共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of carbon monoxide in cardiovascular function 总被引:1,自引:0,他引:1
Carbon monoxide (CO) is an endogenously derived gas formed from the breakdown of heme by the enzyme heme oxygenase. Although long considered an insignificant and potentially toxic waste product of heme catabolism, CO is now recognized as a key signaling molecule that regulates numerous cardiovascular functions. Interestingly, alterations in CO synthesis are associated with many cardiovascular disorders, including atherosclerosis, septic shock, hypertension, metabolic syndrome, and ischemia-reperfusion injury. Significantly, restoration of physiologic CO levels exerts a beneficial effect in many of these settings, suggesting a crucial role for CO in maintaining cardiovascular homeostasis. In this review, we outline the actions of CO in the cardiovascular system and highlight this gas as a potential therapeutic target in treating a multitude of cardiovascular disorders. 相似文献
2.
Hyman M. Schipper Wei Song Hillel Zukor Jacob R. Hascalovici David Zeligman 《Journal of neurochemistry》2009,110(2):469-485
The heme oxygenases (HOs), responsible for the degradation of heme to biliverdin/bilirubin, free iron and CO, have been heavily implicated in mammalian CNS aging and disease. In normal brain, the expression of HO-2 is constitutive, abundant and fairly ubiquitous, whereas HO-1 mRNA and protein are confined to small populations of scattered neurons and neuroglia. In contradistinction to HO-2, the ho-1 gene ( Hmox1 ) is exquisitely sensitive to induction by a wide range of pro-oxidant and other stressors. In Alzheimer disease and mild cognitive impairment, immunoreactive HO-1 protein is over-expressed in neurons and astrocytes of the cerebral cortex and hippocampus relative to age-matched, cognitively intact controls and co-localizes to senile plaques, neurofibrillary tangles, and corpora amylacea. In Parkinson disease, HO-1 is markedly over-expressed in astrocytes of the substantia nigra and decorates Lewy bodies in affected dopaminergic neurons. HMOX1 is also up-regulated in glial cells surrounding human cerebral infarcts, hemorrhages and contusions, within multiple sclerosis plaques, and in other degenerative and inflammatory human CNS disorders. Heme-derived free ferrous iron, CO, and biliverdin/bilirubin are biologically active substances that have been shown to either ameliorate or exacerbate neural injury contingent upon specific disease models employed, the intensity and duration of HO-1 expression and the nature of the prevailing redox microenvironment. In 'stressed' astroglia, HO-1 hyperactivity promotes mitochondrial sequestration of non-transferrin iron and macroautophagy and may thereby contribute to the pathological iron deposition and bioenergetic failure amply documented in Alzheimer disease, Parkinson disease and other aging-related neurodegenerative disorders. Glial HO-1 expression may also impact cell survival and neuroplasticity in these conditions by modulating brain sterol metabolism and proteosomal degradation of neurotoxic protein aggregates. 相似文献
3.
Heme oxygenase (HO) is implicated in protection against oxidative stress, proliferation and apoptosis in many cell types, including neurons. We utilized olfactory receptor neurons (ORNs) as a model to define the roles of HO-1 and HO-2 in neuronal development and survival, and to determine the mediators of these effects. The olfactory system is a useful model as ORNs display neurogenesis post-natally and do not contain nitric oxide synthase (NOS) activity, which could confound results. HO isoforms were expressed in ORNs during embryogenesis and post-natally. Mice null for either HO-1 or HO-2 displayed decreased proliferation of neuronal precursors. However, apoptosis was increased only in HO-2 null mice. Cyclic GMP immunostaining was reduced in ORNs in both genotypes, providing direct evidence that HO mediates cGMP production in vivo. Bilirubin immunostaining was reduced only in HO-2 null mice. These roles for HO-1 and HO-2 were confirmed using detergent ablation of the epithelium to observe increased neurogenesis of ORNs after target disruption in HO null mice. Primary cultures of ORNs revealed that proliferative and survival effects of HO were mediated through cGMP and bilirubin, respectively. These results support a role for HO, the CO-cGMP signaling system and bilirubin in neurodevelopment and in response to injury. 相似文献
4.
Heme oxygenase/carbon monoxide signaling pathways: Regulation and functional significance 总被引:22,自引:0,他引:22
Ryter Stefan W. Otterbein Leo E. Morse Danielle Choi Augustine M.K. 《Molecular and cellular biochemistry》2002,(1):249-263
Carbon monoxide (CO), a gaseous second messenger, arises in biological systems during the oxidative catabolism of heme by the heme oxygenase (HO) enzymes. HO exists as constitutive (HO-2, HO-3) and inducible isoforms (HO-1), the latter which responds to regulation by multiple stress-stimuli. HO-1 confers protection in vitro and in vivo against oxidative cellular stress. Although the redox active compounds that are generated from HO activity (i.e. iron, biliverdin-IX, and bilirubin-IX) potentially modulate oxidative stress resistance, increasing evidence points to cytoprotective roles for CO. Though not reactive, CO regulates vascular processes such as vessel tone, smooth muscle proliferation, and platelet aggregation, and possibly functions as a neurotransmitter. The latter effects of CO depend on the activation of guanylate cyclase activity by direct binding to the heme moiety of the enzyme, stimulating the production of cyclic 3:5-guanosine monophosphate. CO potentially interacts with other intracellular hemoprotein targets, though little is known about the functional significance of such interactions. Recent progress indicates that CO exerts novel anti-inflammatory and anti-apoptotic effects dependent on the modulation of the p38 mitogen activated protein kinase (MAPK)-signaling pathway. By virtue of these effects, CO confers protection in oxidative lung injury models, and likely plays a role in HO-1 mediated tissue protection. 相似文献
5.
6.
7.
Heme oxygenase-1 (HO-1) responds to a variety of oxidative stresses. We examined whether HO-1 expression influences pro-thrombotic processes, in which the involvement of oxidative stress has been reported. Since HO-1 knockout mice with a C57/BL6J background were not viable, embryonic cells from HO-1 deficient mice (E11.5) were used. Cell viability, the level of plasminogen activator inhibitor-1 (PAI-1) expression and reactive oxygen species (ROS) generation of HO-1 deficient cells in response to the exposures to hydrogen peroxide and oxidized LDL were compared to those with wild-type cells. We also examined the effects of glutathione (GSH), desferrioxamine (DFO) and diphenyleneiodonium (DPI: an NADPH oxidase inhibitor) as well as of the HO reaction products, bilirubin (BR) and carbon monoxide (CO) on PAI-1 expression and ROS generation. PAI-1 expression and ROS generation were markedly elevated in HO-1 deficient cells compared to wild-type cells. Exposure to oxidized LDL significantly elevated PAI-1 expression and ROS production in HO-1 deficient cells. Interestingly, these increases in HO-1 deficient cells were significantly lowered by BR, CO, GSH and DPI while DFO had little effect. Furthermore, BR and CO were effective to improve viabilities of HO-1 deficient cells. These results suggest that HO-1 may be required to suppress ROS generation and the production of pro-thrombotic molecules such as PAI-1. 相似文献
8.
9.
Heme oxygenase-1 (HO-1) is a rate-limiting enzyme catalyzing oxidative degradation of cellular heme to liberate free iron, carbon monoxide (CO) and biliverdin in mammalian cells. In addition to its primary role in heme catabolism, HO-1 exhibits anti-oxidative and anti-inflammatory functions via the actions of biliverdin and CO, respectively. HO-1 is highly induced in various disease states, including cancer. Several lines of evidence have supported the implication of HO-1 in carcinogenesis and tumor progression. HO-1 deficiency in normal cells enhances DNA damage and carcinogenesis. Nevertheless, HO-1 overexpression in cancer cells promotes proliferation and survival. Moreover, HO-1 induces angiogenesis through modulating expression of angiogenic factors. Although HO-1 is an endoplasmic reticulum resident protein, HO-1 nuclear localization is evident in tumor cells of cancer tissues. It has been shown that HO-1 is susceptible to proteolytic cleavage and translocates to nucleus to facilitate tumor growth and invasion independent of its enzymatic activity. HO-1 also impacts cancer progression through modulating tumor microenvironment. This review summarizes the current understanding of the protumorigenic role of HO-1 and its potential as a molecular target for cancer therapy. 相似文献
10.
Masahiro Iwata Takayuki Inoue Yuji Asai Kiyomi Hori Mitsuhiro Fujiwara Shingo Matsuo Wakako Tsuchida Shigeyuki Suzuki 《Biochemistry and Biophysics Reports》2020
Nitric oxide (NO) is an important part of the host defense mechanism; however, it displays both pro- and anti-inflammatory properties depending on its location and concentration. Importantly, excessive or inappropriate NO production can cause tissue damage. Systemic and local administration of NO synthase (NOS) inhibitors ameliorates and may exacerbate the inflammatory response, respectively. Here, we used a carrageenan-induced pleurisy model of acute inflammation in rats to confirm the location-dependent effects of NO and investigate the underlying mechanisms. As expected, localized suppression of NO production exacerbated inflammation, as evidenced by increased pleural exudate volumes and leukocyte counts and enhanced activity of enzymes related to oxidative stress. In contrast, local NO supplementation reduced leukocyte infiltration, vascular permeability, and the activity of oxidative stress-related enzymes. Interestingly, inhibition of heme oxygenase-1 (HO-1) reversed the anti-inflammatory effects of localized NO production, while the addition of hemin (HO-1 substrate) or carbon monoxide (CO; HO-1 metabolite) decreased leukocyte migration and exudation. Together, these findings confirm a protective role for NO at the inflammatory site, which appears to be mediated via NOS induction of the HO-1/CO pathway. Thus, NO supplementation may be a potential new treatment for oxidative stress-associated inflammatory diseases. 相似文献
11.
12.
Liver ischemia and reperfusion (I/R) injury is characterized by oxidative stress that is accompanied by alterations of the endogenous defensive system. Emerging evidence suggests a protective role for autophagy induced by multiple stressors including reactive oxygen species. Meanwhile, heme oxygenase-1 (HO-1) has long been implicated in cytoprotection against oxidative stress in vitro and in vivo. Therefore, we investigated the impact of autophagy in the pathogenesis of liver I/R and its molecular mechanisms, particularly its linkage to HO-1. By using transmission electron microscopic analysis and biochemical autophagic flux assays with microtubule-associated protein 1 light chain 3-II, and beclin-1, representative autophagy markers, and p62, a selective substrate for autophagy, we found that reperfusion reduced autophagy both in the rat liver and in primary cultured hepatocytes. When autophagy was further inhibited with chloroquine or wortmannin, I/R-induced hepatocellular injury was aggravated. While livers that underwent I/R showed increased levels of mammalian target of rapamaycin and calpain 1 and 2, inhibition of calpain 1 and 2 induced an autophagic response in hepatocytes subjected to hypoxia/reoxygenation. HO-1 increased autophagy, and HO-1 reduced I/R-induced calcium overload in hepatocytes and prevented calpain 2 activation both in vivo and in vitro. Taken together, these findings suggest that the impaired autophagy during liver I/R, which is mediated by calcium overload and calpain activation, contributes to hepatocellular damage and the HO-1 system protects the liver from I/R injury through enhancing autophagy. 相似文献
13.
Oberle S Abate A Grosser N Vreman HJ Dennery PA Schneider HT Stalleicken D Schröder H 《Biochemical and biophysical research communications》2002,290(5):1539-1544
The organic nitrate pentaerythrityl tetranitrate (PETN) is known to exert long-term antioxidant and antiatherogenic effects by as yet unidentified mechanisms. In cultured endothelial cells derived from human umbilical vein, the active PETN metabolite PETriN (0.01-1 mM) increased heme oxygenase (HO)-1 mRNA and protein levels in a concentration-dependent fashion. HO-1 induction was accompanied by a marked increase in catalytic activity of the enzyme as reflected by enhanced formation of carbon monoxide and bilirubin. Pretreatment with PETriN or bilirubin at low micromolar concentrations protected endothelial cells from hydrogen peroxide-mediated toxicity. HO-1 induction and endothelial protection by PETriN were not mimicked by isosorbide dinitrate, another long-acting nitrate. The present study demonstrates that PETriN stimulates mRNA and protein expression as well as enzymatic activity of the antioxidant defense protein HO-1 in endothelial cells. Increased HO-1 expression and ensuing formation of cytoprotective bilirubin may contribute to and explain the specific antioxidant and antiatherogenic actions of PETN. 相似文献
14.
15.
目的和方法 :观察外源性一氧化碳 (CO)对大鼠离体肺动脉环低氧性收缩反应 (HPV)的影响 ,并通过观察血红素氧化酶抑制剂ZnPPIX对HPV的影响 ,探讨内源性一氧化碳在HPV中的作用及机制。结果 :低氧可使苯肾上腺素 (PE)预收缩的肺动脉环出现明显的收缩反应 ,肺动脉cGMP含量下降 ;用ZnPPIX孵育后 ,低氧后的肺动脉cGMP含量增加 ,低氧性肺血管收缩反应 (HPV)受抑 ;外源性CO可明显增加肺动脉cGMP含量 ,HPV明显受抑。结论 :外源性CO及ZnPPIX可增加低氧后的肺动脉cGMP含量 ,抑制HPV ,内源性CO减少导致cGMP含量下降可能是HPV的原因之一 相似文献
16.
一氧化碳对大鼠离体肺动脉的舒张作用 总被引:1,自引:0,他引:1
本研究观察了一氧化碳 (CO)对离体大鼠肺动脉的舒张作用。制备Wistar大鼠肺动脉环 ,作出ACh浓度效应曲线之后 ,肺动脉环用一氧化氮合成酶抑制剂L NAME 3 0 μmol/L (n =10 )或血红素氧化酶抑制剂ZnPPIX 10μmol/L +L NAME 3 0 μmol/L (n =10 )孵育 3 0min ,再制备一个ACh的浓度效应曲线 ,观察ZnPPIX对ACh的浓度效应曲线的影响。另取一组肺动脉环 ,分为内皮完整组和去内皮组 ,观察外源性CO对肺动脉环张力的影响。结果表明 ,用L NAME孵育后 ,ACh的血管舒张反应受抑 ,最大抑制率为 5 0 4± 9 2 % ;用ZnPPIX +L NAME孵育后 ,ACh的血管舒张反应进一步受抑 ,最大抑制率为 84 4± 11 2 %。外源性CO无论对内皮完整组还是去内皮组肺动脉都有舒张作用。本研究提示 ,ZnPPIX可抑制ACh的内皮依赖性肺动脉舒张反应 ,CO是一个内皮源性的血管舒张因子 ,外源性CO可舒张肺动脉 相似文献
17.
脂多糖诱导大鼠主动脉血红素氧合酶-1表达及其对血管反应性的影响 总被引:2,自引:1,他引:2
目的:探讨血红素-HO-1-CO-cGMP道路对内毒素血症大鼠主动脉血管张力的影响及其分子机制。方法:用离体血管环张力测定技术,观察静脉注射脂多糖(LPS)6h,大鼠胸主动脉环(TARs)对苯肾上腺素(PE)累积收缩反应。分别用一氧化碳(CO)供体正缺血红素(He),血红素氧合酶-1(HO-1)抑制剂锌原卟啉(ZnPP-IX),鸟苷酸环化酶(sGC)抑制剂亚甲兰(MB)预卵育后,测定TARs对PE收缩反应的变化。分别测定主动脉中CO含量,HO-1活性,Western blot测定HO-1蛋白含量,RT-PCR检测HO-1 mRNA表达的改变。结果:LPS组TARs对PE累积收缩反应明显降低,ZnPP-IX可部分逆转低收缩反应,MB可完全逆转低收缩反应,而用He可加重低收缩反应状态;LPS组动脉组织中CO的含量上升,HO-1活性、蛋白表达量和mRNA表达均明显增加。结论:LPS可使主动脉HO-1基因表达上调,蛋白含量及酶活性明显增加,表明启动血红素-HO-1-CO-cGMP通路,是介导ES大鼠主动脉低收缩反应重要机制之一。 相似文献
18.
19.