首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Genomics》2020,112(2):1419-1424
Brassica crops face a combination of different abiotic and biotic stresses in the field that can reduce plant growth and development by affecting biochemical and morpho-physiological processes. Emerging evidence suggests that non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long ncRNAs (lncRNAs), play a significant role in the modulation of gene expression in response to plant stresses. Recent advances in computational and experimental approaches are of great interest for identifying and functionally characterizing ncRNAs. While progress in this field is limited, numerous ncRNAs involved in the regulation of gene expression in response to stress have been reported in Brassica. In this review, we summarize the modes of action and functions of stress-related miRNAs and lncRNAs in Brassica as well as the approaches used to identify ncRNAs.  相似文献   

3.
4.
cAMP反应元件结合蛋白(cAMP responsive element binding protein, CREB)是亮氨酸拉链家族转录因子。新近研究发现,其在肿瘤组织中的表达显著高于癌旁,被认为是体内的原癌基因之一。非编码RNA(non-coding RNA, ncRNA)是生物体内不能翻译成蛋白质的RNA,主要包括微小RNA(microRNA, miRNA)和长链非编码RNA(long non-coding RNA, lncRNA)等,其异常表达与肿瘤的发生发展密切相关,是目前肿瘤研究的热点。研究表明,CREB与ncRNA之间存在互动效应,并且二者之间的相互作用影响肿瘤的发生发展,然而miRNA和lncRNA的作用机制却不相同。肿瘤细胞内高表达的CREB在影响下游靶基因表达时能够正调控miRNA,而对lncRNA则有促进和抑制两方面的作用。反之,肿瘤细胞中一些低表达的miRNA能促进CREB的表达;有趣的是,高表达的lncRNA能够促进CREB的表达和诱导其活性增强。在影响下游靶基因表达时miRNA仅仅发挥抑制作用,而lncRNA则分别具有促进和抑制作用。本文结合我们的系列报道和最新的研究结果,对ncRNA与CREB的互动效应及其与肿瘤的发生发展之间的关系作一综述。  相似文献   

5.
6.
7.
8.
9.
10.
Long noncoding RNAs (lncRNAs) serve as competitive endogenous RNAs (ceRNAs) that play significant regulatory roles in the pathogenesis of tumors. However, the role of lncRNAs, especially the lncRNA-related ceRNA regulatory network, in glioblastoma (GBM) has not been fully elucidated. The goal of the current study was to construct lncRNA-microRNA-mRNA-related ceRNA networks for further investigation of their mechanism of action in GBM. We downloaded data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases and identified differential lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) associated with GBM. A ceRNA network was constructed and analyzed to examine the relationship between lncRNAs and patients’ overall survival. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGGs) were used to analyze the related mRNAs to indirectly explain the mechanism of action of lncRNAs. The potential effective drugs for the treatment of GBM were identified using the connectivity map (CMap). After integrated analysis, we obtained a total of 210 differentially expressed lncRNAs, 90 differentially expressed miRNAs, and 2508 differentially expressed mRNAs (DEmRNAs) from the TCGA and GEO databases. Using these differential genes, we constructed a lncRNA-associated ceRNA network. Six lncRNAs in the ceRNA network were associated with the overall survival of patients with GBM. Through KEGG analysis, it was found that the DEmRNAs involved in the network are related to cancer-associated pathways, for instance, mitogen-activated protein kinase and Ras signaling pathways. CMap analysis revealed four small-molecule compounds that could be used as drugs for the treatment of GBM. In this study, a multi-database joint analysis was used to construct a lncRNA-related ceRNA network to help identify the regulatory functions of lncRNAs in the pathogenesis of GBM.  相似文献   

11.
12.
Vascular injury, remodeling, as well as angiogenesis, are the leading causes of coronary or cerebrovascular disease. The blood vessel functional imbalance trends to induce atherosclerosis, hypertension, and pulmonary arterial hypertension. As several genes have been identified to be dynamically regulated during vascular injury and remodeling, it is becoming widely accepted that several types of non-coding RNA, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are involved in regulating the endothelial cell and vascular smooth muscle cell (VSMC) behaviors. Here, we review the progress of the extant studies on mechanistic, clinical and diagnostic implications of miRNAs and lncRNAs in vascular injury and remodeling, as well as angiogenesis, emphasizing the important roles of miRNAs and lncRNAs in vascular diseases. Furthermore, we introduce the interaction between miRNAs and lncRNAs, and highlight the mechanism through which lncRNAs are regulating the miRNA function. We envisage that continuous in-depth research of non-coding RNAs in vascular disease will have significant implications for the treatment of coronary or cerebrovascular diseases.  相似文献   

13.
14.
15.
Abstract

Gastric cancer (GC) is the second leading cause of cancer-related deaths in the world. Due to the shortage of adequate symptoms in the early stages, it is diagnosed when the tumor has spread to distant organs. Early recognition of GC enhances the chance of successful treatment. Molecular mechanisms of GC are still poorly understood. LncRNAs are emerging as new players in cancer in both oncogene and tumor suppressor roles. High-throughput technologies such as RNA-Seq, have revealed thousands of lncRNAs which are dysregulated in GC. In this study, we retrieved lncRNAs obtained by High-throughput technologies from OncoLnc database. Consequently, retrieved lncRNAs were compared in literature-based databases including PubMed. As a result, two lists, including experimentally validated lncRNAs and predicted lncRNAs were provided. We found 43 predicted lncRNAs that had not been experimentally validated in GC, so far. Further Bioinformatics analyses were performed to obtain the expression profile of predicted lncRNAs in tumor and normal tissues. Also, the roles and targets of predicted lncRNAs in GC were identified by related databases. Finally, using the GEPIA database was reviewed the significant relationship of predicted lncRNAs with the survival of GC patients. By recognizing the lncRNAs involved in initiation and progression of GC, they may be considered as potential biomarkers in the GC early diagnosis or targeted treatment and lead to novel therapeutic strategies.

Communicated by Ramaswamy H. Sarma  相似文献   

16.

Introduction

In addition to the well-known short noncoding RNAs such as microRNAs (miRNAs), increasing evidence suggests that long noncoding RNAs (lncRNAs) act as key regulators in a wide aspect of biologic processes. Dysregulated expression of lncRNAs has been demonstrated being implicated in a variety of human diseases. However, little is known regarding the role of lncRNAs with regards to intervertebral disc degeneration (IDD). In the present study we aimed to determine whether lncRNAs are differentially expressed in IDD.

Methods

An lncRNA-mRNA microarray analysis of human nucleus pulposus (NP) was employed. Bioinformatics prediction was also applied to delineate the functional roles of the differentially expressed lncRNAs. Several lncRNAs and mRNAs were chosen for quantitative real-time PCR (qRT-PCR) validation.

Results

Microarray data profiling indicated that 116 lncRNAs (67 up and 49 down) and 260 mRNAs were highly differentially expressed with an absolute fold change greater than ten. Moreover, 1,052 lncRNAs and 1,314 mRNAs were differentially expressed in the same direction in at least four of the five degenerative samples with fold change greater than two. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for the differentially expressed mRNAs indicated a number of pathways, such as extracellular matrix (ECM)-receptor interaction. A coding-noncoding gene co-expression (CNC) network was constructed for the ten most significantly changed lncRNAs. Annotation terms of the coexpressed mRNAs were related to several known degenerative alterations, such as chondrocyte differentiation. Moreover, lncRNAs belonging to a particular subgroup were identified. Functional annotation for the corresponding nearby coding genes showed that these lncRNAs were mainly associated with cell migration and phosphorylation. Interestingly, we found that Fas-associated protein factor-1 (FAF1), which potentiates the Fas-mediated apoptosis and its nearby enhancer-like lncRNA RP11-296A18.3, were highly expressed in the degenerative discs. Subsequent qRT-PCR results confirmed the changes.

Conclusions

This is the first study to demonstrate that aberrantly expressed lncRNAs play a role in the development of IDD. Our study noted that up-regulated RP11-296A18.3 highly likely induced the over-expression of FAF1, which eventually promoted the aberrant apoptosis of disc cells. Such findings further broaden the understanding of the etiology of IDD.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-014-0465-5) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
Esophageal cancer is the seventh most common cancer worldwide. Although a number of environmental and lifestyle-related risk factors have been identified for this kind of cancer, the exact molecular mechanisms of tumor evolution have not been clarified yet. Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) as important regulators of gene expression and chromatin configuration have essential roles in the pathogenesis of esophageal cancer. They have been shown to alter the function of cancer-related signaling pathways such as phosphoinositide 3-kinase/protein kinase B and Wnt pathway, thus they might modulate the response of patients to pathway-targeted therapies. Moreover, a number of lncRNAs, such as AFAP1-AS1, UCA1, HOTAIR, LOC285194, and TUSC7, are involved in conferring chemoresistant/radioresistant in esophageal cancer cells. A complex network of interaction exists between lncRNAs and miRNAs in the context of esophageal cancer. Finally, various panels of lncRNAs and miRNAs have been introduced that can predict the survival of esophageal cancer patients. In this review article, we summarize the recent findings regarding the role of miRNAs and lncRNAs in the pathogenesis of esophageal cancer with the special focus on their regulatory roles on signaling pathways, their potential as diagnostic/prognostic markers, and their relevance with therapeutic response.  相似文献   

19.
Eukaryotic mRNA metabolism regulates its stability, localization, and translation using complementarity with counter-part RNAs. To modulate their stability, small and long noncoding RNAs can establish complementarity with their target mRNAs. Although complementarity of small interfering RNAs and microRNAs with target mRNAs has been studied thoroughly, partial complementarity of long noncoding RNAs (lncRNAs) with their target mRNAs has not been investigated clearly. To address that research gap, our lab investigated whether the sequence complementarity of two lncRNAs, lincRNA-p21 and OIP5-AS1, influenced the quantity of target RNA expression. We predicted a positive correlation between lncRNA complementarity and target mRNA quantity. We confirmed this prediction using RNA affinity pull down, microarray, and RNA-sequencing analysis. In addition, we utilized the information from this analysis to compare the quantity of target mRNAs when two lncRNAs, lincRNA-p21 and OIP5-AS1, are depleted by siRNAs. We observed that human and mouse lincRNA-p21 regulated target mRNA abundance in complementarity-dependent and independent manners. In contrast, affinity pull down of OIP5-AS1 revealed that changes in OIP5-AS1 expression influenced the amount of some OIP5-AS1 target mRNAs and miRNAs, as we predicted from our sequence complementarity assay. Altogether, the current study demonstrates that partial complementarity of lncRNAs and mRNAs (even miRNAs) assist in determining target RNA expression and quantity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号