首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parasites of the nematode genus Anisakis are associated with aquatic organisms. They can be found in a variety of marine hosts including whales, crustaceans, fish and cephalopods and are known to be the cause of the zoonotic disease anisakiasis, a painful inflammation of the gastro-intestinal tract caused by the accidental consumptions of infectious larvae raw or semi-raw fishery products. Since the demand on fish as dietary protein source and the export rates of seafood products in general is rapidly increasing worldwide, the knowledge about the distribution of potential foodborne human pathogens in seafood is of major significance for human health. Studies have provided evidence that a few Anisakis species can cause clinical symptoms in humans. The aim of our study was to interpolate the species range for every described Anisakis species on the basis of the existing occurrence data. We used sequence data of 373 Anisakis larvae from 30 different hosts worldwide and previously published molecular data (n = 584) from 53 field-specific publications to model the species range of Anisakis spp., using a interpolation method that combines aspects of the alpha hull interpolation algorithm as well as the conditional interpolation approach. The results of our approach strongly indicate the existence of species-specific distribution patterns of Anisakis spp. within different climate zones and oceans that are in principle congruent with those of their respective final hosts. Our results support preceding studies that propose anisakid nematodes as useful biological indicators for their final host distribution and abundance as they closely follow the trophic relationships among their successive hosts. The modeling might although be helpful for predicting the likelihood of infection in order to reduce the risk of anisakiasis cases in a given area.  相似文献   

2.
Larval helminths in intermediate hosts often stop growing long before their growth is limited by host resources, and do not grow at all in paratenic hosts. We develop our model [Ball, M.A., Parker, G.A., Chubb, J.C., 2008. The evolution of complex life cycles when parasite mortality is size- or time-dependent. J. Theor. Biol. 253, 202-214] for optimal growth arrest at larval maturity (GALM) in trophically transmitted helminths. This model assumes that on entering an intermediate host, larval death rate initially has both time- (or size-) dependent and time-constant components, the former increasing as the larva grows. At GALM, mortality changes to a new and constant rate in which the size-dependent component is proportional to that immediately before GALM. Mortality then remains constant until death or transmission to the definitive host. We analyse linear increasing and accelerating forms for time-dependent mortality to deduce why there is sometimes growth (intermediate hosts) and sometimes no growth (paratenic hosts). Calling i the intermediate or paratenic host, and j the definitive host, conditions favouring paratenicity are: (i) high values in host i for size at establishment, size-related mortality, expected intensity, (ii) low values in host i for size-independent mortality rate, potential growth rate, transmission rate to j, and ratio of death rate in j/growth rate in j. Opposite conditions favour growth in the (intermediate) host, either to GALM or until death without GALM. We offer circumstantial evidence from the literature supporting some of these predictions. In certain conditions, two of the three possible growth strategies (no growth; growth to an optimal size then growth arrest (GALM); unlimited growth until larval death) can exist as local optima. The effect of the discontinuity in death rate after GALM is complex and depends on mortality and growth parameters in the two hosts, and on the mortality functions before and after GALM.  相似文献   

3.
Consumption of raw or thermally inadequately treated fishery products represents a public health risk, with the possibility of propagation of live Anisakis larvae, the causative agent of the zoonotic disease anisakidosis, or anisakiasis. We investigated the population dynamics of Anisakis spp. in commercially important fish—anchovies (Anisakis), sardines (Sardina pilchardus), European hake (Merluccius merluccius), whiting (Merlangius merlangus), chub mackerel (Scomber japonicus), and Atlantic bluefin tuna (Thunnus thynnus)—captured in the main Adriatic Sea fishing ground. We observed a significant difference in the numbers of parasite larvae (1 to 32) in individual hosts and between species, with most fish showing high or very high Anisakis population indices. Phylogenetic analysis confirmed that commercial fish in the Adriatic Sea are parasitized by Anisakis pegreffii (95.95%) and Anisakis simplex sensu stricto (4.05%). The genetic structure of A. pegreffii in demersal, pelagic, and top predator hosts was unstructured, and the highest frequency of haplotype sharing (n = 10) was between demersal and pelagic fish.  相似文献   

4.
Guinea worm (Dracunculus medinensis) has exerted a high human health burden in parts of Africa. Complete eradication of Guinea worm disease (dracunculiasis) may be delayed by the circulation of the parasite in domestic dogs. As with humans, dogs acquire the parasite by directly ingesting infected copepods, and recent evidence suggests that consuming frogs that ingested infected copepods as tadpoles may be a viable transmission route (paratenic route). To understand the relative contributions of direct and paratenic transmission routes, we developed a mathematical model that describes transmission of Guinea worm between dogs, copepods and frogs. We explored how the parasite basic reproductive number (R0) depends on parameters amenable to actionable interventions under three scenarios: frogs/tadpoles do not consume copepods; tadpoles consume copepods but frogs do not contribute to transmission; and frogs are paratenic hosts. We found a non-monotonic relationship between the number of dogs and R0. Generally, frogs can contribute to disease control by removing infected copepods from the waterbody even when paratenic transmission can occur. However, paratenic transmission could play an important role in maintaining the parasite when direct transmission is reduced by interventions focused on reducing copepod ingestion by dogs. Together, these suggest that the most effective intervention strategies may be those which focus on the reduction of copepods, as this reduces outbreak potential irrespective of the importance of the paratenic route.  相似文献   

5.
The Gram-negative bacterium, Legionella pneumophila, is a protozoan parasite and accidental intracellular pathogen of humans. We propose a model in which cycling through multiple protozoan hosts in the environment holds L. pneumophila in a state of evolutionary stasis as a broad host-range pathogen. Using an experimental evolution approach, we tested this hypothesis by restricting L. pneumophila to growth within mouse macrophages for hundreds of generations. Whole-genome resequencing and high-throughput genotyping identified several parallel adaptive mutations and population dynamics that led to improved replication within macrophages. Based on these results, we provide a detailed view of the population dynamics of an experimentally evolving bacterial population, punctuated by frequent instances of transient clonal interference and selective sweeps. Non-synonymous point mutations in the flagellar regulator, fleN, resulted in increased uptake and broadly increased replication in both macrophages and amoebae. Mutations in multiple steps of the lysine biosynthesis pathway were also independently isolated, resulting in lysine auxotrophy and reduced replication in amoebae. These results demonstrate that under laboratory conditions, host restriction is sufficient to rapidly modify L. pneumophila fitness and host range. We hypothesize that, in the environment, host cycling prevents L. pneumophila host-specialization by maintaining pathways that are deleterious for growth in macrophages and other hosts.  相似文献   

6.
Anisakis spp. (Nematoda: Anisakidae) parasitize a wide range of marine animals, mammals serving as the definitive host and different fish species as intermediate or paratenic hosts. In this study, 18 fish species were investigated for Anisakis infection. Katsuwonus pelamis, Euthynnus affinis, Caranx sp., and Auxis thazard were infected with high prevalence of Anisakis type I, while Cephalopholis cyanostigma and Rastrelliger kanagurta revealed low prevalence. The mean intensity of Anisakis larvae in K. pelamis and A. thazard was 49.7 and 5.6, respectively. A total of 73 Anisakis type I larvae collected from K. pelamis and A. thazard were all identified as Anisakis typica by PCR-RFLP analysis. Five specimens of Anisakis from K. pelamis and 15 specimens from A. thazard were sequenced using ITS1-5.8S-ITS2 region and 6 specimens from A. thazard and 4 specimens from K. pelamis were sequenced in mtDNA cox2 region. Alignments of the samples in the ITS region showed 2 patterns of nucleotides. The first pattern (genotype) of Anisakis from A. thazard had 100% similarity with adult A. typica from dolphins from USA, whereas the second genotype from A. thazard and K. pelamis had 4 base pairs different in ITS1 region with adult A. typica from USA. In the mtDNA cox2 regions, Anisakis type I specimens from A. thazard and K. pelamis showed similarity range from 94% to 99% with A. typica AB517571/DQ116427. The difference of 4 bp nucleotides in ITS1 regions and divergence into 2 subgroups in mtDNA cox2 indicating the existence of A. typica sibling species in the Makassar Strait.  相似文献   

7.
The effect of a nuclear polyhedrosis virus on the relationship between Trichoplusia ni and the parasite, Hyposoter exiguae, was investigated to determine if the virus could invade and multiply in the tissues of the parasites, if parasites which emerged from virus-infected T. ni larvae had normal emergence, fecundity, and longevity, and if the parasite could serve as a vector for the virus. Light microscopy revealed particles which appeared to be polyhedra within the lumen of the midgut of parasite larvae from virus-infected hosts. Transmission electron microscopy confirmed the presence of polyhedra and free virions within the midgut of the larvae. Polyhedra or free virions were never found within any parasite tissues. Parasite larvae within hosts exposed to virus before parasitization perished when their hosts died of virus infection. Parasite larvae in hosts exposed to virus after parasitization completed their development before their hosts died of virus infection. The proportion of parasites which survived increased as the time between host parasitization and host virus exposure increased. Parasite larvae which developed in hosts exposed to the virus soon after parasitization spent significantly less time in their hosts than did parasites which developed in noninfected hosts. There was no significant difference in time spent in the pupal stage, percent adult emergence, adult longevity with and without food and water, and fecundity of parasites which developed in virus-infected hosts and those which developed in noninfected hosts. Female parasites laid as many eggs in virus-infected hosts as they did in noninfected hosts. Sixty percent of the female parasites which oviposited in virus-infected hosts vectored infective doses of virus to an average of 6% of the healthy hosts subsequently exposed to them. None of the healthy host larvae exposed to male parasites which had been exposed to virus-infected host larvae became infected with the virus. Forty percent of the female parasites which developed in virus-infected hosts transmitted infective doses of the virus to an average of 65% of the healthy host larvae exposed to them. Ninety percent of the male parasites which developed in virus-infected hosts transferred infective doses of the virus to an average of 21% of the healthy host larvae exposed to them.  相似文献   

8.
Three-spined sticklebacks Gasterosteus aculeatus are frequent paratenic hosts of the nematode parasites Anguillicola crassus and Camallanus lacustris. As paratenic hosts, sticklebacks could spread infection by carrying high numbers of infective stages. In contrast, low infective ability of either parasite for the paratenic host could hinder the spread of infection. In the present study, G. aculeatus was, for the first time, infected under controlled laboratory conditions with defined doses of the parasites. Sticklebacks were exposed to 6, 12, 18 and 24 parasite larvae to determine the infective ability of the 2 nematode species. There were significantly higher infection rates for C. lacustris (18 to 49%) than for A. crassus (4 to 14%) at each exposure dose. In C. lacustris-infected sticklebacks, infection rates tended to be highest after exposure to 12 C. lacustris larvae and lowest after exposure to 24 parasites. In A. crassus-infected sticklebacks, no effect of parasite exposure dose on infection rates was observed. Immunity parameters such as respiratory burst activity and lymphocyte proliferation of head kidney leukocytes recorded 18 wk post exposure were not significantly affected by either parasite or exposure dose. Granulocyte:lymphocyte ratios were elevated only within the stickleback group showing the highest infection intensity of C. lacustris, i.e. to those exposed 18 parasites.  相似文献   

9.
Synopsis The seasonal transmission ofRaphidascaris acus was studied in two small lakes on Manitoulin Island, Ontario. Dragonfly nymphs and caddisfly larvae, acting as paratenic hosts, contained second-stage larvae. Several fishes, including percids and cyprinids, were intermediate hosts with second, third, and fourth-stage larvae in the liver. Yellow perch,Perca flavescens, was the most important of these. Intensities were up to 928 and increased with length and age of the perch; prevalence was 100%. Abundance ofR. acus tended to be higher in females but was not related to condition of the perch. Second-stage larvae were acquired from invertebrates in summer and developed to the fourth stage by November. They became surrounded by fibrous capsules during the next summer but remained alive for at least another year. The longevity of larvae in the intermediate host may ensure survival of the parasite through periods of low host abundance after winterkill. Northern pike,Esox lucius, was the definitive host. Abundance ofR. acus tended to be greater in larger pike but was not related to sex or condition of the fish. The parasite was acquired in late fall. Prevalence was 100% and mean intensities were over 200 in winter and spring, declining to 64–100% and less than 15, respectively, in summer. Mature worms were present from early spring through summer. Seasonality of infection in the definitive host is not attributable to seasonal availability of larvae in perch. Instead it may be controlled by timing of predation on perch and rate of development and longevity of the parasite. Transmission to pike apparently continues in summer. Low intensity may result from low recruitment rate and rapid turnover of the parasite population.  相似文献   

10.
11.
Ant social parasites evolve adaptive relationships with their hosts. Theoretically, coevolution predicts strong selection to maximize fitness of the parasite that minimizes costs to its host, which potentially leads to the evolution of benign interactions. We studied the demographic and behavioral traits of the ant social parasite Megalomyrmex symmetochus (Solenopsidini), an agro-predator that feeds on larvae and fungal garden products of their host, Sericomyrmex amabilis (Attini). Based on demographic data from 15 parasitized colonies, the proportion of parasitic workers to those of the host is 1:2. Moreover, defensive prophylactic behaviors observed during infections with Metarhizium brunneum, a generalist entomopathogen, and Escovopsis, a specialized fungal garden parasite, showed that S. amabilis works extensively to remove and control fungal infections, in contrast to M. symmetochus. M. symmetochus, however, performed intraspecific allogrooming during infections with Escovopsis and M. brunneum, suggesting that they may recognize fungal pathogens and indirectly limit dispersion of spores. Our results indicate that M. symmetochus did not have a strong role in maintaining a hygienic nest.  相似文献   

12.
Models of virulence evolution for horizontally transmitted parasites often assume that transmission rate (the probability that an infected host infects a susceptible host) and virulence (the increase in host mortality due to infection) are positively correlated, because higher rates of production of propagules may cause more damages to the host. However, empirical support for this assumption is scant and limited to microparasites. To fill this gap, we explored the relationships between parasite life history and virulence in the salmon louse, Lepeophtheirus salmonis, a horizontally transmitted copepod ectoparasite on Atlantic salmon Salmo salar. In the laboratory, we infected juvenile salmon hosts with equal doses of infective L. salmonis larvae and monitored parasite age at first reproduction, parasite fecundity, area of damage caused on the skin of the host, and host weight and length gain. We found that earlier onset of parasite reproduction was associated with higher parasite fecundity. Moreover, higher parasite fecundity (a proxy for transmission rate, as infection probability increases with higher numbers of parasite larvae released to the water) was associated with lower host weight gain (correlated with lower survival in juvenile salmon), supporting the presence of a virulence–transmission trade‐off. Our results are relevant in the context of increasing intensive farming, where frequent anti‐parasite drug use and increased host density may have selected for faster production of parasite transmission stages, via earlier reproduction and increased early fecundity. Our study highlights that salmon lice, therefore, are a good model for studying how human activity may affect the evolution of parasite virulence.  相似文献   

13.
Toxocariasis, caused by infection with larvae of Toxocara canis, and to a lesser extent by Toxocara cati and other ascaridoid species, manifests in humans in a range of clinical syndromes. These include visceral and ocular larva migrans, neurotoxocariasis and covert or common toxocariasis. Toxocara canis is one of the most widespread public health and economically important zoonotic parasitic infections humans share with dogs, cats and wild canids, particularly foxes. This neglected disease has been shown through seroprevalence studies to be especially prevalent among children from socio-economically disadvantaged populations both in the tropics and sub-tropics and in industrialised nations. Human infection occurs by the accidental ingestion of embryonated eggs or larvae from a range of wild and domestic paratenic hosts. Most infections remain asymptomatic. Clinically overt infections may go undiagnosed, as diagnostic tests are expensive and can require serological, molecular and/or imaging tests, which may not be affordable or available. Treatment in humans varies according to symptoms and location of the larvae. Anthelmintics, including albendazole, thiabendazole and mebendazole may be given together with anti-inflammatory corticosteroids. The development of molecular tools should lead to new and improved strategies for the treatment, diagnosis and control of toxocariasis and the role of other ascaridoid species in the epidemiology of Toxocara spp. Molecular technologies may also help to reveal the public health importance of T. canis, providing new evidence to support the implementation of national control initiatives which have yet to be developed for Toxocara spp. A number of countries have implemented reproductive control programs in owned and stray dogs to reduce the number of young dogs in the population. These programs would positively impact upon T. canis transmission since the parasite is most fecund and prevalent in puppies. Other control measures for T. canis include the regular and frequent anthelmintic treatment of dogs and cats, starting at an early age, education and enforcement of laws for the disposal of canine faeces, dog legislation and personal hygiene. The existence of wild definitive and paratenic hosts complicates the control of T. canis. Increasing human and dog populations, population movements and climate change will all serve to increase the importance of this zoonosis. This review examines the transmission, diagnosis and clinical syndromes of toxocariasis, its public health importance, epidemiology, control and current research needs.  相似文献   

14.
The lifecycle, the host–parasite system, and the ecological features of the nematode Dichelyne minutus (Rudolphi, 1819), which parasitizes invertebrates and fish in the estuarine biocenosis located at the influx of the Chornaya River into the Black Sea (off Sevastopol), have been studied. The host–parasite system of D. minutus includes the polychaete Hediste diversicolor Müller, 1776 (as an obligatory intermediate host) and nine fish species, of which seven are definitive hosts and two are accidental or captive hosts. It has been found that the lifecycle of D. minutus in the biocoenosis of the Black Sea differs from the lifecycle of this nematode that inhabits the Baltic and North seas. In the studied biocoenosis, nematode larvae occur in polychaetes and fish only in the spring and summer; no larvae are found in the autumn (the study was not conducted in the winter). The nematode parasitizes the polychaete H. diversicolor in the spring; the main source of infection in this period is obviously nematode eggs that were laid in the autumn and have overwintered in the environment. The infection process ends by early summer. The seasonal and size–age dynamics of nematode infection of the round goby, Neogobius melanostomus (Pallas, 1814), are analyzed taking the specifics of fish biology into account. The short period of infection, as characterized by the active emission of nematode larvae, their low survival in polychaetes and fish, a short lifecycle and the mortality of mature nematodes after egg-laying in the autumn result in an over-scattered distribution (mostly of the negative-binomial type) of D. minutus in populations of all the hosts.  相似文献   

15.
16.
In this work 437 fish samples of species belonging to the families Myctophidae (Electrona risso and Diaphus metopoclampus) and Phosichthyidae (Vinciguerria attenuata) were examined for the presence of Anisakidae larvae. The study was performed with fishes in the central Mediterranean Sea, particularly in the Strait of Sicily and in the Strait of Messina. The visual inspection and chloro-peptic analysis revealed the presence of nematode parasites with prevalence values between 2.9% in Electrona risso samples and 5.4% in Vinciguerria attenuata samples. A positive correlation was found between standard length (SL) and prevalence of infestation in D. metopoclampus samples (p < 0.05). The larvae examined were morphologically ascribed, at genus level, to Anisakis morphotypes I and II and molecularly identified as Anisakis pegreffii, Anisakis ziphidarum and Anisakis physeteris, in 67%, 9% and 24% of the fish samples examined. Overall, A. pegreffii and A. ziphidarum larvae were isolated in 14 and 2 specimens of D. metopoclampus respectively, A. physeteris larvae were found in 3 E. risso and 2 V. attenuata. A positive correlation was found between standard length and prevalence of infestation in D. metopoclampus samples (p < 0.05). First information is provided on the presence of Anisakis spp. larvae of the myctophid fish species E. risso, D. metopoclampus and V. attenuata from the Central Mediterranean. It is also confirmed the role of lanternfishes (Myctophidae) as paratenic hosts for Anisakis spp.  相似文献   

17.

Background  

The fox tapeworm Echinococcus multilocularis has foxes and other canids as definitive host and rodents as intermediate hosts. However, most mammals can be accidental intermediate hosts and the larval stage may cause serious disease in humans. The parasite has never been detected in Sweden, Finland and mainland Norway. All three countries require currently an anthelminthic treatment for dogs and cats prior to entry in order to prevent introduction of the parasite. Documentation of freedom from E. multilocularis is necessary for justification of the present import requirements.  相似文献   

18.
Electrophoretic surveys were conducted on individual larvae of four anisakine nematode genera: Anisakis, Phocanema, Contracaecum, and Sulcascaris. The larval worms were obtained from a variety of fish and molluscan hosts from widely dispersed geographic regions. Of several enzymes detected, constant and apparently species-specific electrophoretic patterns were obtained for alcohol dehydrogenase (ADH, alcohol:NAD oxidoreductase, EC 1.1.1.1) and malate dehydrogenase (MDH, l-malate: NAD oxidoreductase, EC 1.1.1.37). ADH, in all but Sulcascaris sp., possessed two isozymes, the slower of which was sensitive to temperature and inhibitors. Failure of preelectrophoretic treatment with NAD to cause interconversion of these isozymes suggests that they are products of separate genetic loci. Both isozymes were maximally active with isopropanol, sec-butanol, and amyl alcohol. Within a given species, ADH showed negligible variation (i.e., apparent genetic polymorphism) with respect to individual larvae, site of larvae in the host, or geographical origin of the host. MDH from Anisakis, Sulcascaris, and Phocanema spp. possessed one, two, and three bands of activity, respectively; MDH is highly thermostable in Anisakis sp. but not in the other species.  相似文献   

19.
The majority of biological data on Cryptosporidium has been collected from humans and domestic animal hosts which creates a bias in knowledge on the biodiversity and evolution of this parasite genus. Further to understanding Cryptosporidium biology are studies encompassing broad hosts that represent diverse taxa sampled across wide geographic ranges. Marsupials represent a group of wildlife hosts from which limited information on Cryptosporidium is available. As marsupial hosts are an ancient mammalian lineage they represent an important group for studying parasite evolution. This review summarises information of the biology, epidemiology and evolution of Cryptosporidium in marsupial hosts, and discusses the importance of further understanding interactions in this parasite-host system.  相似文献   

20.
The term amphiparatenic host was coined originally for hosts of Alaria marcianae that as adults are paratenic hosts, but as juveniles serve as definitive hosts. In this study the concept of amphiparatenesis is placed in a theoretical context, maternal transmission shown to be the basic mechanism, and the concept extended to include Toxocara canis, T. cati, T. pteropodis, Neoascaris vitulorum, Ancylostoma caninum, Uncinaria lucasi, various species of Strongyloides, Pharyngostomoides procyonis, and P. adenocephala. Alaria marcianae mesocercariae were used in a feline model to show that male and nonlactating female cats are definitive hosts, but lactating cats are primarily paratenic hosts. Inoculation of 1 female cat resulted in the infection of 21 of her offspring via the milk over the course of 5 litters and after a 3-yr period she still had viable larvae in her tissues. The ability of parasites to remain immature in amphiparatenic hosts is believed to be an adaptation on the part of the parasite to promote dissemination through maternal transmission and not the result of resistance, immunological or otherwise, on the part of the host. The amphiparatenic concept has important implications that include: the use of pregnant and lactating females as reservoirs of infection for the offspring; infection transmitted through a contagious transplacental or transmammary pathway; a parasite population structure in which adult worms are in greater abundance in neonate than adult hosts; and the effective control of parasites utilizing this strategy proving to be very difficult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号