首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been suggested that leukemia is characterized by an impaired balance between the proliferation of blood cells and their capacity to undergo apoptosis. The aim of this study was to examine the expression of key molecules related to apoptosis (BCL-2, BAX, FAS, FAS-L) in children with acute lymphoblastic leukemia (ALL). Measurement of BCL-2 and BAX mRNA was performed by quantitative real-time PCR, and membrane expression of FAS and FAS-L was assessed by flow cytometry in bone marrow mononuclear cells, both at diagnosis and at remission following induction chemotherapy. At diagnosis, increased levels of the apoptotic BAX/BCL-2 ratio were observed in children older than 10 years and with higher white blood cell counts. A DNA index < 1.16 was associated with increased BAX/BCL-2, both at diagnosis and at remission, and the del(9p) chromosome abnormality with increased BAX/BCL-2 at remission. The expression of the apoptotic receptor FAS was significantly higher at remission compared to diagnosis, which might reflect enhanced sensitivity of the leukemic clone to apoptosis and response to treatment. Altogether, our results highlight the association of apoptosis-related genes with clinical and cytogenetic prognostic parameters in pediatric ALL. A better understanding of the mechanisms and regulation of apoptosis should enable the design of novel targeted therapies for these patients.  相似文献   

2.
3.
Fas/Fas ligand (FasL) system is one of the key apoptotic signaling entities in the extrinsic apoptotic pathway. De-regulation of this pathway, i.e. by mutations may prevent the immune system from the removal of newly-formed tumor cells, and thus lead to tumor formation. The present study investigated the association between −1377 G/A (rs2234767) and −670 A/G (rs1800682) polymorphisms in Fas as well as single nucleotide polymorphisms INV2nt −124 A/G (rs5030772) and −844 C/T (rs763110) in FasL in a sample of Iranian patients with breast cancer. This case-control study was done on 134 breast cancer patients and 152 normal women. Genomic DNA was extracted from whole blood samples. The polymorphisms were determined by using tetra-ARMS-PCR method. There was no significant difference in the genotype distribution of FAS rs2234767 polymorphism between cases and controls. FAS rs1800682, FASL rs5030772, and FASL rs763110 genotypes showed significant associations with an increasing risk of breast cancer (odds ratio OR = 3.18, P = 0.019; OR = 5.08, P = 0.012; OR = 2.40, P = 0.024, respectively). In conclusion, FAS rs2234767 was not associated with breast cancer risk. Though, FAS rs1800682, FASL rs5030772, and FASL rs763110 polymorphisms were associated with the risk of breast cancer in the examined population.  相似文献   

4.
Angioimmunoblastic T-cell lymphoma (AILT) represents a subset of T-cell lymphomas but resembles an autoimmune disease in many of its clinical aspects. Despite the phenotype of effector T-cells and high expression of FAS and CTLA-4 receptor molecules, tumor cells fail to undergo apoptosis. We investigated single nucleotide polymorphisms (SNPs) of the FAS and CTLA-4 genes in 94 peripheral T-cell lymphomas. Although allelic frequencies of some FAS SNPs were enriched in AILT cases, none of these occurred at a different frequency compared to healthy individuals. Therefore, SNPs in these genes are not associated with the apoptotic defect and autoimmune phenomena in AILT.  相似文献   

5.
6.
Mevalonate pathway deregulation has been observed in several diseases, including Mevalonate kinase deficiency (MKD). MKD is a hereditary auto-inflammatory disorder, due to mutations at mevalonate kinase gene (MVK), encoding mevalonate kinase (MK) enzyme. MVK mutations have been reported as associated with impairment of mevalonate pathway with consequent decrease of protein prenylation levels, defective autophagy and increase of IL-1β secretion, followed by cell death. Since 25-hydroxycholesterol (25-HC), a metabolite of cholesterol, can suppress IL-1β production, thus reducing inflammation, we evaluated the effect of 25-HC in an in vitro model of mevalonate pathway alteration, obtained using Lovastatin. Human glioblastoma cell line (U87-MG) was chosen to mimic, at least in part, the central nervous system impairment observed in MKD; 25-HC effects were evaluated aimed at disclosing if this compound could be considered as novel potential drug for MKD.Our results showed that 25-HC is able to reduce inflammation but it is ineffective to restore autophagy flux and to decrease apoptosis levels, both caused by lower protein prenylation; so, in spite of its anti-inflammatory action it is not useful to rescue defective prenylation/autophagy impairment-driven apoptosis in Lovastatin impaired mevalonate pathway.We hypothesize the presence in the mevalonate pathway of alternative mechanisms acting between inflammation and apoptotic autophagy impairment.  相似文献   

7.
8.
9.
10.

Background

KRAS mutations occur in 35–45% of metastatic colorectal cancers (mCRC) and preclude responsiveness to EGFR-targeted therapy with cetuximab or panitumumab. However, less than 20% patients displaying wild-type KRAS tumors achieve objective response. Alterations in other effectors downstream of the EGFR, such as BRAF, and deregulation of the PIK3CA/PTEN pathway have independently been found to give rise to resistance. We present a comprehensive analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression in mCRC patients treated with cetuximab or panitumumab, with the aim of clarifying the relative contribution of these molecular alterations to resistance.

Methodology/Principal Findings

We retrospectively analyzed objective tumor response, progression-free (PFS) and overall survival (OS) together with the mutational status of KRAS, BRAF, PIK3CA and expression of PTEN in 132 tumors from cetuximab or panitumumab treated mCRC patients. Among the 106 non-responsive patients, 74 (70%) had tumors with at least one molecular alteration in the four markers. The probability of response was 51% (22/43) among patients with no alterations, 4% (2/47) among patients with 1 alteration, and 0% (0/24) for patients with ≥2 alterations (p<0.0001). Accordingly, PFS and OS were increasingly worse for patients with tumors harboring none, 1, or ≥2 molecular alteration(s) (p<0.001).

Conclusions/Significance

When expression of PTEN and mutations of KRAS, BRAF and PIK3CA are concomitantly ascertained, up to 70% of mCRC patients unlikely to respond to anti-EGFR therapies can be identified. We propose to define as ‘quadruple negative’, the CRCs lacking alterations in KRAS, BRAF, PTEN and PIK3CA. Comprehensive molecular dissection of the EGFR signaling pathways should be considered to select mCRC patients for cetuximab- or panitumumab-based therapies.  相似文献   

11.
Although the role of methionine (Met), as precursor for l-carnitine synthesis, in the regulation of lipid metabolism has been explored. Met seems to have tissue- and species-specific regulatory effect on lipid metabolism, implying that the mechanisms in Met regulation of lipid metabolism is complex and may involve the upstream regulatory pathway of lipid metabolism. The present study was performed to determine the mechanism of apoptosis signaling pathways mediating Met-induced changes of hepatic lipid deposition and metabolism in fish, and compare the differences of the mechanisms between the fish and mammals. By iTRAQ-based quantitative proteome analyses, we found that both dietary Met deficiency and excess evoked apoptosis signaling pathways, increased hepatic lipid deposition and caused aberrant hepatic lipid metabolism of yellow catfish Pelteobagrus fulvidraco. Using primary hepatocytes from P. fulvidraco, inhibition of caspase by Z-VAD-FMK blocked the apoptotic signaling pathways with a concomitant reversal of Met deficiency- and excess-induced increase of lipid deposition, indicating that apoptosis involved the Met-mediated changes of hepatic lipid metabolism. Moreover, we explored the roles of three upstream apoptotic signaling pathways (PI3K/AKT-TOR pathway, cAMP/PKA/CREB pathway and LKB1/AMPK-FOXO pathway) influencing hepatic lipid metabolism of P. fulvidraco. The three upstream pathways participated in apoptosis mediating Met-induced changes of lipid metabolism in P. fulvidraco. At last, HepG2 cell line was used to compare the similarities of mechanisms in apoptosis mediating Met-induced changes of lipid metabolism between fish and mammals. Although several slight differences existed, apoptosis mediated the Met-induced changes of lipid metabolism between fish and mammals. The present study reveals novel apoptosis-relevant signal transduction axis which mediates the Met-induced changes of lipid metabolism, which will help understand the mechanistic link between apoptosis and lipid metabolism, and highlight the importance of the evolutionary conservative apoptosis signaling axis in regulating Met–induced changes of hepatic lipid metabolism.  相似文献   

12.
Long noncoding RNAs (lncRNA) are emerging as integral functional and regulatory components in the development of different diseases including cancer. Maternally expressed gene 3 (MEG3), is a lncRNA, that has a depressed expression in multiple tumor types, including T-cell lymphoblastic lymphoma (T-LBL). However, the molecular mechanisms that regulate the tumorigenic functions of MEG3 in T-LBL remain largely unknown. In this study, we aimed to discover and identify the function of MEG3 in T-LBL tumorigenesis, epithelial-mesenchymal transition (EMT) and drug resistance, and explore their mechanisms of action. Knockdown MEG3 promoted the proliferation, migration, invasion, and drug resistance of T-LBL cells while overexpression of MEG3 gets the opposite results. The mechanism study showed that decreased MEG3 expression in T-LBL cells could activate PI3K/mTOR signaling pathways, increase the expression of p-glycoprotein and affect the expression of EMT markers for transforming to mesenchymal cells in vitro and in vivo. Together, these results indicate that MEG3 could inhibit the migration, invasion, and drug resistance in T-LBL cells by suppression of the PI3K/mTOR pathway. MEG3 might be a potential target, through which poor prognosis with high recurrence and drug resistance of T-LBL in a clinical setting could be reversed.  相似文献   

13.
14.
15.
16.
Distinct metabolic pathways can intersect in ways that allow hierarchical or reciprocal regulation. In a screen of respiration-deficient Saccharomyces cerevisiae gene deletion strains for defects in mitochondrial RNA processing, we found that lack of any enzyme in the mitochondrial fatty acid type II biosynthetic pathway (FAS II) led to inefficient 5′ processing of mitochondrial precursor tRNAs by RNase P. In particular, the precursor containing both RNase P RNA (RPM1) and tRNAPro accumulated dramatically. Subsequent Pet127-driven 5′ processing of RPM1 was blocked. The FAS II pathway defects resulted in the loss of lipoic acid attachment to subunits of three key mitochondrial enzymes, which suggests that the octanoic acid produced by the pathway is the sole precursor for lipoic acid synthesis and attachment. The protein component of yeast mitochondrial RNase P, Rpm2, is not modified by lipoic acid in the wild-type strain, and it is imported in FAS II mutant strains. Thus, a product of the FAS II pathway is required for RNase P RNA maturation, which positively affects RNase P activity. In addition, a product is required for lipoic acid production, which is needed for the activity of pyruvate dehydrogenase, which feeds acetyl-coenzyme A into the FAS II pathway. These two positive feedback cycles may provide switch-like control of mitochondrial gene expression in response to the metabolic state of the cell.  相似文献   

17.
Expression of c-MET, the HGF (hepatocyte growth factor) tyrosine kinase receptor, was investigated in pediatric B-acute lymphoblastic leukemia (ALL) patients. c-MET was found to be expressed in normal B cells and in B-ALL patients with the t(12;21) TEL-AML1 translocation, but it is not expressed in the most part of B-ALL without the t(12;21). We also found that c-MET, related to proliferation and protection from apoptosis, is associated with the pro-apoptotic protein FAS in TEL-AML1 B-ALL cells and in normal B lymphocytes. The possible role of this protein complex in drug-induced apoptosis was thus investigated in REH TEL-AML1 B-ALL cell line. REH cells prestimulated with HGF and treated with doxorubicin had shown a higher apoptotic rate than non-HGF-prestimulated ones (p = 0.03). REH cells stimulated with IL-3 and treated with doxorubicin did not undergo apoptosis more than nonstimulated cells, demonstrating that increased proliferation in itself is not directly related to the higher apoptotic sensitivity observed with HGF stimulation. These results indicate that c-MET activation enhances specifically FAS-mediated apoptosis in TEL-AML1 ALL cells and, considering that the c-MET/FAS complex is present only in normal B lymphocytes and in TEL-AML1 leukemias, this implies that it may have an important contribution in cellular homeostasis and in high sensitivity of TEL-AML1 ALL to chemotherapeutic regimens.  相似文献   

18.
The phosphoinositide 3-kinase (PI3K) pathway is targeted for frequent alteration in glioblastoma (GBM) and is one of the core GBM pathways defined by The Cancer Genome Atlas. Somatic mutations of PIK3R1 are observed in multiple tumor types, but the tumorigenic activity of these mutations has not been demonstrated in GBM. We show here that somatic mutations in the iSH2 domain of PIK3R1 act as oncogenic driver events. Specifically, introduction of a subset of the mutations identified in human GBM, in the nSH2 and iSH2 domains, increases signaling through the PI3K pathway and promotes tumorigenesis of primary normal human astrocytes in an orthotopic xenograft model. Furthermore, we show that cells that are dependent on mutant P85α-mediated PI3K signaling exhibit increased sensitivity to a small molecule inhibitor of AKT. Together, these results suggest that GBM patients whose tumors carry mutant PIK3R1 alleles may benefit from treatment with inhibitors of AKT.  相似文献   

19.
20.
Inflammation is a major cause of cancer and may condition its progression. The deregulation of the cyclooxygenase (COX) pathway is implicated in several pathophysiological processes, including inflammation and cancer. Although, its targeting with nonsteroidal antiinflammatory drugs (NSAIDs) and COX-2 selective inhibitors has been investigated for years with promising results at both preventive and therapeutic levels, undesirable side effects and the limited understanding of the regulation and functionalities of the COX pathway compromise a more extensive application of these drugs. Epigenetics is bringing additional levels of complexity to the understanding of basic biological and pathological processes. The deregulation of signaling and biosynthetic pathways by epigenetic mechanisms may account for new molecular targets in cancer therapeutics. Genes of the COX pathway are seldom mutated in neoplastic cells, but a large proportion of them show aberrant expression in different types of cancer. A growing body of evidence indicates that epigenetic alterations play a critical role in the deregulation of the genes of the COX pathway. This review summarizes the current knowledge on the contribution of epigenetic processes to the deregulation of the COX pathway in cancer, getting insights into how these alterations may be relevant for the clinical management of patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号