首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is becoming increasingly evident that the mitochondrial genome may play a key role in neurodegenerative diseases. Mitochondrial dysfunction is characteristic of several neurodegenerative disorders, and evidence for mitochondria being a site of damage in neurodegenerative disorders is partially based on decreases in respiratory chain complex activities in Parkinson's disease, Alzheimer's disease, and Huntington's disease. Such defects in respiratory complex activities, possibly associated with oxidant/antioxidant balance perturbation, are thought to underlie defects in energy metabolism and induce cellular degeneration. Efficient functioning of maintenance and repair process seems to be crucial for both survival and physical quality of life. This is accomplished by a complex network of the so-called longevity assurance processes, which are composed of genes termed vitagenes. A promising approach for the identification of critical gerontogenic processes is represented by the hormesis-like positive effect of stress. In the present review, we discuss the role of energy thresholds in brain mitochondria and their implications in neurodegeneration. We then review the evidence for the role of oxidative stress in modulating the effects of mitochondrial DNA mutations on brain age-related disorders and also discuss new approaches for investigating the mechanisms of lifetime survival and longevity.  相似文献   

2.
Oxidative damage in the brain may lead to cognitive impairments in aged humans. Further, in age-associated neurodegenerative disease, oxidative damage may be exacerbated and associated with additional neuropathology. Epidemiological studies in humans show both positive and negative effects of the use of antioxidant supplements on healthy cognitive aging and on the risk of developing Alzheimer disease (AD). This contrasts with consistent behavioral improvements in aged rodent models. In a higher mammalian model system that naturally accumulates human-type pathology and cognitive decline (aged dogs), an antioxidant enriched diet leads to rapid learning improvements, memory improvements after prolonged treatment and cognitive maintenance. Cognitive benefits can be further enhanced by the addition of behavioral enrichment. In the brains of aged treated dogs, oxidative damage is reduced and there is some evidence of reduced AD-like neuropathology. In combination, antioxidants may be beneficial for promoting healthy brain aging and reducing the risk of neurodegenerative disease. Special issue article in honor of Dr. Akitne Mori.  相似文献   

3.
Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency). Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory.  相似文献   

4.
Alterations in the structure and organization of the aging central nervous system (CNS), and associated functional deficits, result in cognitive decline and increase susceptibility to neurodegeneration. Age-related changes to the neurovascular unit (NVU), and their consequences for cerebrovascular function, are implicated as driving cognitive impairment during aging as well as in neurodegenerative disease. The molecular events underlying these effects are incompletely characterized. Similarly, the mechanisms underlying effects of factors that reduce the impact of aging on the brain, such as physical exercise, are also opaque. A study in this issue of PLOS Biology links the NVU to cognitive decline in the aging brain and suggests a potential underlying molecular mechanism. Notably, the study further links the protective effects of chronic exercise on cognition to neurovascular integrity during aging.  相似文献   

5.
Intrauterine hypoxia is one of the most common stressors in fetuses, which can lead to abnormal brain development and permanent neurological deficits in adulthood. Neurological disorder excitotoxicity induced by hypoxia or ischemia may involve N-methyl-d-aspartate receptors (NMDARs), which are known to participate in the maturation and plasticity of developmental neurons. Inhibition of NMDARs has been reported to improve neurological outcomes in traumatic brain injuries and Alzheimer’s disease. Here, we investigated if antenatal blockade of NMDARs induced by memantine could alleviate neurodevelopmental brain damage and long-term cognitive deficits in intrauterine hypoxia rats. Pregnant rats were assigned to four groups: air control, air?+?memantine, hypoxia, and hypoxia?+?memantine. The rats were exposed to hypoxic conditions (FiO2?=?0.095–0.115) for 8 h/day (hypoxia group) or given a daily memantine injection (5 mg/kg, i.p.) before hypoxia exposure from pregnant day 19 (G19) to G20 (hypoxia?+?memantine group).The influence of NMDARs antenatal blockade by memantine on intrauterine hypoxia-induced brain developmental damage and cognitive function was then studied. Intrauterine hypoxia resulted in decreased fetal body weight, brain weight, cognitive function, hippocampal neuron numbers, and Ki-67 proliferation index in the hippocampus. Memantine preventive treatment in pregnant rats before hypoxia exposure alleviated the aforementioned damage in vivo. Excessive activation of NMDARs contributes to fetal brain developmental damage and cognitive ability impairment induced by intrauterine hypoxia, which could be alleviated by antenatal memantine preventative treatment.  相似文献   

6.
Decline in cognitive performance in old age is linked to both suboptimal neural processing in grey matter (GM) and reduced integrity of white matter (WM), but the whole-brain structure-function-cognition associations remain poorly understood. Here we apply a novel measure of GM processing–moment-to-moment variability in the blood oxygenation level-dependent signal (SDBOLD)—to study the associations between GM function during resting state, performance on four main cognitive domains (i.e., fluid intelligence, perceptual speed, episodic memory, vocabulary), and WM microstructural integrity in 91 healthy older adults (aged 60-80 years). We modeled the relations between whole-GM SDBOLD with cognitive performance using multivariate partial least squares analysis. We found that greater SDBOLD was associated with better fluid abilities and memory. Most of regions showing behaviorally relevant SDBOLD (e.g., precuneus and insula) were localized to inter- or intra-network “hubs” that connect and integrate segregated functional domains in the brain. Our results suggest that optimal dynamic range of neural processing in hub regions may support cognitive operations that specifically rely on the most flexible neural processing and complex cross-talk between different brain networks. Finally, we demonstrated that older adults with greater WM integrity in all major WM tracts had also greater SDBOLD and better performance on tests of memory and fluid abilities. We conclude that SDBOLD is a promising functional neural correlate of individual differences in cognition in healthy older adults and is supported by overall WM integrity.  相似文献   

7.
8.
Matrix metalloprotease-3 (MMP3) activation mediates the tissue plasminogen activator (tPA)-induced hemorrhagic transformation after stroke. Hyperglycemia (HG) further exacerbates this outcome. We have recently shown that HG increases MMP3 activity in the brain after stroke. However, the combined HG-tPA effect on MMP3 activation, and the mechanisms through which MMP3 is activated were not previously reported. Accordingly, this study tested the hypothesis that tPA and HG increases MMP3 activity in the brain after stroke through peroxynitrite induced tyrosine nitration. Normoglycemic and mildly hyperglycemic male Wistar rats were subjected to middle cerebral artery suture occlusion for 90 min or thromboembolic occlusion, and up to 24 h reperfusion, with and without tPA. MMP3 activity and tyrosine nitration were evaluated in brain homogenates at 24 h. Brain microvascular endothelial cells (BMVEC) were subjected to either 3 h hypoxia or 6 h OGD under either normal or high glucose conditions with or without tPA, with or without peroxynitrite scavenger, FeTPPs. MMP3 activity and MMP3 tyrosine nitration were assessed at 24 h. HG and tPA significantly increased activity and tyrosine nitration of MMP3 in the brain. In BMVECs, tPA but not HG increased MMP3 activity. Treating BMVEC with FeTPPs significantly reduced the tPA-induced increase in MMP3 activity and nitration. Augmented oxidative and nitrative stress may be potential mechanisms contributing to MMP3 activation in hyperglycemic stroke, especially with tPA administration. Peroxynitrite may be playing a critical role in mediating MMP3 activation through tyrosine nitration in hyperglycemic stroke.  相似文献   

9.
脑老化过程中伴随脑结构、功能退化和认知能力减退,其认知发展呈异质性,即发展的不均一性,有成功脑老化、正常脑老化、轻度认知功能障碍和阿尔茨海默病等状态。瘦素在不同认知状态下含量不同。研究发现,无神经病理改变的老年人群瘦素水平高,认知功能减退不明显;多数轻度认知功能障碍者瘦素水平降低;瘦素可改善阿尔茨海默病患者的认知障碍,被认为是一种潜在的认知增强剂。瘦素水平降低在脑老化认知障碍的发展中起重要作用。  相似文献   

10.
Lynch G  Bi X 《Neurochemical research》2003,28(11):1725-1734
Hypotheses about the factors controlling the rate of brain aging are usually derived from 1) correlates of maximum life span across mammals or 2) investigations into the causes of age-related neuropathologies in humans. With regard to the former, the strong correlation between metabolic rate and longevity prompted a variety of free radical hypotheses of aging. There is also evidence that brain size affects life span independently of body metabolism rates. The second approach has led to a diverse array of pathogenic mechanisms and, importantly for the development of general hypotheses, the discovery of animal analogues. The present paper discusses the possibility that age-associated lysosomal dysfunction constitutes a generalized mammalian phenomenon that accounts for specific features of the aged human brain. Immunocytochemical studies using rats and dogs have identified lysosomal changes that begin early in adulthood and are most pronounced in brain areas known to be particularly vulnerable to age-related pathogenesis in humans. Experimentally induced lysosomal dysfunction in cultured brain slices from rats and mutant mice triggers a wide array of changes associated with the aged human brain, including meganeurites and intraneuronal tangles. Finally, there is evidence that at least some forms of proteolysis decrease with increasing brain size across the mammals. The above observations lead to the suggestion that the expansion of neuronal arborizations that occurred in conjunction with increases in brain size secondarily slowed both neuronal metabolism and protein turnover. These events could have served to reduce the rate at which lysosomes (and other organelles) fail.  相似文献   

11.

Objective

To assess the relationship between cognition and brain white matter (WM) lesion distribution and frequency in patients with relapsing-remitting multiple sclerosis (RR MS).

Methods

MRI-based T2 lesion probability map (LPM) was used to assess the relevance of brain lesion location for cognitive impairment in a group of 142 consecutive patients with RRMS. Significance of voxelwise analyses was p<0.05, cluster-corrected for multiple comparisons. The Rao Brief Repeatable Battery was administered at the time of brain MRI to categorize the MS population into cognitively preserved (CP) and cognitively impaired (CI).

Results

Out of 142 RRMS, 106 were classified as CP and 36 as CI. Although the CI group had greater WM lesion volume than the CP group (p = 0.001), T2 lesions tended to be less widespread across the WM. The peak of lesion frequency was almost twice higher in CI (61% in the forceps major) than in CP patients (37% in the posterior corona radiata). The voxelwise analysis confirmed that lesion frequency was higher in CI than in CP patients with significant bilateral clusters in the forceps major and in the splenium of the corpus callosum (p<0.05, corrected). Low scores of the Symbol Digit Modalities Test correlated with higher lesion frequency in these WM regions.

Conclusions

Overall these results suggest that in MS patients, areas relevant for cognition lie mostly in the commissural fiber tracts. This supports the notion of a functional (multiple) disconnection between grey matter structures, secondary to damage located in specific WM areas, as one of the most important mechanisms leading to cognitive impairment in MS.  相似文献   

12.
13.
14.
Normal aging is associated with cognitive decline. Evidence indicates that large-scale brain networks are affected by aging; however, it has not been established whether aging has equivalent effects on specific large-scale networks. In the present study, 40 healthy subjects including 22 older (aged 60–80 years) and 18 younger (aged 22–33 years) adults underwent resting-state functional MRI scanning. Four canonical resting-state networks, including the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN) and salience network, were extracted, and the functional connectivities in these canonical networks were compared between the younger and older groups. We found distinct, disruptive alterations present in the large-scale aging-related resting brain networks: the ECN was affected the most, followed by the DAN. However, the DMN and salience networks showed limited functional connectivity disruption. The visual network served as a control and was similarly preserved in both groups. Our findings suggest that the aged brain is characterized by selective vulnerability in large-scale brain networks. These results could help improve our understanding of the mechanism of degeneration in the aging brain. Additional work is warranted to determine whether selective alterations in the intrinsic networks are related to impairments in behavioral performance.  相似文献   

15.
Neurocardiovascular instability (NCVI) refers to abnormal neural control of the cardiovascular system affecting blood pressure and heart rate behavior. Autonomic dysfunction and impaired cerebral autoregulation in aging contribute to this phenomenon characterized by hypotension and bradyarrhythmia. Ultimately, this increases the risk of falls and syncope in older people. NCVI is common in patients with neurodegenerative disorders including dementia. This review discusses the various syndromes that characterize NCVI icluding hypotension, carotid sinus hypersensitivity, postprandial hypotension and vasovagal syncope and how they may contribute to the aetiology of cognitive decline. Conversely, they may also be a consequence of a common neurodegenerative process. Regardless, recognition of their association is paramount in optimizing management of these patients.  相似文献   

16.
Activation of Protein Kinase C by Trimethyltin: Relevance to Neurotoxicity   总被引:1,自引:2,他引:1  
Abstract: The differentiated PC12 cell neuronal model was used to determine the effect of trimethyltin (TMT) on protein kinase C (PKC). Cells treated with 5–20 µ M TMT showed a partial and sustained PKC translocation within 30 min and persisted over a 24-h period. TMT treatment was accompanied by a low level of PKC down-regulation over 24 h, which was small compared with that produced by phorbol esters. Confocal imaging of differentiated PC12 cells showed that PKC translocates to the plasma membrane and the translocation is blocked by the PKC inhibitor chelerythrine (1 µ M ). Phorbol myristate-induced PKC down-regulation or inhibition with chelerythrine provided protection against TMT-induced cytotoxicity. It was concluded that TMT-induced PKC translocation and activation contribute to the cytotoxicity of TMT in differentiated PC12 cells.  相似文献   

17.
We measured the activity of cathepsin D, the major cerebral protease, in 50 separate areas of the central nervous system of adult and aged humans, using hemoglobin as the substrate. The activity showed significant regional heterogeneity, with average differences of 50-100% between the lower and higher level areas, and a more than threefold difference between the lowest and highest levels. The forebrain, midbrain, and hindbrain each had areas of high and low activity; cerebellum and cord areas were among those with low activity. Cathepsin levels tended to increase with age in about half of the areas analyzed, and the increases were significant in 14. Statistically significant decreases with aging were observed in two areas. The increases varied between 30 and 60%, and the decreases were 20%. Enzyme activity in thalamus, hypothalamus, pons, medulla, and cerebellum increased with age. In the ventrolateral medulla, which contains the major portion of the cerebral noradrenergic cells, the cathepsin D levels increased with age; in the dorsal raphe area, which contains the major portion of the cerebral serotonergic cells, the enzyme levels decreased. The change with age in human brain seems to be less than what we observed in rat brain, where activity more than doubled in most areas. The changes in enzyme levels need to be tested at more ages to establish a pattern of changes in activity throughout life.  相似文献   

18.
The authors examined the factor structure of the Knowledge of Memory Aging Questionnaire (KMAQ) [1] using confirmatory factor analysis in a lifespan sample of 933 individuals who ranged in age from 18 to 101. Participants were college students at Louisiana State University and adults from the community enrolled in the Louisiana Healthy Aging Study (LHAS). A two-factor solution was expected, consistent with the normal and pathological memory aging dimensions that comprise the KMAQ. A bi-factor solution with items loading on a general response bias factor and either a normal or pathological knowledge-specific factor showed good model fit. Knowledge scores were correlated with demographic and cognitive performance variables. Implications of these data for clinical settings and research are considered.  相似文献   

19.

Objectives

This study aimed to assess the prevalence of dementia and cognitive complaints in a cross-sectional sample of Luxembourg seniors, and to discuss the results in the societal context of high cognitive reserve resulting from multilingualism.

Methods

A population sample of 1,377 people representative of Luxembourg residents aged over 64 years was initially identified via the national social insurance register. There were three different levels of contribution: full participation in the study, partial participation, and non-participation. We examined the profiles of these three different samples so that we could infer the prevalence estimates in the Luxembourgish senior population as a whole using the prevalence estimates obtained in this study.

Results

After careful attention to the potential bias and of the possibility of underestimation, we considered the obtained prevalence estimates of 3.8% for dementia (with corresponding 95% confidence limits (CL) of 2.8% and 4.8%) and 26.1% for cognitive complaints (CL = [17.8–34.3]) as trustworthy.

Conclusion

Based on these findings, we postulate that high cognitive reserve may result in surprisingly low prevalence estimates of cognitive complaints and dementia in adults over the age of 64 years, which thereby corroborates the longer disability-free life expectancy observed in the Luxembourg population. To the best of our knowledge, this study is the first to report such Luxembourgish public health data.  相似文献   

20.
Accumulation of l -kynurenine and quinolinic acid (QUIN) in the brain occurs after either ischemic brain injury or after systemic administration of pokeweed mitogen. Although conversion of l -[13C6]tryptophan to [13C6]-QUIN has not been demonstrated in brain either from normal gerbils or from gerbils given pokeweed mitogen, direct conversion in brain tissue does occur 4 days after transient cerebral ischemia. Increased activities of enzymes distal to indoleamine-2,3-dioxygenase may determine whether l -kynurenine is converted to QUIN. One day after 10 min of cerebral ischemia, the activities of kynureninase and 3-hydroxy-3,4-dioxygenase were increased in the hippocampus, but local QUIN levels and the activities of the indoleamine-2,3-dioxygenase and kynurenine-3-hydroxylase were unchanged. By days 2 and 4 after ischemia, however, the activities of all of these enzymes in the hippocampus as well as QUIN levels were significantly increased. Kynurenine aminotransferase activity in the hippocampus was unchanged on days 1 and 2 after ischemia but was decreased on day 4, at a time when local kynurenic acid levels were unchanged. A putative precursor of QUIN, [13C6]anthranilic acid, was not converted to [13C6]-QUIN in the hippocampus of either normal or 4-day postischemic gerbils. Gerbil macrophages stimulated by endo-toxin in vitro converted l -[13C6]tryptophan to [13Ce]QUIN. Kinetic analysis of kynurenine-3-hydroxylase activity in the cerebral cortex of postischemic gerbils showed that Vmax increased, without changes in Km. Systemic administration of pokeweed mitogen increased indoleamine-2,3-dioxygenase and kynureninase activities in the brain without significant changes in kynurenine-3-hydroxylase or 3-hydroxyanthranilate-3,4-dioxygenase activities. Increases in kynurenine-3-hydroxylase activity, in conjunction with induction of indoleamine-2,3-dioxygenase, kynureninase, and 3-hydroxyanthranilate-3,4-dioxygenase in macro-phage infiltrates at the site of brain injury, may explain the ability of postischemic hippocampus to convert l -[13C6]tryptophan to [13C6]QUIN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号