealed that the SAL library harbored 15 bacterial phyla: Bacteroidetes, Cloroflexi, Proteobacteria, Firmicutes, Deinococcus-Thermus, Synergystetes, Gemmatimonadetes, Chlorobi, Fibrobacteres, Verrucomicrobia and candidates division OP5, OP8, WWE1, KSB1, WS6. The SAL library was generally dominated by carbohydrate-oxidizing bacteria. The archaeal sequences were related to the Crenarchaeota and Euryarchaeota phyla. Crenarchaeota predominated in the library, demonstrating that it is not restricted to high-temperature environments, being also responsible for ammonium oxidation in the anaerobic lagoon. Euryarchaeota sequences were associated with the hydrogenotrophic methanogens (Methanomicrobiales and Methanobacteriales). Quantitative PCR analysis revealed that the number of bacterial cells was at least three orders of magnitude higher than the number of archaeal cells in the SAL. The identified prokaryotic diversity was ecologically significant, particularly the archaeal community of hydrogenotrophic methanogens, which was responsible for methane production in the anaerobic lagoon. This study provided insight into the archaeal involvement in the overall oxidation of organic matter and the production of methane. Therefore, the treatment of swine waste in the sludge anaerobic lagoon could represent a potential inoculum for the start-up of municipal solid-waste digesters.  相似文献   

9.
We have studied the distribution of the archaeal communities in Rambla Salada (Murcia, Spain) over three different seasons and observed the influence upon them of the environmental variables, salinity, pH, oxygen and temperature. Samples were collected from three representative sites in order to gain an insight into the archaeal population of the rambla as a whole. Denaturing gradient gel electrophoresis patterns and diversity indexes indicate that the diversity of the archaeal community in Rambla Salada changed mainly according to the season. We found no significant differences between the types of sample studied: watery sediments and soils. The upwelling zone showed most diversity in its archaeal community. The overall archaeal community was composed mainly of Halobacteriales and Thermoplasmatales, accounting for 72.6 and 12.1 % of the total, respectively. Haloarcula was the most abundant genus, being present at all three sites during all three seasons. Some few Crenarchaeota were always found, mainly at low-salinity levels. Ordination canonical correspondence analysis demonstrated that salinity affected the structure of the community significantly, whilst pH, oxygen and temperature did so to a lesser extent. Most Halobacteriales correlated positively with salinity and pH, whilst Thermoplasmatales correlated negatively with both salinity and pH and positively with temperature and oxygen. The archaeal community with the highest diversity was sampled during June 2006, the season with the highest salt concentration. Catalyzed reporter deposition-fluorescence in situ hybridization showed that the percentage of archaea in Rambla Salada compared to the total number of microorganisms (as measured by DAPI) ranged from 11.1 to 16.7 %. Our research group had isolated the most abundant taxon, Haloarcula, previously in Rambla Salada using classical culture techniques, but on this occasion, using culture-independent methods, we were also able to identify some phylotypes, Halorubrum, Methanolobus, Natronomonas, Halomicrobium, Halobacterium, Halosimplex, uncultured Thermoplasmatales and uncultured Crenarchaeota, that had remained undetected during our earlier studies in this habitat.  相似文献   

10.
Biological hydrogen production through the anaerobic digestion is an environmental friendly alternative for satisfying future hydrogen demands. Microorganisms residing into waste water treatment plants are far from being exhaustively characterized and surveys on hydrogen production through FeFe-hydrogenase in such ecosystems are scarce. This study combined the analysis of 16S rRNA and [FeFe]-hydrogenase (hydA) genes with statistical tools to estimate richness and diversity of the microbial community of a domestic sewage treatment plant at the phylogenetic and functional levels. Archaeal groups were represented by 69 % of sequences assigned to Methanosarcinales and the remaining belonged to Methanomicrobiales. Within the bacterial library, 136 operational taxonomic units (OTUs) were distributed into 9 phyla, being 86 OTUs related to uncultivated bacteria. From these, 25 OTUs represented potential novel taxa within Synergistetes. Proteobacteria was the most predominant (36 % of the OTUs) and diversified phylogenetic group in the bacterial library, most of them assigned to the class Betaproteobacteria. Twenty-two putative hydA sequences were recovered into four distinct clusters and most of them were more closely related to each other than with sequences retrieved from databases, indicating they are hitherto undetected [Fe–Fe]-hydrogenase gene sequences. The richness estimates revealed that the number of sampled sequences was enough for full coverage of the archaeal diversity but not sufficient to cover both bacterial and hydA gene diversities. The results confirmed a great richness and diversity of bacterial and hydA sequences retrieved from the sewage sludge sample, suggesting such environment as a potential reservoir of new hydrogenase genes for biotechnological exploration.  相似文献   

11.
Tomato bacterial wilt caused by Ralstonia solanacearum is one of the most destructive soil-borne diseases. Many strategies have been taken to improve soil suppressiveness against this destructive disease, but limited success has been achieved. In this study, a novel bioorganic fertilizer revealed a higher suppressive ability against bacterial wilt compared with several soil management methods in the field over four growing seasons from March 2011 to July 2013. The application of the bioorganic fertilizer significantly (P<0.05) reduced disease incidence of tomato and increased fruit yields in four independent trials. The association among the level of disease incidence, soil physicochemical and biological properties was investigated. The soil treated with the bioorganic fertilizer increased soil pH value, electric conductivity, organic carbon, NH4 +-N, NO3 --N and available K content, microbial activities and microbial biomass carbon content, which were positively related with soil suppressiveness. Bacterial and actinomycete populations assessed using classical plate counts were highest, whereas R. solanacearum and fungal populations were lowest in soil applied with the bioorganic fertilizer. Microbial community diversity and richness were assessed using denaturing gel gradient electrophoresis profile analysis. The soil treated with the bioorganic fertilizer exhibited higher bacterial community diversity but lower fungal community diversity. Redundancy analysis showed that bacterial community diversity and richness negatively related with bacterial wilt suppressiveness, while fungal community richness positively correlated with R. solanacearum population. We concluded that the alteration of soil physicochemical and biological properties in soil treated with the bioorganic fertilizer induced the soil suppressiveness against tomato bacterial wilt.  相似文献   

12.

Background

Soil microbial communities are in constant change at many different temporal and spatial scales. However, the importance of these changes to the turnover of the soil microbial communities has been rarely studied simultaneously in space and time.

Methodology/Principal Findings

In this study, we explored the temporal and spatial responses of soil bacterial, archaeal and fungal β-diversities to abiotic parameters. Taking into account data from a 3-year sampling period, we analyzed the abundances and community structures of Archaea, Bacteria and Fungi along with key soil chemical parameters. We questioned how these abiotic variables influence the turnover of bacterial, archaeal and fungal communities and how they impact the long-term patterns of changes of the aforementioned soil communities. Interestingly, we found that the bacterial and fungal β-diversities are quite stable over time, whereas archaeal diversity showed significantly higher fluctuations. These fluctuations were reflected in temporal turnover caused by soil management through addition of N-fertilizers.

Conclusions

Our study showed that management practices applied to agricultural soils might not significantly affect the bacterial and fungal communities, but cause slow and long-term changes in the abundance and structure of the archaeal community. Moreover, the results suggest that, to different extents, abiotic and biotic factors determine the community assembly of archaeal, bacterial and fungal communities.  相似文献   

13.
During cruises in the tropical Atlantic Ocean (January to February 2000) and the southern North Sea (December 2000), experiments were conducted to monitor the impact of virioplankton on archaeal and bacterial community richness. Prokaryotic cells equivalent to 10 to 100% of the in situ abundance were inoculated into virus-free seawater, and viruses equivalent to 35 to 360% of the in situ abundance were added. Batch cultures with microwave-inactivated viruses and without viruses served as controls. The apparent richness of archaeal and bacterial communities was determined by terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR-amplified 16S rRNA gene fragments. Although the estimated richness of the prokaryotic communities generally was greatly reduced within the first 24 h of incubation due to confinement, the effects of virus amendment were detected at the level of individual operational taxonomic units (OTUs) in the T-RFLP patterns of both groups, Archaea and Bacteria. One group of OTUs was detected in the control samples but was absent from the virus-treated samples. This negative response of OTUs to virus amendment probably was caused by viral lysis. Additionally, we found OTUs not responding to the amendments, and several OTUs exhibited variable responses to the addition of inactive or active viruses. Therefore, we conclude that individual members of pelagic archaeal and bacterial communities can be differently affected by the presence of virioplankton.  相似文献   

14.
Methanogenic archaea are reported as very sensitive to lipids and long chain fatty acids (LCFA). Therefore, in conventional anaerobic processes, methane recovery during LCFA-rich wastewater treatment is usually low. By applying a start-up strategy, based on a sequence of step feeding and reaction cycles, an oleate-rich wastewater was efficiently treated at an organic loading rate of 21 kg COD m?3 day?1 (50 % as oleate), showing a methane recovery of 72 %. In the present work, the archaeal community developed in that reactor is investigated using a 16S rRNA gene approach. This is the first time that methanogens present in a bioreactor converting efficiently high loads of LCFA to methane are monitored. Denaturing gradient gel electrophoresis profiling showed that major changes on the archaeal community took place during the bioreactor start-up, where phases of continuous feeding were alternated with batch phases. After the start-up, a stable archaeal community (similarity higher than 84 %) was observed and maintained throughout the continuous operation. This community exhibited high LCFA tolerance and high acetoclastic and hydrogenotrophic activity. Cloning and sequencing results showed that Methanobacterium- and Methanosaeta-like microorganisms prevailed in the system and were able to tolerate and endure during prolonged exposure to high LCFA loads, despite the previously reported LCFA sensitivity of methanogens.  相似文献   

15.
Although bacteria and fungi are well-known to be decomposers of leaf litter, few studies have examined their compositions and diversities during the decomposition process in tropical stream water. Xishuangbanna is a tropical region preserving one of the highest floristic diversity areas in China. In this study, leaf litter of four dominant plant species in Xishuangbanna was incubated in stream water for 42 days during which samples were taken regularly. Following DNA extraction, PCR-DGGE (denaturing gradient gel electrophoresis) and clone-sequencing analyses were performed using bacterial and fungal specific primers. Leaf species have slightly influences on bacterial community rather than fungal community. The richness and diversity of bacteria was higher than that of fungi, which increased towards the end of the 42-day-incubation. The bacterial community was initially more specific upon the type of leaves and gradually became similar at the later stage of decomposition with alpha-proteobacteria as major component. Sequences affiliated to methanotrophs were obtained that indicates potentially occurrence of methane oxidation and methanogenesis. For the fungal community, sequences affiliated to Aspergillus were predominant at the beginning and then shifted to Pleosporales. Our results suggest that the microorganisms colonizing leaf biofilm in tropical stream water were mostly generalists that could exploit the resources of leaves of various species equally well.  相似文献   

16.

Background and Aims

The effect of transgenic insect-resistant crops on soil microorganisms has become an issue of public concern. The goal of this study was to firstly realize the variation of in situ methane (CH4) emission flux and methanogenic and methanotrophic communities due to planting transgenic Bt rice (Bt) cultivar.

Methods

CH4 emitted from paddy soil was collected by static closed chamber technique. Denaturing gradient gel electrophoresis and real-time PCR methods were employed to analyze methanogenic archaeal and methanotrophic bacterial community structure and abundance.

Results

Results showed that planting Bt rice cultivar effectively reduced in situ CH4 emission flux and methanogenic archaeal and methanotrophic bacterial community abundance and diversity. Data analysis showed that in situ CH4 emission flux increased significantly with the increase of methanogenic archaeal abundance (R 2 ?=?0.839, p?<?0.001) and diversity index H′ (R 2 ?=?0.729, p?<?0.05), whereas was not obviously related to methanotrophic bacterial community.

Conclusions

Our results suggested that the lower in situ CH4 emission flux from Bt soil may result from lower methanogenic archaeal community abundance and diversity, lower methanogenic activity and higher methanotrophic activity. Moreover, our results inferred that specific functional microorganisms may be a more sensitive indicator than the total archaeal, bacterial or fungal population to assess the effects of transgenic insect-resistant plants on soil microorganisms.  相似文献   

17.
The microbial community of a pig slurry on a farm was monitored for 6 months using both molecular and cultural approaches. Sampling was carried out at all the different stages of effluent handling, from the rearing build-up to slurry spreading. Total DNA of each sample was extracted and analyzed by PCR-single-strand conformation polymorphism (SSCP) analysis using primers targeting the 16S rRNA genes from the archaeal and bacterial domains and also the Eubacterium-Clostridium, Bacillus-Streptococcus-Lactobacillus, and Bacteroides-Prevotella groups. A comparison of the SSCP profiles showed that there were rapid changes in the dominant bacterial community during the first 2 weeks of anaerobic storage and that the community was relatively stable thereafter. Several bacterial populations, identified as populations closely related to uncultured Clostridium and Porphyromonas and to Lactobacillus and Streptococcus cultured species commonly isolated from pig feces, remained present and dominant from the rearing build-up to the time of spreading. Enumeration of fecal indicators (enterococci and Escherichia coli) performed in parallel using cultural methods revealed the same trends. On the other hand, the archaeal community adapted slowly during pig slurry storage, and its diversity increased. A shift between two hydrogenotrophic methanogenic Methanobrevibacter populations from the storage pit to the pond was observed. Microorganisms present in pig slurry at the time of spreading could not be detected in soil after spreading by either molecular or cultural techniques, probably because of the detection limit inherent in the two techniques.  相似文献   

18.
Repetitive extraction of DNAs from surface sediments of a coastal wetland in Mai Po Nature Reserve (MP) of Hong Kong and surface Baijiang soils from a rice paddy (RP) in Northeast China was conducted to compare the microbial diversity in this study. Community structures of ammonia/ammonium-oxidizing microorganisms in these samples were analyzed by PCR-DGGE technique. The diversity and abundance of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium-oxidizing (anammox) bacteria were also analyzed based on archaeal and bacterial ammonia monooxygenase subunit A encoding (amoA) and anammox bacterial 16S rRNA genes, respectively. DGGE profiles of archaeal and bacterial amoA and anammox bacterial 16S rRNA genes showed a similar pattern among all five repetitively extracted DNA fractions from both MP and RP, except the anammox bacteria in RP, indicating a more diverse anammox community retrieved in the second to the fifth fractions than the first one. Both soil and marine group AOA were detected while soil and coastal group AOB and Scalindua-anammox bacteria were dominant in MP. Soil group AOA and marine group AOB were dominant in RP, while both Scalindua and Kuenenia species were detected in RP. Pearson correlation analysis showed that the abundance of archaeal and bacterial amoA and anammox bacterial 16S rRNA genes was significantly correlated with the DNA concentrations of the five DNA fractions from MP, but not from RP (except the archaeal amoA gene). Results suggest that anammox bacteria diversity may be biased by insufficient DNA extraction of rice paddy soil samples.  相似文献   

19.
The patterns of macrobiota in lotic ecosystems have been extensively explored, however, the dynamics of microbiota remain poorly investigated, especially in the high-elevation region. To address this deficit, we collected eight samples to unveil the bacterial and archaeal community in the Kaidu river, located at the arid region of northwestern China (an average of 2,500 m a.s.l.). For the bacterial community, phylogenetically Betaproteobacteria prevailed, followed by Alphaproteobacteria and Actinobacteria; at the finer genus level, Limnohabitans and Variovorax were prominent. Along the river, the bacterial community showed a continuous succession. Specifically, their α- and β-diversity gradually increased, suggesting a distance-decay pattern. Additionally, there was an ecological transition between the dominant and the rare sub-community along the river: the relative abundance of the dominant members gradually decreased as the rare members increased. We report that temperature and spatial distance were significantly related to the variation of bacterial community. Variance partitioning analysis showed that the environmental factors contributed more to the bacterial community than did the spatial distance. In the case of the archaeal community, the methanogenic groups, mainly Methanosaeta and Methanosarcina, were prominent within the Kaidu river. Unlike the continuous change in the patterns of the bacterial community, the archaeal community showed a constant pattern along the river. Our results showed that the archaeal community was independent of the environmental and spatial factors. We propose that the inoculation of soil-derived archaea is responsible for the archaeal community in the Kaidu river. Together, our study demonstrated that the bacterial community in the high-elevation Kaidu river is a continuum, whereas the archaeal community is not.  相似文献   

20.
Marine sponges are associated with a remarkable array of microorganisms. Using a tag pyrosequencing technology, this study was the first to investigate in depth the microbial communities associated with three Red Sea sponges, Hyrtios erectus, Stylissa carteri and Xestospongia testudinaria. We revealed highly diverse sponge-associated bacterial communities with up to 1000 microbial operational taxonomic units (OTUs) and richness estimates of up to 2000 species. Altogether, 26 bacterial phyla were detected from the Red Sea sponges, 11 of which were absent from the surrounding sea water and 4 were recorded in sponges for the first time. Up to 100 OTUs with richness estimates of up to 300 archaeal species were revealed from a single sponge species. This is by far the highest archaeal diversity ever recorded for sponges. A non-negligible proportion of unclassified reads was observed in sponges. Our results demonstrated that the sponge-associated microbial communities remained highly consistent in the same sponge species from different locations, although they varied at different degrees among different sponge species. A significant proportion of the tag sequences from the sponges could be assigned to one of the sponge-specific clusters previously defined. In addition, the sponge-associated microbial communities were consistently divergent from those present in the surrounding sea water. Our results suggest that the Red Sea sponges possess highly sponge-specific or even sponge-species-specific microbial communities that are resistant to environmental disturbance, and much of their microbial diversity remains to be explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号