首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

High frequency of physical aggression is the central feature of severe conduct disorder and is associated with a wide range of social, mental and physical health problems. We have previously tested the hypothesis that differential DNA methylation signatures in peripheral T cells are associated with a chronic aggression trajectory in males. Despite the fact that sex differences appear to play a pivotal role in determining the development, magnitude and frequency of aggression, most of previous studies focused on males, so little is known about female chronic physical aggression. We therefore tested here whether or not there is a signature of physical aggression in female DNA methylation and, if there is, how it relates to the signature observed in males.

Methodology/Principal Findings

Methylation profiles were created using the method of methylated DNA immunoprecipitation (MeDIP) followed by microarray hybridization and statistical and bioinformatic analyses on T cell DNA obtained from adult women who were found to be on a chronic physical aggression trajectory (CPA) between 6 and 12 years of age compared to women who followed a normal physical aggression trajectory. We confirmed the existence of a well-defined, genome-wide signature of DNA methylation associated with chronic physical aggression in the peripheral T cells of adult females that includes many of the genes similarly associated with physical aggression in the same cell types of adult males.

Conclusions

This study in a small number of women presents preliminary evidence for a genome-wide variation in promoter DNA methylation that associates with CPA in women that warrant larger studies for further verification. A significant proportion of these associations were previously observed in men with CPA supporting the hypothesis that the epigenetic signature of early life aggression in females is composed of a component specific to females and another common to both males and females.  相似文献   

2.

Background

An increasing number of animal and human studies are indicating that inflammation is associated with behavioral disorders including aggression. This study investigates the association between chronic physical aggression during childhood and plasma cytokine levels in early adulthood.

Methodology/Principal Findings

Two longitudinal studies were used to select males on a chronic physical aggression trajectory from childhood to adolescence (n = 7) and a control group from the same background (n = 25). Physical aggression was assessed yearly by teachers from childhood to adolescence and plasma levels of 10 inflammatory cytokines were assessed at age 26 and 28 years. Compared to the control group, males on a chronic physical aggression trajectory from childhood to adolescence had consistently lower plasma levels of five cytokines: lower pro-inflammatory interleukins IL-1α (T(28.7) = 3.48, P = 0.002) and IL-6 (T(26.9) = 3.76, P = 0.001), lower anti-inflammatory interleukin IL-4 (T(27.1) = 4.91, P = 0.00004) and IL-10 (T(29.8) = 2.84, P = 0.008) and lower chemokine IL-8 (T(26) = 3.69, P = 0.001). The plasma levels of four cytokines accurately predicted aggressive and control group membership for all subjects.

Conclusions/Significance

Physical aggression of boys during childhood is a strong predictor of reduced plasma levels of cytokines in early adulthood. The causal and physiological relations underlying this association should be further investigated since animal data suggest that some cytokines such as IL-6 and IL-1β play a causal role in aggression.  相似文献   

3.
4.
《生命科学研究》2016,(3):271-277
糖尿病是受遗传和环境共同调控的一种代谢性疾病,发病率高且难以治愈。表观遗传DNA甲基化与糖尿病进程密切相关,是联通环境因素与基因因素的桥梁,DNA甲基化通过其对基因表达的调节作用影响疾病的发生与发展。肠道微生物菌群是糖尿病研究的新兴热点方向,能够提供甲基供体等有利于甲基化的便利条件。与肠道微生物菌群及其他相关代谢通路有关的DNA甲基化与糖尿病存在着密切的关系,其为解释糖尿病的致病机理及寻找有效干预糖尿病的手段提供了新的研究线索和思路。  相似文献   

5.
Microarray analysis of promoter hypermethylation provides insight into the role and extent of DNA methylation in the development of colorectal cancer (CRC) and may be co-monitored with the appearance of driver mutations. Colonic biopsy samples were obtained endoscopically from 10 normal, 23 adenoma (17 low-grade (LGD) and 6 high-grade dysplasia (HGD)), and 8 ulcerative colitis (UC) patients (4 active and 4 inactive). CRC samples were obtained from 24 patients (17 primary, 7 metastatic (MCRC)), 7 of them with synchronous LGD. Field effects were analyzed in tissues 1 cm (n = 5) and 10 cm (n = 5) from the margin of CRC. Tissue materials were studied for DNA methylation status using a 96 gene panel and for KRAS and BRAF mutations. Expression levels were assayed using whole genomic mRNA arrays. SFRP1 was further examined by immunohistochemistry. HT29 cells were treated with 5-aza-2’ deoxycytidine to analyze the reversal possibility of DNA methylation. More than 85% of tumor samples showed hypermethylation in 10 genes (SFRP1, SST, BNC1, MAL, SLIT2, SFRP2, SLIT3, ALDH1A3, TMEFF2, WIF1), whereas the frequency of examined mutations were below 25%. These genes distinguished precancerous and cancerous lesions from inflamed and healthy tissue. The mRNA alterations that might be caused by systematic methylation could be partly reversed by demethylation treatment. Systematic changes in methylation patterns were observed early in CRC carcinogenesis, occuring in precursor lesions and CRC. Thus we conclude that DNA hypermethylation is an early and systematic event in colorectal carcinogenesis, and it could be potentially reversed by systematic demethylation therapy, but it would need more in vitro and in vivo experiments to support this theory.  相似文献   

6.
Both mouse and human embryonic stem cells can be differentiated in vitro to produce a variety of somatic cell types. Using a new developmental tracing approach, we show that these cells are subject to massive aberrant CpG island de novo methylation that is exacerbated by differentiation in vitro. Bioinformatics analysis indicates that there are two distinct forms of abnormal de novo methylation, global as opposed to targeted, and in each case the resulting pattern is determined by molecular rules correlated with local pre-existing histone modification profiles. Since much of the abnormal methylation generated in vitro appears to be stably maintained, this modification may inhibit normal differentiation and could predispose to cancer if cells are used for replacement therapy. Excess CpG island methylation is also observed in normal placenta, suggesting that this process may be governed by an inherent program.  相似文献   

7.
Chronic Fatigue Syndrome (CFS), also known as myalgic encephalomyelitis, is a complex multifactorial disease that is characterized by the persistent presence of fatigue and other particular symptoms for a minimum of 6 months. Symptoms fail to dissipate after sufficient rest and have major effects on the daily functioning of CFS sufferers. CFS is a multi-system disease with a heterogeneous patient population showing a wide variety of functional disabilities and its biological basis remains poorly understood. Stable alterations in gene function in the immune system have been reported in several studies of CFS. Epigenetic modifications have been implicated in long-term effects on gene function, however, to our knowledge, genome-wide epigenetic modifications associated with CFS have not been explored. We examined the DNA methylome in peripheral blood mononuclear cells isolated from CFS patients and healthy controls using the Illumina HumanMethylation450 BeadChip array, controlling for invariant probes and probes overlapping polymorphic sequences. Gene ontology (GO) and network analysis of differentially methylated genes was performed to determine potential biological pathways showing changes in DNA methylation in CFS. We found an increased abundance of differentially methylated genes related to the immune response, cellular metabolism, and kinase activity. Genes associated with immune cell regulation, the largest coordinated enrichment of differentially methylated pathways, showed hypomethylation within promoters and other gene regulatory elements in CFS. These data are consistent with evidence of multisystem dysregulation in CFS and implicate the involvement of DNA modifications in CFS pathology.  相似文献   

8.
9.
DNA methylation is a key epigenetic modification which, in mammals, occurs mainly at CpG dinucleotides. Most of the CpG methylation in the genome is found in repetitive regions, rich in dormant transposons and endogenous retroviruses. Global DNA hypomethylation, which is a common feature of several conditions such as ageing and cancer, can cause the undesirable activation of dormant repeat elements and lead to altered expression of associated genes. DNA hypomethylation can cause genomic instability and may contribute to mutations and chromosomal recombinations. Various approaches for quantification of global DNA methylation are widely used. Several of these approaches measure a surrogate for total genomic methyl cytosine and there is uncertainty about the comparability of these methods. Here we have applied 3 different approaches (luminometric methylation assay, pyrosequencing of the methylation status of the Alu repeat element and of the LINE1 repeat element) for estimating global DNA methylation in the same human cell and tissue samples and have compared these estimates with the “gold standard” of methyl cytosine quantification by HPLC. Next to HPLC, the LINE1 approach shows the smallest variation between samples, followed by Alu. Pearson correlations and Bland-Altman analyses confirmed that global DNA methylation estimates obtained via the LINE1 approach corresponded best with HPLC-based measurements. Although, we did not find compelling evidence that the gold standard measurement by HPLC could be substituted with confidence by any of the surrogate assays for detecting global DNA methylation investigated here, the LINE1 assay seems likely to be an acceptable surrogate in many cases.  相似文献   

10.
11.
Russian Journal of Genetics - This article reports on new data on the association of breastfeeding with DNA methylation in the peripheral blood cells of 37 children aged from 9 months to four...  相似文献   

12.

Aim

Recent evidence suggests that several dietary polyphenols may exert their chemopreventive effect through epigenetic modifications. Curcumin is one of the most widely studied dietary chemopreventive agents for colon cancer prevention, however, its effects on epigenetic alterations, particularly DNA methylation, remain unclear. Using systematic genome-wide approaches, we aimed to elucidate the effect of curcumin on DNA methylation alterations in colorectal cancer cells.

Materials and Methods

To evaluate the effect of curcumin on DNA methylation, three CRC cell lines, HCT116, HT29 and RKO, were treated with curcumin. 5-aza-2′-deoxycytidine (5-aza-CdR) and trichostatin A treated cells were used as positive and negative controls for DNA methylation changes, respectively. Methylation status of LINE-1 repeat elements, DNA promoter methylation microarrays and gene expression arrays were used to assess global methylation and gene expression changes. Validation was performed using independent microarrays, quantitative bisulfite pyrosequencing, and qPCR.

Results

As expected, genome-wide methylation microarrays revealed significant DNA hypomethylation in 5-aza-CdR-treated cells (mean β-values of 0.12), however, non-significant changes in mean β-values were observed in curcumin-treated cells. In comparison to mock-treated cells, curcumin-induced DNA methylation alterations occurred in a time-dependent manner. In contrast to the generalized, non-specific global hypomethylation observed with 5-aza-CdR, curcumin treatment resulted in methylation changes at selected, partially-methylated loci, instead of fully-methylated CpG sites. DNA methylation alterations were supported by corresponding changes in gene expression at both up- and down-regulated genes in various CRC cell lines.

Conclusions

Our data provide previously unrecognized evidence for curcumin-mediated DNA methylation alterations as a potential mechanism of colon cancer chemoprevention. In contrast to non-specific global hypomethylation induced by 5-aza-CdR, curcumin-induced methylation changes occurred only in a subset of partially-methylated genes, which provides additional mechanistic insights into the potent chemopreventive effect of this dietary nutraceutical.  相似文献   

13.
The dermal papilla, located in the hair follicle, expresses androgen receptor and plays an important role in hair growth. Androgen/Androgen receptor actions have been implicated in the pathogenesis of androgenetic alopecia, but the exact mechanism is not well known. Recent studies suggest that balding dermal papilla cells exhibit premature senescence, upregulation of p16INK4a, and nuclear expression of DNA damage markers. To investigate whether androgen/AR signaling influences the premature senescence of dermal papilla cells, we first compared frontal scalp dermal papilla cells of androgenetic alopecia patients with matched normal controls and observed that premature senescence is more prominent in the dermal papilla cells of androgenetic alopecia patients. Exposure of androgen induced premature senescence in dermal papilla cells from non-balding frontal and transitional zone of balding scalp follicles but not in beard follicles. Overexpression of the AR promoted androgen-induced premature senescence in association with p16INK4a upregulation, whereas knockdown of the androgen receptor diminished the effects of androgen. An analysis of γ-H2AX expression in response to androgen/androgen receptor signaling suggested that DNA damage contributes to androgen/androgen receptor-accelerated premature senescence. These results define androgen/androgen receptor signaling as an accelerator of premature senescence in dermal papilla cells and suggest that the androgen/androgen receptor-mediated DNA damage-p16INK4a axis is a potential therapeutic target in the treatment of androgenetic alopecia.  相似文献   

14.
Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA methylation landscape using the 450k array of four human tissues (amnion, muscle, adrenal and pancreas) during the first and second trimester of gestation (9,18 and 22 weeks). We show that a tissue-specific signature, constituted by tissue-specific hypomethylated CpG sites, was already present at 9 weeks of gestation (W9). Furthermore, we report large-scale remodelling of DNA methylation from W9 to W22. Gain of DNA methylation preferentially occurred near genes involved in general developmental processes, whereas loss of DNA methylation mapped to genes with tissue-specific functions. Dynamic DNA methylation was associated with enhancers, but not promoters. Comparison of our data with external fetal adrenal, brain and liver revealed striking similarities in the trajectory of DNA methylation during fetal development. The analysis of gene expression data indicated that dynamic DNA methylation was associated with the progressive repression of developmental programs and the activation of genes involved in tissue-specific processes. The DNA methylation landscape of human fetal development provides insight into regulatory elements that guide tissue specification and lead to organ functionality.  相似文献   

15.
Contamination of normal cells is almost always present in tumor samples and affects their molecular analyses. DNA methylation, a stable epigenetic modification, is cell type-dependent, and different between cancer and normal cells. Here, we aimed to demonstrate that DNA methylation can be used to estimate the fraction of cancer cells in a tumor DNA sample, using esophageal squamous cell carcinoma (ESCC) as an example. First, by an Infinium HumanMethylation450 BeadChip array, we isolated three genomic regions (TFAP2B, ARHGEF4, and RAPGEFL1) i) highly methylated in four ESCC cell lines, ii) hardly methylated in a pooled sample of non-cancerous mucosae, a pooled sample of normal esophageal mucosae, and peripheral leukocytes, and iii) frequently methylated in 28 ESCCs (TFAP2B, 24/28; ARHGEF4, 20/28; and RAPGEFL1, 19/28). Second, using eight pairs of cancer and non-cancer cell samples prepared by laser capture microdissection, we confirmed that at least one of the three regions was almost completely methylated in ESCC cells, and all the three regions were almost completely unmethylated in non-cancer cells. We also confirmed that DNA copy number alterations of the three regions in 15 ESCC samples were rare, and did not affect the estimation of the fraction of cancer cells. Then, the fraction of cancer cells in a tumor DNA sample was defined as the highest methylation level of the three regions, and we confirmed a high correlation between the fraction assessed by the DNA methylation fraction marker and the fraction assessed by a pathologist (r=0.85; p<0.001). Finally, we observed that, by correction of the cancer cell content, CpG islands in promoter regions of tumor-suppressor genes were almost completely methylated. These results demonstrate that DNA methylation can be used to estimate the fraction of cancer cells in a tumor DNA sample.  相似文献   

16.
Environmental chemicals and radiation have often been implicated in producing alterations of the epigenome thus potentially contributing to cancer and other diseases. Ionizing radiation, released during accidents at nuclear power plants or after atomic bomb explosions, is a potentially serious health threat for the exposed human population. This type of high-energy radiation causes DNA damage including single- and double-strand breaks and induces chromosomal rearrangements and mutations, but it is not known if ionizing radiation directly induces changes in the epigenome of irradiated cells. We treated normal human fibroblasts and normal human bronchial epithelial cells with different doses of γ-radiation emitted from a cesium 137 (137Cs) radiation source. After a seven-day recovery period, we analyzed global DNA methylation patterns in the irradiated and control cells using the methylated-CpG island recovery assay (MIRA) in combination with high-resolution microarrays. Bioinformatics analysis revealed only a small number of potential methylation changes with low fold-difference ratios in the irradiated cells. These minor methylation differences seen on the microarrays could not be verified by COBRA (combined bisulfite restriction analysis) or bisulfite sequencing of selected target loci. Our study shows that acute γ-radiation treatment of two types of human cells had no appreciable direct effect on DNA cytosine methylation patterns in exposed cells.  相似文献   

17.
目的:探讨人类三原核合子及二倍体化合子中DNA甲基化模式的变化情况。方法:我们采用显微操作技术去除三原核合子中两个雄原核中的一个,观察恢复了二倍体状态的胚胎的发育情况,并检测了三原核和二倍体化的合子及早期胚胎中DNA甲基化模式的动态变化。结果:二倍体化的合子的囊胚形成率与三原核合子的囊胚形成率无显著性差异;在人三原核合子中两个雄原核发生主动地DNA去甲基化而雌原核在受精后的20h后仍保持甲基化。三原核与二倍体化合子中,DNA甲基化模式没有差别。结论:去除一个雄原核不会影响合子和胚胎的DNA甲基化模式。去除多余雄原核并不能改善胚胎的发育。  相似文献   

18.
19.
The effects of CGP 48664 and DFMO, selective inhibitors of the key enzymes of polyamine biosynthesis, namely, ofS-adenosylmethionine decarboxylase (AdoMetDC) and ornithine decarboxylase (ODC), were investigated on growth, polyamine metabolism, and DNA methylation in the Caco-2 cell line. Both inhibitors caused growth inhibition and affected similarly the initial expression of the differentiation marker sucrase. In the presence of the AdoMetDC inhibitor, ODC activity and the intracellular pool of putrescine were enhanced, whereas the spermidine and spermine pools were decreased. In the presence of the ODC inhibitor, the AdoMetDC activity was enhanced and the intracellular pools of putrescine and spermidine were decreased. With both compounds, the degree of global DNA methylation was increased. Spermine and spermidine (but not putrescine) selectively inhibited cytosine–DNA methyltransferase activity. Our observations suggest that spermidine (and to a lesser extent spermine) controls DNA methylation and may represent a crucial step in the regulation of Caco-2 cell growth and differentiation.  相似文献   

20.
DNA methylation in eukaryotes invokes heritable alterations of the of the cytosine base in DNA without changing the underlying genomic DNA sequence. DNA methylation may be modified by environmental exposures as well as gene polymorphisms and may be a mechanistic link between environmental risk factors and the development of disease. In this review, we consider the role of DNA methylation in bone cells (osteoclasts/osteoblasts/osteocytes) and their progenitors with special focus on in vitro and ex vivo analyses. The number of studies on DNA methylation in bone cells is still somewhat limited, nevertheless it is getting increasingly clear that this type of the epigenetic changes is a critical regulator of gene expression. DNA methylation is necessary for proper development and function of bone cells and is accompanied by disease characteristic functional alterations as presently reviewed including postmenopausal osteoporosis and mechanical strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号