首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Most, if not all, microtubules in vivo grow unidirectionally from a nucleation site such as the centrosome. This organized growth of microtubules can generate and maintain the radially symmetrical array of interphase microtubules as well as the bipolar mitotic apparatus. To investigate the regulation of polarized microtubule growth, we have prepared a cell-free extract from surf clam oocytes that exhibits unidirectional microtubule assembly. Immunofluorescence microscopy was used to visualize the net assembly of microtubules onto the fast (plus)- and slow (minus)- growing ends of isolated ciliary axonemes. All detectable microtubule growth in these cytoplasmic extracts occurred at the plus (+) ends and the extent of (+) end growth was regulated by subtle changes in pH. Microtubule assembly in these crude extracts was highly favored at pH 7.3, the pH of the post-fertilization cytoplasm. In contrast, when tubulin was purified from these oocyte extracts, integral components were lost, and microtubule growth became predominantly bidirectional and was favored at acidic pH. These results indicate that cytoplasmic factors may inhibit bidirectional growth in vivo and that temporal or local changes in cytoplasmic pH may influence microtubule assembly during the cell cycle.  相似文献   

2.
Understanding the structural basis for protein thermostability is of considerable biological and biotechnological importance as exemplified by the industrial use of xylanases at elevated temperatures in the paper pulp and animal feed sectors. Here we have used directed protein evolution to generate hyperthermostable variants of a thermophilic GH11 xylanase, EvXyn11. The Gene Site Saturation Mutagenesis (GSSM) methodology employed assesses the influence on thermostability of all possible amino acid substitutions at each position in the primary structure of the target protein. The 15 most thermostable mutants, which generally clustered in the N-terminal region of the enzyme, had melting temperatures (Tm) 1-8 degrees C higher than the parent protein. Screening of a combinatorial library of the single mutants identified a hyperthermostable variant, EvXyn11TS, containing seven mutations. EvXyn11TS had a Tm approximately 25 degrees C higher than the parent enzyme while displaying catalytic properties that were similar to EvXyn11. The crystal structures of EvXyn11 and EvXyn11TS revealed an absence of substantial changes to identifiable intramolecular interactions. The only explicable mutations are T13F, which increases hydrophobic interactions, and S9P that apparently locks the conformation of a surface loop. This report shows that the molecular basis for the increased thermostability is extraordinarily subtle and points to the requirement for new tools to interrogate protein folding at non-ambient temperatures.  相似文献   

3.
Axon pathfinding and synapse formation rely on precise spatiotemporal localization of guidance receptors. However, little is known about the neuron-specific intracellular trafficking mechanisms that underlie the sorting and activity of these receptors. Here we show that loss of the neuron-specific v-ATPase subunit a1 leads to progressive endosomal guidance receptor accumulations after neuronal differentiation. In the embryo and in adult photoreceptors, these accumulations occur after axon pathfinding and synapse formation is complete. In contrast, receptor missorting occurs sufficiently early in neurons of the adult central nervous system to cause connectivity defects. An increase of guidance receptors, but not of membrane proteins without signaling function, causes specific gain-of-function phenotypes. A point mutant that promotes sorting but prevents degradation reveals spatiotemporally specific guidance receptor turnover and accelerates developmental defects in photoreceptors and embryonic motor neurons. Our findings indicate that a neuron-specific endolysosomal degradation mechanism is part of the cell biological machinery that regulates guidance receptor turnover and signaling.  相似文献   

4.
The nervous system in many species consists of multiple neuronal cell layers, each forming specific connections with neurons in other layers or other regions of the brain. How layer-specific connectivity is established during development remains largely unknown. In the Drosophila adult visual system, photoreceptor (R cell) axons innervate one of two optic ganglia layers; R1-R6 axons connect to the lamina layer, while R7 and R8 axons project through the lamina into the deeper medulla layer. Here, we show that the receptor tyrosine kinase Off-track (Otk) is specifically required for lamina-specific targeting of R1-R6 axons. Otk is highly expressed on R1-R6 growth cones. In the absence of otk, many R1-R6 axons connect abnormally to medulla instead of innervating lamina. We propose that Otk is a receptor or a component of a receptor complex that recognizes a target-derived signal for R1-R6 axons to innervate the lamina layer.  相似文献   

5.
There is growing evidence that the protozoan Toxoplasma gondii modifies behaviour of its intermediate hosts, including humans, where it globally infects about 20–60% of the population. Although it is considered asymptomatic in its latent stage, it was previously found to have remarkable and gender different effects on the personality factors A (warmth), G (rule consciousness), L (vigilance, mistrust) and Q3 (self-control, self-image) from Cattell’s 16PF Questionnaire. We performed a double blind experiment testing 72 and 142 uninfected men and women, respectively, and 20 and 29 infected men and women, respectively, in order to verify these gender differences using behavioural experiments. Our composite behavioural variables Self-Control and Clothes Tidiness (analogue to the 16PF factors G – conscientiousness and Q3 – self-control) showed a significant effect of the toxoplasmosis–gender interaction with infected men scoring significantly lower than uninfected men and a trend in the opposite direction in women. The effect of the toxoplasmosis–gender interaction on our composite behavioural variable Relationships (analogue to factor A – warmth) approached significance; infected men scored significantly lower than uninfected men whereas there was no difference in women. In the composite behavioural variable Mistrust (analogue to factor L), the pattern was affected by environment (rural versus urban). Possible interpretations of the gender differences are discussed.  相似文献   

6.
Summary Lymphoma in dogs resembles human non-Hodgkin's lymphoma in pathological presentation, immunophenotype, and response to therapy, thus representing a good model for comparative studies with human disease. Monoclonal antibodies (MAbs) were derived from mice immunized with a dog lymphoma cell line. Three MAbs were selected for further application in immunophenotyping and immunotherapy. The binding specificities, antigen characterization, and isotypes for these MAbs are described.Supported by NCI grant CA-10815  相似文献   

7.
Toxoplasma gondii forms different life stages, fast-replicating tachyzoites and slow-growing bradyzoites, in mammalian hosts. CD8 T cells are of crucial importance in toxoplasmosis, but it is unknown which parasite stage is recognized by CD8 T cells. To analyze stage-specific CD8 T cell responses, we generated various recombinant Toxoplasma gondii expressing the heterologous Ag beta-galactosidase (beta-gal) and studied whether 1) secreted or cytoplasmic Ags and 2) tachyzoites or bradyzoites, which persist intracerebrally, induce CD8 T cells. We monitored the frequencies and kinetics of beta-gal-specific CD8 T cells in infected mice by MHC class I tetramer staining. Upon oral infection of B6C (H-2(bxd)) mice, only beta-gal-secreting tachyzoites induced beta-gal-specific CD8 T cells. However, upon secondary infection of mice that had received a primary infection with tachyzoites secreting beta-gal, beta-gal-secreting tachyzoites and bradyzoites transiently increased the frequency of intracerebral beta-gal-specific CD8 T cells. Frequencies of splenic and cerebral beta-gal-specific CD8 T cells peaked at day 23 after infection, thereafter persisting at high levels in the brain but declining in the spleen. Splenic and cerebral beta-gal-specific CD8 T cells produced IFN-gamma and were cytolytic upon specific restimulation. Thus, compartmentalization and stage specificity of an Ag determine the induction of CD8 T cells in toxoplasmosis.  相似文献   

8.
Segmental specialization of neuronal connectivity in the leech   总被引:1,自引:1,他引:1  
1. Every segmental ganglion of the leech Hirudo medicinalis contains two serotonergic Retzius cells. However, Retzius cells in the two segmental ganglia associated with reproductive function are morphologically distinct from Retzius cells elsewhere. This suggested that these Retzius cells might be physiologically distinct as well. 2. The degree of electrical coupling between Retzius cells distinguishes the reproductive Retzius cells; all Retzius cells are coupled in a non-rectifying manner, but reproductive Retzius cells are less strongly coupled. 3. Retzius cells in standard ganglia depolarize following swim motor pattern initiation or mechanosensory stimulation while Retzius cells in reproductive ganglia either do not respond or hyperpolarize. 4. In standard Retzius cells the depolarizing response caused by pressure mechanosensory neurons has fixed latency and one-to-one correspondence between the mechanosensory neuron action potentials and Retzius cell EPSPs. However, the latency is longer than for most known monosynaptic connections in the leech. 5. Raising the concentration of divalent cations in the bathing solution to increase thresholds abolishes the mechanosensory neuron-evoked EPSP in standard Retzius cells. This suggests that generation of action potentials in an interneuron is required for production of the EPSP, and therefore that the pathway from mechanosensory neuron to Retzius cell is polysynaptic. 6. P cells in reproductive segments have opposite effects on reproductive Retzius cells and standard Retzius cells in adjacent ganglia. Thus the difference in the pathway from P to Retzius is not localized specifically in the P cell, but elsewhere in the pathway, possibly in the type of receptor expressed by the Retzius cells.  相似文献   

9.
The application of data-driven time series analysis techniques such as Granger causality, partial directed coherence and phase dynamics modeling to estimate effective connectivity in brain networks has recently gained significant prominence in the neuroscience community. While these techniques have been useful in determining causal interactions among different regions of brain networks, a thorough analysis of the comparative accuracy and robustness of these methods in identifying patterns of effective connectivity among brain networks is still lacking. In this paper, we systematically address this issue within the context of simple networks of coupled spiking neurons. Specifically, we develop a method to assess the ability of various effective connectivity measures to accurately determine the true effective connectivity of a given neuronal network. Our method is based on decision tree classifiers which are trained using several time series features that can be observed solely from experimentally recorded data. We show that the classifiers constructed in this work provide a general framework for determining whether a particular effective connectivity measure is likely to produce incorrect results when applied to a dataset.  相似文献   

10.
Ahn KW  Sampson NS 《Biochemistry》2004,43(3):827-836
We investigated the dependence of cholesterol oxidase catalytic activity and membrane affinity on lipid structure in model membrane bilayers. The binding affinities of cholesterol oxidase to 100-nm unilamellar vesicles composed of mixtures of DOPC or DPPC and cholesterol are not sensitive to cholesterol mole fraction if the phase of the membrane is in a fluid state. When the membrane is in a solid-ordered state, the binding affinity of cholesterol oxidase increases approximately 10-fold. The second-order rate constants (kcat*/Km*) for different lipid mixtures show a 2-fold substrate specificity for cholesterol in the l(d) phase of high cholesterol chemical activity over cholesterol in the l(o) phase. Moreover, the enzyme is 2-fold more specific for cholesterol in the l(o) phase than in the s(o) phase. Likewise, there is 2-fold substrate specificity for the high cholesterol chemical activity l(d) phase over the low chemical activity l(d) phase. The specificities for the l(d) phase of low cholesterol chemical activity and the l(o) phase are the same. These data indicate that the more ordered the lipid cholesterol structure in the bilayer, the lower the catalytic rate. However, under all of the conditions investigated, the enzyme is never saturated with substrate. The enzymatic activity directly reflects the facility with which cholesterol can move out of the membrane, whether changes in cholesterol transfer facility are due to phase changes or more localized changes in packing. We conclude that the activity of cholesterol oxidase is directly and sensitively dependent on the physical properties of the membrane in which its substrate is bound.  相似文献   

11.
A fundamental goal in biology is to achieve a mechanistic understanding of how and to what extent ecological variation imposes selection for distinct traits and favors the fixation of specific genetic variants. Key to such an understanding is the detailed mapping of the natural genomic and phenomic space and a bridging of the gap that separates these worlds. Here we chart a high-resolution map of natural trait variation in one of the most important genetic model organisms, the budding yeast Saccharomyces cerevisiae, and its closest wild relatives and trace the genetic basis and timing of major phenotype changing events in its recent history. We show that natural trait variation in S. cerevisiae exceeds that of its relatives, despite limited genetic variation, and follows the population history rather than the source environment. In particular, the West African population is phenotypically unique, with an extreme abundance of low-performance alleles, notably a premature translational termination signal in GAL3 that cause inability to utilize galactose. Our observations suggest that many S. cerevisiae traits may be the consequence of genetic drift rather than selection, in line with the assumption that natural yeast lineages are remnants of recent population bottlenecks. Disconcertingly, the universal type strain S288C was found to be highly atypical, highlighting the danger of extrapolating gene-trait connections obtained in mosaic, lab-domesticated lineages to the species as a whole. Overall, this study represents a step towards an in-depth understanding of the causal relationship between co-variation in ecology, selection pressure, natural traits, molecular mechanism, and alleles in a key model organism.  相似文献   

12.
Deficiency in cystathionine beta synthase (CBS) leads to high plasma homocysteine concentrations and causes hyperhomocysteinemia, a common risk factor for vascular disease, stroke and possibly neurodegenerative diseases. Various neuronal diseases have been associated with hyperhomocysteinemia, but the molecular mechanisms of homocysteine toxicity are unknown. We investigated the pathways involved in the pathological process, by analyzing differential gene expression in neuronal tissues. We used a combination of differential display and cDNA arrays to identify genes differentially expressed during hyperhomocysteinemia in brain of CBS-deficient mice. In this murine model of hyperhomocysteinemia, both plasma and brain homocysteine concentrations were high. Several genes were found to be differentially expressed in the brains of CBS-deficient mice, and the identities of some of these genes suggested that the SAPK/JNK pathway was altered in the brains of CBS-deficient mice. We therefore investigated the activation of proteins involved in the SAPK/JNK cascade. JNK and c-Jun were activated in the hippocampal neurones of CBS-deficient mice, suggesting that the SAPK/JNK pathway may play an important role in the development of neuronal defects associated with hyperhomocysteinemia.  相似文献   

13.
Molecular chaperones and co-chaperones are crucial for cellular development and maintenance as they assist in protein folding and stabilization of unfolded or misfolded proteins. Prefoldin (PFDN), a ubiquitously expressed heterohexameric co-chaperone, is necessary for proper folding of nascent proteins, in particular, tubulin and actin. Here we show that a genetic disruption in the murine Pfdn5 gene, a subunit of prefoldin, causes a syndrome characterized by photoreceptor degeneration, central nervous system abnormalities, and male infertility. Our data indicate that a missense mutation in Pfdn5, may cause these phenotypes through a reduction in formation of microtubules and microfilaments, which are necessary for the development of cilia and cytoskeletal structures, respectively. The diversity of phenotypes demonstrated by models carrying mutations in different PFDN subunits suggests that each PFDN subunit must confer a distinct substrate specificity to the prefoldin holocomplex.  相似文献   

14.
Chemically defined glycoconjugates are demonstrated to have considerable potential for selecting hybridoma antibodies directed toward O-antigenic determinants, especially when used in combination with a panel of well-characterized LPS molecules. Monoclonal antibodies specific for the Shigella flexneri O-antigens of serogroup 5b, variants X and Y, were generated after immunization of BALB/c mice with killed bacterial cells, and active hybrids were selected on the basis of ELISA performed with the purified serotype-specific LPS antigen. Subsequent screening with a variety of glycoconjugates, derived from synthetic oligosaccharides and larger structures obtained by phage Sf6/endo-rhamnosidase hydrolysis of purified LPS established a detailed profile of binding characteristics for Shigella flexneri variant Y-specific antibodies. Together with the results of precipitin analysis and heavy chain isotyping experiments, a limited number of antibodies were selected as candidates for detailed studies of the antibody combining site.  相似文献   

15.
Groups of mice were infected with tachyzoites of the RH strain of Toxoplasma gondii, treated with the opioid analgesic buprenorphine, sodium sulfadiazine, a combination of buprenorphine and sodium sulfadiazine, or nothing in the drinking water, on days -1 to 12 postinfection. Mice in the T. gondii-infected buprenorphine-treated group did not live significantly longer (P > 0.05) than mice given T. gondii and not treated with buprenorphine. Clinical observations of mice indicated that buprenorphine treatment reduced distress and pain in mice with acute toxoplasmosis. Mice treated with sodium sulfadiazine alone or sodium sulfadiazine combined with buprenorphine survived the 28-day study. Mice treated with buprenorphine and not infected with T. gondii also survived the 28 days. This study demonstrates that buprenorphine does not adversely interfere with acute T. gondii infection and indicates that buprenorphine can be given to mice to alleviate pain and distress associated with a T. gondii infection, and not adversely influence the results of toxoplasmosis studies. Analgesic (buprenorphine) treatment should now be the standard of care for mice in acute toxoplasmosis studies.  相似文献   

16.
We describe an approach for determining causal connections among nodes of a probabilistic network even when many nodes remain unobservable. The unobservable nodes introduce ambiguity into the estimate of the causal structure. However, in some experimental contexts, such as those commonly used in neuroscience, this ambiguity is present even without unobservable nodes. The analysis is presented in terms of a point process model of a neuronal network, though the approach can be generalized to other contexts. The analysis depends on the existence of a model that captures the relationship between nodal activity and a set of measurable external variables. The mathematical framework is sufficiently general to allow a large class of such models. The results are modestly robust to deviations from model assumptions, though additional validation methods are needed to assess the success of the results.  相似文献   

17.
Neuronal circuits, the functional building blocks of the nervous system, assemble during development through a series of dynamic processes including the migration of neurons to their final position, the growth and navigation of axons and their synaptic connection with target cells. While the role of chemical cues in guiding neuronal migration and axonal development has been extensively analysed, the contribution of mechanical inputs, such as forces and stiffness, has received far less attention. In this article, we review the in vitro and more recent in vivo studies supporting the notion that mechanical signals are critical for multiple aspects of neuronal circuit assembly, from the emergence of axons to the formation of functional synapses. By combining live imaging approaches with tools designed to measure and manipulate the mechanical environment of neurons, the emerging field of neuromechanics will add a new paradigm in our understanding of neuronal development and potentially inspire novel regenerative therapies.  相似文献   

18.
Specification and connectivity of neuronal subtypes in the sensory lineage   总被引:1,自引:0,他引:1  
During the development of the nervous system, many different types of neuron are produced. As well as forming the correct type of neuron, each must also establish precise connections. Recent findings show that, because of shared gene programmes, neuronal identity is intimately linked to and coordinated with axonal behaviour. Peripheral sensory neurons provide an excellent system in which to study these interactions. This review examines how neuronal diversity is created in the PNS and describes proteins that help to direct the diversity of neuronal subtypes, cell survival, axonal growth and the establishment of central patterns of modality-specific connections.  相似文献   

19.
In humans, loss or alteration of the CHL1/CALL gene may contribute to mental impairment associated with the 3p-syndrome, caused by distal deletions of the short (p) arm of chromosome 3, and schizophrenia. Mice deficient for the Close Homologue of L1 (CHL1) show aberrant connectivity of hippocampal mossy fibers and olfactory sensory axons, suggesting participation of CHL1 in the establishment of neuronal networks. Furthermore, behavioral studies showed that CHL1-deficient mice react differently towards novel experimental environments. These data raise the hypothesis that processing of information, possibly novel versus familiar, may be altered in the absence of CHL1. To test this hypothesis, brain activities were investigated after presentation of a novel, familiar, or neutral gustatory stimulus using metabolic mapping with ((14)C)-2-deoxyglucose (2-DG) and analysis of mRNA expression of the immediate early genes (IEGs) c-fos and arg 3.1/arc by in situ hybridization. 2-DG labeling revealed only small differences between CHL1-deficient and wild-type littermate mice. In contrast, while the specific novelty-induced increase in c-fos expression was maintained in most of the brain areas analyzed, c-fos mRNA expression was similar after the novel and familiar taste in several brain areas of the CHL1-deficient mice. Furthermore, in these mutants, arg 3.1/arc expression was slightly reduced after the novel taste and increased after the familiar taste, leading to a similar arg 3.1/arc mRNA expression after both stimuli. Our results indicate that, in contrast to controls, CHL1-deficient mice might process novel and familiar information similarly and suggest that the altered neuronal connectivity in these mutants disturbs information processing at the molecular level.  相似文献   

20.
A sensitive real-time PCR technique was used to examine the distribution of Toxoplasma gondii in the blood and tissues of mice during acute and chronic infection. Groups of Swiss Albino mice, inoculated i.p. with 10(2) or 10(6) tachyzoites of the RH strain as a typical type-1 strain, or fed 10 cysts of the Me49 strain as a typical type-2 strain, were killed at different time points post-infection (p.i.), and blood and organs including the lungs, brain and liver were harvested for DNA extraction. Toxoplasma DNA was quantified by a real-time PCR targeted at the 529bp gene fragment, with a detection limit of a single parasite per g/ml of tissue. The results showed a strain- and dose-dependent spread of Toxoplasma. In infection with type-1 parasites, in case of a high infective dose, Toxoplasma DNA was detected within 24h p.i. in all analyzed tissues including the brain. Conversely, in case of a low infective dose, parasitaemia was undetectable early p.i., at a time when Toxoplasma DNA was detected in the tissues, but reached very high levels as infection progressed. With both infective doses, pre-death parasite burdens were higher in the blood than in the tissues, whereas the same loads in the lungs suggest that reaching these Toxoplasma burdens may be critical for survival. In infection with Me49 parasites, steady high parasite burdens were noted up to the end of the experiment at d42 only in the brain, parasitaemia was low but detectable throughout, and Toxoplasma DNA was completely cleared only from the liver. These data are important to better understand the pathogenesis of toxoplasmosis, and also as baseline data for the experimental evaluation of novel chemotherapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号