首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 930 毫秒
1.
All known pseudouridine synthases have a conserved aspartic acid residue that is essential for catalysis, Asp-48 in Escherichia coli TruB. To probe the role of this residue, inactive D48C TruB was oxidized to generate the sulfinic acid cognate of aspartic acid. The oxidation restored significant but reduced catalytic activity, consistent with the proposed roles of Asp-48 as a nucleophile and general base. The family of pseudouridine synthases including TruB also has a nearly invariant histidine residue, His-43 in the E. coli enzyme. To examine the role of this conserved residue, site-directed mutagenesis was used to generate H43Q, H43N, H43A, H43G, and H43F TruB. Except for phenylalanine, the substitutions seriously impaired the enzyme, but all of the altered TruB retained significant activity. To examine the roles of Asp-48 and His-43 more fully, the pH dependences of wild-type, oxidized D48C, and H43A TruB were determined. The wild-type enzyme displays a typical bell-shaped profile. With oxidized D48C TruB, logk(cat) varies linearly with pH, suggesting the participation of specific rather than general base catalysis. Substitution of His-43 perturbs the pH profile, but it remains bell-shaped. The ascending limb of the pH profile is assigned to Asp-48, and the descending limb is tentatively ascribed to an active site tyrosine residue, the bound substrate uridine, or the bound product pseudouridine.  相似文献   

2.
Pseudouridine synthases catalyze formation of the most abundant modification of functional RNAs by site-specifically isomerizing uridines to pseudouridines. While the structure and substrate specificity of these enzymes have been studied in detail, the kinetic and the catalytic mechanism of pseudouridine synthases remain unknown. Here, the first pre-steady-state kinetic analysis of three Escherichia coli pseudouridine synthases is presented. A novel stopped-flow absorbance assay revealed that substrate tRNA binding by TruB takes place in two steps with an overall rate of 6 sec(-1). In order to observe catalysis of pseudouridine formation directly, the traditional tritium release assay was adapted for the quench-flow technique, allowing, for the first time, observation of a single round of pseudouridine formation. Thereby, the single-round rate constant of pseudouridylation (k(Ψ)) by TruB was determined to be 0.5 sec(-1). This rate constant is similar to the k(cat) obtained under multiple-turnover conditions in steady-state experiments, indicating that catalysis is the rate-limiting step for TruB. In order to investigate if pseudouridine synthases are characterized by slow catalysis in general, the rapid kinetic quench-flow analysis was also performed with two other E. coli enzymes, RluA and TruA, which displayed rate constants of pseudouridine formation of 0.7 and 0.35 sec(-1), respectively. Hence, uniformly slow catalysis might be a general feature of pseudouridine synthases that share a conserved catalytic domain and supposedly use the same catalytic mechanism.  相似文献   

3.
Escherichia coli pseudouridine synthase RluD makes pseudouridines 1911, 1915, and 1917 in the loop of helix 69 in 23S RNA. These are the most highly conserved ribosomal pseudouridines known. Of 11 pseudouridine synthases in E. coli, only cells lacking RluD have severe growth defects and abnormal ribosomes. We have determined the 2.0 A structure of the catalytic domain of RluD (residues 77-326), the first structure of an RluA family member. The catalytic domain folds into a mainly antiparallel beta-sheet flanked by several loops and helices. A positively charged cleft that presumably binds RNA leads to the conserved Asp 139. The RluD N-terminal S4 domain, connected by a flexible linker, is disordered in our structure. RluD is very similar in both catalytic domain structure and active site arrangement to the pseudouridine synthases RsuA, TruB, and TruA. We identify five sequence motifs, two of which are novel, in the RluA, RsuA, TruB, and TruA families, uniting them as one superfamily. These results strongly suggest that four of the five families of pseudouridine synthases arose by divergent evolution. The RluD structure also provides insight into its multisite specificity.  相似文献   

4.
Pseudouridine synthases catalyze the isomerization of uridine to pseudouridine (Psi) in rRNA and tRNA. The pseudouridine synthase RluF from Escherichia coli (E.C. 4.2.1.70) modifies U2604 in 23S rRNA, and belongs to a large family of pseudouridine synthases present in all kingdoms of life. Here we report the domain architecture and crystal structure of the catalytic domain of E.coli RluF at 2.6A resolution. Limited proteolysis, mass spectrometry and N-terminal sequencing indicate that RluF has a distinct domain architecture, with the catalytic domain flanked at the N and C termini by additional domains connected to it by flexible linkers. The structure of the catalytic domain of RluF is similar to those of RsuA and TruB. RluF is a member of the RsuA sequence family of Psi-synthases, along with RluB and RluE. Structural comparison of RluF with its closest structural homologues, RsuA and TruB, suggests possible functional roles for the N-terminal and C-terminal domains of RluF.  相似文献   

5.
The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine in RNA molecules. An attractive mechanism was proposed based on that of thymidylate synthase, in which the thiol(ate) group of a cysteine side chain serves as the nucleophile in a Michael addition to C6 of the isomerized uridine. Such a role for cysteine in the pseudouridine synthase TruA (also named Psi synthase I) has been discredited by site-directed mutagenesis, but sequence alignments have led to the conclusion that there are four distinct "families" of pseudouridine synthases that share no statistically significant global sequence similarity. It was, therefore, necessary to probe the role of cysteine residues in pseudouridine synthases of the families that do not include TruA. We examined the enzymes RluA and TruB, which are members of different families than TruA and each other. Substitution of cysteine for amino acids with nonnucleophilic side chains did not significantly alter the catalytic activity of either pseudouridine synthase. We conclude, therefore, that neither TruB nor RluA require thiol(ate) groups to effect catalysis, excluding their participation in a Michael addition to C6 of uridine, although not eliminating that mechanism (with an alternate nucleophile) from future consideration.  相似文献   

6.
Pseudouridine (5-beta-D-ribofuranosyluracil, Psi) is the most commonly found modified base in RNA. Conversion of uridine to Psi is performed enzymatically in both prokaryotes and eukaryotes by pseudouridine synthases (EC 4.2.1.70). The Escherichia coli Psi-synthase RluD modifies uridine to Psi at positions 1911, 1915 and 1917 within 23S rRNA. RluD also possesses a second function related to proper assembly of the 50S ribosomal subunit that is independent of Psi-synthesis. Here, we report the crystal structure of the catalytic module of RluD (residues 68-326; DeltaRluD) refined at 1.8A to a final R-factor of 21.8% (R(free)=24.3%). DeltaRluD is a monomeric enzyme having an overall mixed alpha/beta fold. The DeltaRluD molecule consists of two subdomains, a catalytic subdomain and C-terminal subdomain with the RNA-binding cleft formed by loops extending from the catalytic sub-domain. The catalytic sub-domain of DeltaRluD has a similar fold as in TruA, TruB and RsuA, with the location of the RNA-binding cleft, active-site and conserved, catalytic Asp residue superposing in all four structures. Superposition of the crystal structure of TruB bound to a T-stem loop with RluD reveals that similar RNA-protein interactions for the flipped-out uridine base would exist in both structures, implying that base-flipping is necessary for catalysis. This observation also implies that the specificity determinants for site-specific RNA-binding and recognition likely reside in parts of RluD beyond the active site.  相似文献   

7.
On the basis of sequence alignments, the pseudouridine synthases were grouped into four families that share no statistically significant global sequence similarity, though some common sequence motifs were discovered [Koonin, E. V. (1996) Nucleic Acids. Res. 24, 2411-2415; Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762]. We have investigated the functional significance of these alignments by substituting the nearly invariant lysine and proline residues in Motif I of RluA and TruB, pseudouridine synthases belonging to different families. Contrary to our expectations, the altered enzymes display only very mild kinetic impairment. Substitution of the aligned lysine and proline residues does, however, reduce structural stability, consistent with a temperature sensitive phenotype that results from substitution of the cognate proline residue in Cbf5p, a yeast homologue of TruB [Zerbarjadian, Y., King, T., Fournier, M. J., Clarke, L., and Carbon, J. (1999) Mol. Cell. Biol. 19, 7461-7472]. Together, our data support a functional role for Motif I, as predicted by sequence alignments, though the effect of substituting the highly conserved residues was milder than we anticipated. By extrapolation, our findings also support the assignment of pseudouridine synthase function to certain physiologically important eukaryotic proteins that contain Motif I, including the human protein dyskerin, alteration of which leads to the disease dyskeratosis congenita.  相似文献   

8.
Pseudouridine (Ψ) located at position 55 in tRNA is a nearly universally conserved RNA modification found in all three domains of life. This modification is catalyzed by TruB in bacteria and by Pus4 in eukaryotes, but so far the Ψ55 synthase has not been identified in archaea. In this work, we report the ability of two distinct pseudouridine synthases from the hyperthermophilic archaeon Pyrococcus furiosus to specifically modify U55 in tRNA in vitro. These enzymes are pfuCbf5, a protein known to play a role in RNA-guided modification of rRNA, and pfuPsuX, a previously uncharacterized enzyme that is not a member of the TruB/Pus4/Cbf5 family of pseudouridine synthases. pfuPsuX is hereafter renamed pfuPus10. Both enzymes specifically modify tRNA U55 in vitro but exhibit differences in substrate recognition. In addition, we find that in a heterologous in vivo system, pfuPus10 efficiently complements an Escherichia coli strain deficient in the bacterial Ψ55 synthase TruB. These results indicate that it is probable that pfuCbf5 or pfuPus10 (or both) is responsible for the introduction of pseudouridine at U55 in tRNAs in archaea. While we cannot unequivocally assign the function from our results, both possibilities represent unexpected functions of these proteins as discussed herein.  相似文献   

9.
There are 10 known putative pseudouridine synthase genes in Escherichia coli. The products of six have been previously assigned, one to formation of the single pseudouridine in 16S RNA, three to the formation of seven pseudouridines in 23S RNA, and three to the formation of three pseudouridines in tRNA (one synthase makes pseudouridine in 23S RNA and tRNA). Here we show that the remaining four putative synthase genes make bona fide pseudouridine synthases and identify which pseudouridines they make. RluB (formerly YciL) and RluE (formerly YmfC) make pseudouridine2605 and pseudouridine2457, respectively, in 23S RNA. RluF (formerly YjbC) makes the newly discovered pseudouridine2604 in 23S RNA, and TruC (formerly YqcB) makes pseudouridine65 in tRNA(Ile1) and tRNA(Asp). Deletion of each of these synthase genes individually had no effect on exponential growth in rich media at 25 degrees C, 37 degrees C, or 42 degrees C. A strain lacking RluB and RluF also showed no growth defect under these conditions. Mutation of a conserved aspartate in a common sequence motif, previously shown to be essential for the other six E. coli pseudouridine synthases and several yeast pseudouridine synthases, also caused a loss of in vivo activity in all four of the synthases studied in this work.  相似文献   

10.
Carnitine palmitoyltransferase I (CPTI) catalyzes the conversion of long chain fatty acyl-CoAs to acylcarnitines in the presence of l-carnitine. To determine the role of the conserved glutamate residue, Glu-603, on catalysis and malonyl-CoA sensitivity, we separately changed the residue to alanine, histidine, glutamine, and aspartate. Substitution of Glu-603 with alanine or histidine resulted in complete loss of L-CPTI activity. A change of Glu-603 to glutamine caused a significant decrease in catalytic activity and malonyl-CoA sensitivity. Substitution of Glu-603 with aspartate, a negatively charged amino acid with only one methyl group less than the glutamate residue in the wild type enzyme, resulted in partial loss in CPTI activity and a 15-fold decrease in malonyl-CoA sensitivity. The mutant L-CPTI with a replacement of the conserved Arg-601 or Arg-606 with alanine also showed over 40-fold decrease in malonyl-CoA sensitivity, suggesting that these two conserved residues may be important for substrate and inhibitor binding. Since a conservative substitution of Glu-603 to aspartate or glutamine resulted in partial loss of activity and malonyl-CoA sensitivity, it further suggests that the negative charge and the longer side chain of glutamate are essential for catalysis and malonyl-CoA sensitivity. We predict that this region of L-CPTI spanning these conserved C-terminal residues may be the region of the protein involved in binding the CoA moiety of palmitoyl-CoA and malonyl-CoA and/or the putative low affinity acyl-CoA/malonyl-CoA binding site.  相似文献   

11.
12.
C Hoang  A R Ferré-D'Amaré 《Cell》2001,107(7):929-939
Pseudouridine (Psi) synthases catalyze the isomerization of specific uridines in cellular RNAs to pseudouridines and may function as RNA chaperones. TruB is responsible for the Psi residue present in the T loops of virtually all tRNAs. The close homolog Cbf5/dyskerin is the catalytic subunit of box H/ACA snoRNPs. These carry out the pseudouridylation of eukaryotic rRNA and snRNAs. The 1.85 A resolution structure of TruB bound to RNA reveals that this enzyme recognizes the preformed three-dimensional structure of the T loop, primarily through shape complementarity. It accesses its substrate uridyl residue by flipping out the nucleotide and disrupts the tertiary structure of tRNA. Structural comparisons with TruB demonstrate that all Psi synthases are descended from a common molecular ancestor.  相似文献   

13.
14.
The Escherichia coli gene rluA, coding for the pseudouridine synthase RluA that forms 23 S rRNA pseudouridine 746 and tRNA pseudouridine 32, was deleted in strains MG1655 and BL21/DE3. The rluA deletion mutant failed to form either 23 S RNA pseudouridine 746 or tRNA pseudouridine 32. Replacement of rluA in trans on a rescue plasmid restored both pseudouridines. Therefore, RluA is the sole protein responsible for the in vivo formation of 23 S RNA pseudouridine 746 and tRNA pseudouridine 32. Plasmid rescue of both rluA- strains using an rluA gene carrying asparagine or threonine replacements for the highly conserved aspartate 64 demonstrated that neither mutant could form 23 S RNA pseudouridine 746 or tRNA pseudouridine 32 in vivo, showing that this conserved aspartate is essential for enzyme-catalyzed formation of both pseudouridines. In vitro assays using overexpressed wild-type and mutant synthases confirmed that only the wild-type protein was active despite the overexpression of wild-type and mutant synthases in approximately equal amounts. There was no difference in exponential growth rate between wild-type and MG1655(rluA-) either in rich or minimal medium at 24, 37, or 42 degrees C, but when both strains were grown together, a strong selection against the deletion strain was observed.  相似文献   

15.
The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.  相似文献   

16.
Lundegaard C  Jensen KF 《Biochemistry》1999,38(11):3327-3334
Phosphoribosyltransferases catalyze the formation of nucleotides from a nitrogenous base and 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP). These enzymes and the PRPP synthases resemble each other in a short homologous sequence of 13 amino acid residues which has been termed the PRPP binding site and which interacts with the ribose 5-phosphate moiety in structurally characterized complexes of PRPP and nucleotides. We show that each class of phosphoribosyltransferases has subtle deviations from the general consensus PRPP binding site and that all uracil phosphoribosyltransferases (UPRTases) have a proline residue at a position where other phosphoribosyltransferases and the PRPP synthases have aspartate. To investigate the role of this unusual proline (Pro 131 in the E. coli UPRTase) for enzyme activity, we changed the residue to an aspartate and purified the mutant P131D enzyme to compare its catalytic properties with the properties of the wild-type protein. We found that UPRTase of E. coli obeyed the kinetics of a sequential mechanism with the binding of PRPP preceding the binding of uracil. The basic kinetic constants were derived from initial velocity measurements, product inhibition, and ligand binding assays. The change of Pro 131 to Asp caused a 50-60-fold reduction of the catalytic rate (kcat) in both directions of the reaction and approximately a 100-fold increase in the KM for uracil. The KM for PRPP was strongly diminished by the mutation, but kcat/KM,PRPP and the dissociation constant (KD,PRPP) were nearly unaffected. We conclude that the proline in the PRPP binding site of UPRTase is of only little importance for binding of PRPP to the free enzyme, but is critical for binding of uracil to the enzyme-PRPP complex and for the catalytic rate.  相似文献   

17.
Pseudouridine is the most abundant of more than 100 chemically distinct natural ribonucleotide modifications. Its synthesis consists of an isomerization reaction of a uridine residue in the RNA chain and is catalyzed by pseudouridine synthases. The unusual reaction mechanism has become the object of renewed research effort, frequently involving replacement of the substrate uridines with 5-fluorouracil (f5U). f5U is known to be a potent inhibitor of pseudouridine synthase activity, but the effect varies among the target pseudouridine synthases. Derivatives of f5U have previously been detected, which are thought to be either hydrolysis products of covalent enzyme-RNA adducts, or isomerization intermediates. Here we describe the interaction of pseudouridine synthase 1 (Pus1p) with f5U-containing tRNA. The interaction described is specific to Pus1p and position 27 in the tRNA anticodon stem, but the enzyme neither forms a covalent adduct nor stalls at a previously identified reaction intermediate of f5U. The f5U27 residue, as analyzed by a DNAzyme-based assay using TLC and mass spectrometry, displayed physicochemical properties unaltered by the reversible interaction with Pus1p. Thus, Pus1p binds an f5U-containing substrate, but, in contrast to other pseudouridine synthases, leaves the chemical structure of f5U unchanged. The specific, but nonproductive, interaction demonstrated here thus constitutes an intermediate of Pus turnover, stalled by the presence of f5U in an early state of catalysis. Observation of the interaction of Pus1p with fluorescence-labeled tRNA by a real-time readout of fluorescence anisotropy and FRET revealed significant structural distortion of f5U-tRNA structure in the stalled intermediate state of pseudouridine catalysis.  相似文献   

18.
Pus10 is the most recently identified pseudouridine synthase found in archaea and higher eukaryotes. It modifies uridine 55 in the TΨC arm of tRNAs. Here, we report the first quantitative biochemical analysis of tRNA binding and pseudouridine formation by Pyrococcus furiosus Pus10. The affinity of Pus10 for both substrate and product tRNA is high (Kd of 30 nM), and product formation occurs with a Km of 400 nM and a kcat of 0.9 s− 1. Site-directed mutagenesis was used to demonstrate that the thumb loop in the catalytic domain is important for efficient catalysis; we propose that the thumb loop positions the tRNA within the active site. Furthermore, a new catalytic arginine residue was identified (arginine 208), which is likely responsible for triggering flipping of the target uridine into the active site of Pus10. Lastly, our data support the proposal that the THUMP-containing domain, found in the N-terminus of Pus10, contributes to binding of tRNA. Together, our findings are consistent with the hypothesis that tRNA binding by Pus10 occurs through an induced-fit mechanism, which is a prerequisite for efficient pseudouridine formation.  相似文献   

19.
RNA-guided pseudouridine (Psi) synthesis in Archaea and Eukarya requires a four-protein one-RNA containing box H/ACA ribonucleoprotein (RNP) complex. The proteins in the archaeal RNP are aCbf5, aNop10, aGar1 and L7Ae. Pyrococcus aCbf5-aNop10 is suggested to be the minimal catalytic core in this synthesis and the activity is enhanced by L7Ae and aGar1. The protein aCbf5 is homologous to eukaryal Cbf5 (dyskerin, NAP57) as well as to bacterial TruB and eukaryal Pus4; the last two produce YPsi55 in tRNAs in a guide RNA-independent manner. Here, using recombinant Methanocaldococcus jannaschii proteins, we report that aCbf5 and aGar1 together can function as a tRNA Psi55 synthase in a guide RNA-independent manner. This activity is enhanced by aNop10, but not by L7Ae. The aCbf5 alone can also produce Psi55 in tRNAs that contain the canonical 3'-CCA sequence and this activity is stimulated by aGar1. These results suggest that the roles of accessory proteins are different in guide RNA-dependent and independent Psi synthesis by aCbf5. The presence of conserved C (or U) and A at tRNA positions 56 and 58, respectively, which are required for TruB/Pus4 activity, is not essential for aCbf5-mediated Psi55 formation. Conserved A58 in tRNA normally forms a tertiary reverse Hoogstein base pair with an equally conserved U54. This base pair is recognized by TruB. Apparently aCbf5 does not require this base pair to recognize U55 for conversion to Psi55.  相似文献   

20.
The interest in RNA modification enzymes surges due to their involvement in epigenetic phenomena. Here we present a particularly informative approach to investigate the interaction of dye-labeled RNA with modification enzymes. We investigated pseudouridine (Ψ) synthase TruB interacting with an alleged suicide substrate RNA containing 5-fluorouridine (5FU). A longstanding dogma, stipulating formation of a stable covalent complex was challenged by discrepancies between the time scale of complex formation and enzymatic turnover. Instead of classic mutagenesis, we used differentially positioned fluorescent labels to modulate substrate properties in a range of enzymatic conversion between 6% and 99%. Despite this variegation, formation of SDS-stable complexes occurred instantaneously for all 5FU-substrates. Protein binding was investigated by advanced fluorescence spectroscopy allowing unprecedented simultaneous detection of change in fluorescence lifetime, anisotropy decay, as well as emission and excitation maxima. Determination of Kd values showed that introduction of 5FU into the RNA substrate increased protein affinity by 14× at most. Finally, competition experiments demonstrated reversibility of complex formation for 5FU-RNA. Our results lead us to conclude that the hitherto postulated long-term covalent interaction of TruB with 5FU tRNA is based on the interpretation of artifacts. This is likely true for the entire class of pseudouridine synthases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号