首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patients with signs of COVID-19 were tested through diagnostic RT-PCR for SARS-CoV-2 using RNA extracted from the nasopharyngeal/nasal swabs.To determine the variants of SARS-CoV-2 circulating in the state of Nevada,specimens from 200 COVID-19 patients were sequenced through our robust sequencing platform,which enabled sequencing of SARS-CoV-2 from specimens with even very low viral loads,without the need of culture-based amplification.High genome coverage allowed the identification of single and multi-nucleotide variants in SARS-CoV-2 in the community and their phylogenetic relationships with other variants present during the same period of the outbreak.We report the occurrence of a novel mutation at 323aa (314aa of orf1b) of nsp12 (RNA-dependent RNA polymerase) changed to phenylalanine(F) from proline (P),in the first reported isolate of SARS-CoV-2,Wuhan-Hu-1.This 323F variant was present at a very high frequency in Northern Nevada.Structural modeling determined this mutation in the interface domain,which is important for the association of accessory proteins required for the polymerase.In conclusion,we report the introduction of specific SARS-CoV-2 variants at very high frequency in distinct geographic locations,which is important for understanding the evolution and circulation of SARS-CoV-2variants of public health importance,while it circulates in humans.  相似文献   

2.
Massively parallel sequencing (MPS) technologies, such as 454-pyrosequencing, allow for the identification of variants in sequence populations at lower levels than consensus sequencing and most single-template Sanger sequencing experiments. We sought to determine if the greater depth of population sampling attainable using MPS technology would allow detection of minor variants in HIV founder virus populations very early in infection in instances where Sanger sequencing detects only a single variant. We compared single nucleotide polymorphisms (SNPs) during acute HIV-1 infection from 32 subjects using both single template Sanger and 454-pyrosequencing. Pyrosequences from a median of 2400 viral templates per subject and encompassing 40% of the HIV-1 genome, were compared to a median of five individually amplified near full-length viral genomes sequenced using Sanger technology. There was no difference in the consensus nucleotide sequences over the 3.6kb compared in 84% of the subjects infected with single founders and 33% of subjects infected with multiple founder variants: among the subjects with disagreements, mismatches were found in less than 1% of the sites evaluated (of a total of nearly 117,000 sites across all subjects). The majority of the SNPs observed only in pyrosequences were present at less than 2% of the subject’s viral sequence population. These results demonstrate the utility of the Sanger approach for study of early HIV infection and provide guidance regarding the design, utility and limitations of population sequencing from variable template sources, and emphasize parameters for improving the interpretation of massively parallel sequencing data to address important questions regarding target sequence evolution.  相似文献   

3.
Since entering the human population, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2; the causative agent of Coronavirus Disease 2019 [COVID-19]) has spread worldwide, causing >100 million infections and >2 million deaths. While large-scale sequencing efforts have identified numerous genetic variants in SARS-CoV-2 during its circulation, it remains largely unclear whether many of these changes impact adaptation, replication, or transmission of the virus. Here, we characterized 14 different low-passage replication-competent human SARS-CoV-2 isolates representing all major European clades observed during the first pandemic wave in early 2020. By integrating viral sequencing data from patient material, virus stocks, and passaging experiments, together with kinetic virus replication data from nonhuman Vero-CCL81 cells and primary differentiated human bronchial epithelial cells (BEpCs), we observed several SARS-CoV-2 features that associate with distinct phenotypes. Notably, naturally occurring variants in Orf3a (Q57H) and nsp2 (T85I) were associated with poor replication in Vero-CCL81 cells but not in BEpCs, while SARS-CoV-2 isolates expressing the Spike D614G variant generally exhibited enhanced replication abilities in BEpCs. Strikingly, low-passage Vero-derived stock preparation of 3 SARS-CoV-2 isolates selected for substitutions at positions 5/6 of E and were highly attenuated in BEpCs, revealing a key cell-specific function to this region. Rare isolate-specific deletions were also observed in the Spike furin cleavage site during Vero-CCL81 passage, but these were rapidly selected against in BEpCs, underscoring the importance of this site for SARS-CoV-2 replication in primary human cells. Overall, our study uncovers sequence features in SARS-CoV-2 variants that determine cell-specific replication and highlights the need to monitor SARS-CoV-2 stocks carefully when phenotyping newly emerging variants or potential variants of concern.

SARS-CoV-2 variants have appeared throughout the emergence of the current COVID-19 pandemic. In this study, characterization of a panel of infectious SARS-CoV-2 isolates in primary human respiratory cells allows the identification of important sequence features that contribute to virus replication.  相似文献   

4.
《PLoS biology》2021,19(5)
With the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants that may increase transmissibility and/or cause escape from immune responses, there is an urgent need for the targeted surveillance of circulating lineages. It was found that the B.1.1.7 (also 501Y.V1) variant, first detected in the United Kingdom, could be serendipitously detected by the Thermo Fisher TaqPath COVID-19 PCR assay because a key deletion in these viruses, spike Δ69–70, would cause a “spike gene target failure” (SGTF) result. However, a SGTF result is not definitive for B.1.1.7, and this assay cannot detect other variants of concern (VOC) that lack spike Δ69–70, such as B.1.351 (also 501Y.V2), detected in South Africa, and P.1 (also 501Y.V3), recently detected in Brazil. We identified a deletion in the ORF1a gene (ORF1a Δ3675–3677) in all 3 variants, which has not yet been widely detected in other SARS-CoV-2 lineages. Using ORF1a Δ3675–3677 as the primary target and spike Δ69–70 to differentiate, we designed and validated an open-source PCR assay to detect SARS-CoV-2 VOC. Our assay can be rapidly deployed in laboratories around the world to enhance surveillance for the local emergence and spread of B.1.1.7, B.1.351, and P.1.

Surveillance for SARS-CoV-2 variants is very important, but sequencing is not always practical or affordable. This study presents a multiplex qPCR that is able to distinguish among different SARS-CoV-2 variants of concern that are currently circulating.  相似文献   

5.
Vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have been highly efficient in protecting against Coronavirus Disease 2019 (COVID-19). However, the emergence of viral variants that are more transmissible and, in some cases, escape from neutralizing antibody responses has raised concerns. Here, we evaluated recombinant protein spike antigens derived from wild-type SARS-CoV-2 and from variants B.1.1.7, B.1.351, and P.1 for their immunogenicity and protective effect in vivo against challenge with wild-type SARS-CoV-2 in the mouse model. All proteins induced high neutralizing antibodies against the respective viruses but also induced high cross-neutralizing antibody responses. The decline in neutralizing titers between variants was moderate, with B.1.1.7-vaccinated animals having a maximum fold reduction of 4.8 against B.1.351 virus. P.1 induced the most cross-reactive antibody responses but was also the least immunogenic in terms of homologous neutralization titers. However, all antigens protected from challenge with wild-type SARS-CoV-2 in a mouse model.

This study explores the immune response induced by wild type and variant SARS-CoV-2 spike proteins, and the protection that these immune responses provide against challenge with wild type virus in the mouse model.  相似文献   

6.
In-depth analysis of SARS-CoV-2 quasispecies is pivotal for a thorough understating of its evolution during infection. The recent deployment of COVID-19 vaccines, which elicit protective anti-spike neutralizing antibodies, has stressed the importance of uncovering and characterizing SARS-CoV-2 variants with mutated spike proteins. Sequencing databases have allowed to follow the spread of SARS-CoV-2 variants that are circulating in the human population, and several experimental platforms were developed to study these variants. However, less is known about the SARS-CoV-2 variants that are developed in the respiratory system of the infected individual. To gain further insight on SARS-CoV-2 mutagenesis during natural infection, we preformed single-genome sequencing of SARS-CoV-2 isolated from nose-throat swabs of infected individuals. Interestingly, intra-host SARS-CoV-2 variants with mutated S genes or N genes were detected in all individuals who were analyzed. These intra-host variants were present in low frequencies in the swab samples and were rarely documented in current sequencing databases. Further examination of representative spike variants identified by our analysis showed that these variants have impaired infectivity capacity and that the mutated variants showed varied sensitivity to neutralization by convalescent plasma and to plasma from vaccinated individuals. Notably, analysis of the plasma neutralization activity against these variants showed that the L1197I mutation at the S2 subunit of the spike can affect the plasma neutralization activity. Together, these results suggest that SARS-CoV-2 intra-host variants should be further analyzed for a more thorough characterization of potential circulating variants.  相似文献   

7.
To date we have little knowledge of how accurate next-generation sequencing (NGS) technologies are in sequencing repetitive sequences beyond known limitations to accurately sequence homopolymers. Only a handful of previous reports have evaluated the potential of NGS for sequencing short tandem repeats (microsatellites) and no empirical study has compared and evaluated the performance of more than one NGS platform with the same dataset. Here we examined yeast microsatellite variants from both long-read (454-sequencing) and short-read (Illumina) NGS platforms and compared these to data derived through Sanger sequencing. In addition, we investigated any locus-specific biases and differences that might have resulted from variability in microsatellite repeat number, repeat motif or type of mutation. Out of 112 insertion/deletion variants identified among 45 microsatellite amplicons in our study, we found 87.5% agreement between the 454-platform and Sanger sequencing in frequency of variant detection after Benjamini-Hochberg correction for multiple tests. For a subset of 21 microsatellite amplicons derived from Illumina sequencing, the results of short-read platform were highly consistent with the other two platforms, with 100% agreement with 454-sequencing and 93.6% agreement with the Sanger method after Benjamini-Hochberg correction. We found that the microsatellite attributes copy number, repeat motif and type of mutation did not have a significant effect on differences seen between the sequencing platforms. We show that both long-read and short-read NGS platforms can be used to sequence short tandem repeats accurately, which makes it feasible to consider the use of these platforms in high-throughput genotyping. It appears the major requirement for achieving both high accuracy and rare variant detection in microsatellite genotyping is sufficient read depth coverage. This might be a challenge because each platform generates a consistent pattern of non-uniform sequence coverage, which, as our study suggests, may affect some types of tandem repeats more than others.  相似文献   

8.
Mink, on a farm with about 15,000 animals, became infected with SARS-CoV-2. Over 75% of tested animals were positive for SARS-CoV-2 RNA in throat swabs and 100% of tested animals were seropositive. The virus responsible had a deletion of nucleotides encoding residues H69 and V70 within the spike protein gene as well as the A22920T mutation, resulting in the Y453F substitution within this protein, seen previously in mink. The infected mink recovered and after free-testing of 300 mink (a level giving 93% confidence of detecting a 1% prevalence), the animals remained seropositive. During further follow-up studies, after a period of more than 2 months without any virus detection, over 75% of tested animals again scored positive for SARS-CoV-2 RNA. Whole genome sequencing showed that the viruses circulating during this re-infection were most closely related to those identified in the first outbreak on this farm but additional sequence changes had occurred. Animals had much higher levels of anti-SARS-CoV-2 antibodies in serum samples after the second round of infection than at free-testing or during recovery from initial infection, consistent with a boosted immune response. Thus, it was concluded that following recovery from an initial infection, seropositive mink were readily re-infected by SARS-CoV-2.  相似文献   

9.
BackgroundThe SARS-CoV-2 pandemic has forced health authorities across the world to take important decisions to curtail its spread. Genomic epidemiology has emerged as a valuable tool to understand introductions and spread of the virus in a specific geographic location.Methodology/Principal findingsHere, we report the sequences of 59 SARS-CoV-2 samples from inhabitants of the Colombian Amazonas department. The viral genomes were distributed in two robust clusters within the distinct GISAID clades GH and G. Spatial-temporal analyses revealed two independent introductions of SARS-CoV-2 in the region, one around April 1, 2020 associated with a local transmission, and one around April 2, 2020 associated with other South American genomes (Uruguay and Brazil). We also identified ten lineages circulating in the Amazonas department including the P.1 variant of concern (VOC).Conclusions/SignificanceThis study represents the first genomic epidemiology investigation of SARS-CoV-2 in one of the territories with the highest report of indigenous communities of the country. Such findings are essential to decipher viral transmission, inform on global spread and to direct implementation of infection prevention and control measures for these vulnerable populations, especially, due to the recent circulation of one of the variants of concern (P.1) associated with major transmissibility and possible reinfections.  相似文献   

10.
Fluorescent dye terminator Sanger sequencing (FTSS), with detection by automated capillary electrophoresis (CE), has long been regarded as the gold standard for variant detection. However, software analysis and base-calling algorithms used to detect mutations were largely optimized for resequencing applications in which different alleles were expected as heterozygous mixtures of 50%. Increasingly, the requirements for variant detection are an analytic sensitivity for minor alleles of <20%, in particular, when assessing the mutational status of heterogeneous tumor samples. Here, we describe a simple modification to the FTSS workflow that improves the limit of detection of cell-line gDNA mixtures from 50%-20% to 5% for G>A transitions and from 50%-5% to 5% for G>C and G>T transversions. In addition, we use two different sample types to compare the limit of detection of sequence variants in codons 12 and 13 of the KRAS gene between Sanger sequencing and other methodologies including shifted termination assay (STA) detection, single-base extension (SBE), pyrosequencing (PS), high- resolution melt (HRM), and real-time PCR (qPCR).  相似文献   

11.
The aim of this study is to investigate the circulating variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Athens and from rural areas in Greece during July and August 2021. We also present a rapid review of literature regarding significant SARS-CoV-2 mutations and their impact on public health. A total of 2500 nasopharyngeal swab specimens were collected from suspected COVID-19 cases (definition by WHO 2021b). Viral nucleic acid extraction was implemented using an automatic extractor and the RNA recovered underwent qRT-PCR in order to characterize the specimens as positive or negative for SARS-CoV-2. The positive specimens were then used to identify specific Spike gene mutations and characterize the emerging SARS-CoV-2 variants. For this step, various kits were utilized. From the 2500 clinical specimens, 220 were tested positive for SARS-CoV-2 indicating a prevalence of 8.8% among suspected cases. The RT-PCR Ct (Cycle threshold) Value ranged from 19 to 25 which corresponds to medium to high copy numbers of the virus in the positive samples. From the 220 positive specimens 148 (67.3%) were from Athens and 72 (32.7%) from Greek rural areas. As far as the Spike mutations investigated: N501Y appeared in all the samples, D614G mutation appeared in 212 (96.4%) samples with a prevalence of 87.2% in Athens and 98.6% in the countryside, E484K had a prevalence of 10.8% and 12.5% in Athens and the rural areas, respectively. K417N was found in 18 (12.2%) samples from Athens and four (5.6%) from the countryside, P681H was present in 51 (34.5%) Athenian specimens and 14 (19.4%) specimens from rural areas, HV69-70 was carried in 32.4% and 19.4% of the samples from Athens and the countryside, respectively. P681R had a prevalence of 87.2% in Athens and 98.6% in rural areas, and none of the specimens carried the L452R mutation. 62 (28.2%) samples carried the N501Y, P681H, D614G and HV69-70 mutations simultaneously and the corresponding variant was characterized as the Alpha (UK) variant (B 1.1.7). Only six (2.7%) samples from the center of Athens had the N501Y, E484K, K417N and D614G mutations simultaneously and the virus responsible was characterized as the Beta (South African) variant (B 1.351). Our study explored the SARS-CoV-2 variants using RT-PCR in a representative cohort of samples collected from Greece in July and August 2021. The prevalent mutations identified were N501Y (100%), D614G (96.4%), P681R (90.1%) and the variants identified were the Delta (90.1%), Alpha (28.2%) and Beta (2.7%).  相似文献   

12.
To date, very large scale sequencing of many clinically important RNA viruses has been complicated by their high population molecular variation, which creates challenges for polymerase chain reaction and sequencing primer design. Many RNA viruses are also difficult or currently not possible to culture, severely limiting the amount and purity of available starting material. Here, we describe a simple, novel, high-throughput approach to Norovirus and Hepatitis C virus whole genome sequence determination based on RNA shotgun sequencing (also known as RNA-Seq). We demonstrate the effectiveness of this method by sequencing three Norovirus samples from faeces and two Hepatitis C virus samples from blood, on an Illumina MiSeq benchtop sequencer. More than 97% of reference genomes were recovered. Compared with Sanger sequencing, our method had no nucleotide differences in 14,019 nucleotides (nt) for Noroviruses (from a total of 2 Norovirus genomes obtained with Sanger sequencing), and 8 variants in 9,542 nt for Hepatitis C virus (1 variant per 1,193 nt). The three Norovirus samples had 2, 3, and 2 distinct positions called as heterozygous, while the two Hepatitis C virus samples had 117 and 131 positions called as heterozygous. To confirm that our sample and library preparation could be scaled to true high-throughput, we prepared and sequenced an additional 77 Norovirus samples in a single batch on an Illumina HiSeq 2000 sequencer, recovering >90% of the reference genome in all but one sample. No discrepancies were observed across 118,757 nt compared between Sanger and our custom RNA-Seq method in 16 samples. By generating viral genomic sequences that are not biased by primer-specific amplification or enrichment, this method offers the prospect of large-scale, affordable studies of RNA viruses which could be adapted to routine diagnostic laboratory workflows in the near future, with the potential to directly characterize within-host viral diversity.  相似文献   

13.
A new variant of concern for SARS-CoV-2,Omicron(B.1.1.529),was designated by the World Health Organization on November 26,2021.This study analyzed the viral genome sequencing data of 108 samples collected from patients infected with Omicron.First,we found that the enrichment efficiency of viral nucleic acids was reduced due to mutations in the region where the primers anneal to.Second,the Omicron variant possesses an excessive number of mutations compared to other variants circulating at the sam...  相似文献   

14.
Common variants, such as those identified by genome-wide association scans, explain only a small proportion of trait variation. Growing evidence suggests that rare functional variants, which are usually missed by genome-wide association scans, play an important role in determining the phenotype. We used pooled multiplexed next-generation sequencing and a customized analysis workflow to detect mutations in five candidate genes for lignin biosynthesis in 768 pooled Populus nigra accessions. We identified a total of 36 non-synonymous single nucleotide polymorphisms, one of which causes a premature stop codon. The most common variant was estimated to be present in 672 of the 1536 tested chromosomes, while the rarest was estimated to occur only once in 1536 chromosomes. Comparison with individual Sanger sequencing in a selected sub-sample confirmed that variants are identified with high sensitivity and specificity, and that the variant frequency was estimated accurately. This proposed method for identification of rare polymorphisms allows accurate detection of variation in many individuals, and is cost-effective compared to individual sequencing.  相似文献   

15.
Analysis of SARS-CoV-2 genetic diversity within infected hosts can provide insight into the generation and spread of new viral variants and may enable high resolution inference of transmission chains. However, little is known about temporal aspects of SARS-CoV-2 intrahost diversity and the extent to which shared diversity reflects convergent evolution as opposed to transmission linkage. Here we use high depth of coverage sequencing to identify within-host genetic variants in 325 specimens from hospitalized COVID-19 patients and infected employees at a single medical center. We validated our variant calling by sequencing defined RNA mixtures and identified viral load as a critical factor in variant identification. By leveraging clinical metadata, we found that intrahost diversity is low and does not vary by time from symptom onset. This suggests that variants will only rarely rise to appreciable frequency prior to transmission. Although there was generally little shared variation across the sequenced cohort, we identified intrahost variants shared across individuals who were unlikely to be related by transmission. These variants did not precede a rise in frequency in global consensus genomes, suggesting that intrahost variants may have limited utility for predicting future lineages. These results provide important context for sequence-based inference in SARS-CoV-2 evolution and epidemiology.  相似文献   

16.
The continuously arising of SARS-CoV-2 variants has been posting a great threat to public health safety globally, from B.1.17 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta) to B.1.1.529 (Omicron). The emerging or reemerging of the SARS-CoV-2 variants of concern is calling for the constant monitoring of their epidemics, pathogenicity and immune escape. In this study, we aimed to characterize replication and pathogenicity of the Alpha and Delta variant strains isolated from patients infected in Laos. The amino acid mutations within the spike fragment of the isolates were determined via sequencing. The more efficient replication of the Alpha and Delta isolates was documented than the prototyped SARS-CoV-2 in Calu-3 and Caco-2 cells, while such features were not observed in Huh-7, Vero E6 and HPA-3 cells. We utilized both animal models of human ACE2 (hACE2) transgenic mice and hamsters to evaluate the pathogenesis of the isolates. The Alpha and Delta can replicate well in multiple organs and cause moderate to severe lung pathology in these animals. In conclusion, the spike protein of the isolated Alpha and Delta variant strains was characterized, and the replication and pathogenicity of the strains in the cells and animal models were also evaluated.  相似文献   

17.
Mutations in mitochondrial DNA (mtDNA) may cause maternally-inherited cardiomyopathy and heart failure. In homoplasmy all mtDNA copies contain the mutation. In heteroplasmy there is a mixture of normal and mutant copies of mtDNA. The clinical phenotype of an affected individual depends on the type of genetic defect and the ratios of mutant and normal mtDNA in affected tissues. We aimed at determining the sensitivity of next-generation sequencing compared to Sanger sequencing for mutation detection in patients with mitochondrial cardiomyopathy. We studied 18 patients with mitochondrial cardiomyopathy and two with suspected mitochondrial disease. We “shotgun” sequenced PCR-amplified mtDNA and multiplexed using a single run on Roche''s 454 Genome Sequencer. By mapping to the reference sequence, we obtained 1,300× average coverage per case and identified high-confidence variants. By comparing these to >400 mtDNA substitution variants detected by Sanger, we found 98% concordance in variant detection. Simulation studies showed that >95% of the homoplasmic variants were detected at a minimum sequence coverage of 20× while heteroplasmic variants required >200× coverage. Several Sanger “misses” were detected by 454 sequencing. These included the novel heteroplasmic 7501T>C in tRNA serine 1 in a patient with sudden cardiac death. These results support a potential role of next-generation sequencing in the discovery of novel mtDNA variants with heteroplasmy below the level reliably detected with Sanger sequencing. We hope that this will assist in the identification of mtDNA mutations and key genetic determinants for cardiomyopathy and mitochondrial disease.  相似文献   

18.
Detection of pathogens with single-nucleotide variations is indispensable for the disease tracing, but remains technically challenging. The D614G mutation in the SARS-CoV-2 spike protein is known to markedly enhance viral infectivity but is difficult to detect. Here, we report an effective approach called “synthetic mismatch integrated crRNA guided Cas12a detection” (symRNA-Cas12a) to detect the D614 and G614 variants effectively. Using this method, we systemically screened a pool of crRNAs that contain all the possible nucleotide substitutions covering the -2 to +2 positions around the mutation and identify one crRNA that can efficiently increase the detection specificity by 13-fold over the ancestral crRNA. With this selected crRNA, the symRNA-Cas12a assay can detect as low as 10 copies of synthetic mutant RNA and the results are confirmed to be accurate by Sanger sequencing. Overall, we have developed the symRNA-Cas12a method to specifically, sensitively and rapidly detect the SARS-CoV-2 D614G mutation.  相似文献   

19.
The pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is far from being controlled despite the great effort that have been taken throughout the world. Herd immunity through vaccination is our major expectation to rein the virus. However, the emergence of widespread genetic variants could potentially undermine the vaccines. The evidence that some variants could evade immune responses elicited by vaccines and previous infection is growing. In this review, we summarized the current understanding on five notable genetic variants, i.e., D614G, Cluster 5, VOC 202012/01, 501Y.V2 and P.1, and discussed the potential impact of these variants on the virus transmission, pathogenesis and vaccine efficacy. We also highlight that mutations in the N-terminal domain of spike protein should be considered when evaluating the antibody neutralization abilities. Among these genetic variants, a concern of genetic variant 501Y.V2 to escape the protection by vaccines was raised. We therefore call for new vaccines targeting this variant to be developed.  相似文献   

20.
MiST is a novel approach to variant calling from deep sequencing data, using the inverted mapping approach developed for Geoseq. Reads that can map to a targeted exonic region are identified using exact matches to tiles from the region. The reads are then aligned to the targets to discover variants. MiST carefully handles paralogous reads that map ambiguously to the genome and clonal reads arising from PCR bias, which are the two major sources of errors in variant calling. The reduced computational complexity of mapping selected reads to targeted regions of the genome improves speed, specificity and sensitivity of variant detection. Compared with variant calls from the GATK platform, MiST showed better concordance with SNPs from dbSNP and genotypes determined by an exonic-SNP array. Variant calls made only by MiST confirm at a high rate (>90%) by Sanger sequencing. Thus, MiST is a valuable alternative tool to analyse variants in deep sequencing data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号