首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prevalence of different H. pylori genotypes in various geographical regions indicates region-specific adaptations during the course of evolution. Complete genomes of H. pylori from countries with high infection burdens, such as India, have not yet been described. Herein we present genome sequences of two H. pylori strains, NAB47 and NAD1, from India. In this report, we briefly mention the sequencing and finishing approaches, genome assembly with downstream statistics, and important features of the two draft genomes, including their phylogenetic status. We believe that these genome sequences and the comparative genomics emanating thereupon will help us to clearly understand the ancestry and biology of the Indian H. pylori genotypes, and this will be helpful in solving the so-called Indian enigma, by which high infection rates do not corroborate the minuscule number of serious outcomes observed, including gastric cancer.  相似文献   

2.
Resistance of Helicobacter pylori to clarithromycin is the most common cause of treatment failure in patients with H. pylori infections. This study describes the MICs and the presence of 23S rRNA mutations of H. pylori isolates from Bogotá, D.C., Colombia. H. pylori were isolated from gastric biopsies from patients with functional dyspepsia. Clarithromycin susceptibility was investigated by agar dilution and strains were considered resistant if the MIC was ≥1 μg/ml. DNA sequences of the 23S rRNA gene of strains resistant and sensitive to clarithromycin were determined to identify specific point mutations. Clarithromycin resistance was present in 13.6% of patients by agar dilution. The A2143G, A2142G and A2142C mutations were found in 90.5, 7.1, and 2.4% of H. pylori strains with resistance genotype.The resistant phenotype was associated with 23S rRNA resistance genotype in 85.7% of isolates. The point mutations in 23S rRNA were well correlated with MICs values for clarithromycin.  相似文献   

3.
The availability of multiple bacterial genome sequences has revealed a surprising extent of variability among strains of the same species. The human gastric pathogen Helicobacter pylori is known as one of the most genetically diverse species. We have compared the genome sequence of the duodenal ulcer strain P12 and six other H. pylori genomes to elucidate the genetic repertoire and genome evolution mechanisms of this species. In agreement with previous findings, we estimate that the core genome comprises about 1200 genes and that H. pylori possesses an open pan-genome. Strain-specific genes are preferentially located at potential genome rearrangement sites or in distinct plasticity zones, suggesting two different mechanisms of genome evolution. The P12 genome contains three plasticity zones, two of which encode type IV secretion systems and have typical features of genomic islands. We demonstrate for the first time that one of these islands is capable of self-excision and horizontal transfer by a conjugative process. We also show that excision is mediated by a protein of the XerD family of tyrosine recombinases. Thus, in addition to its natural transformation competence, conjugative transfer of genomic islands has to be considered as an important source of genetic diversity in H. pylori.  相似文献   

4.
Helicobacter pylori is a gram-negative pathogen that colonizes the stomachs of over half the world's population and causes a spectrum of gastric diseases including gastritis, ulcers, and gastric carcinoma. The H. pylori species exhibits unusually high levels of genetic variation between strains. Here we announce the complete genome sequence of H. pylori strain G27, which has been used extensively in H. pylori research.  相似文献   

5.

Background

Helicobacter pylori has a reduced genome and lives in a tough environment for long-term persistence. It evolved with its particular characteristics for biological adaptation. Because several H. pylori genome sequences are available, comparative analysis could help to better understand genomic adaptation of this particular bacterium.

Principal Findings

We analyzed nine H. pylori genomes with emphasis on microevolution from a different perspective. Inversion was an important factor to shape the genome structure. Illegitimate recombination not only led to genomic inversion but also inverted fragment duplication, both of which contributed to the creation of new genes and gene family, and further, homological recombination contributed to events of inversion. Based on the information of genomic rearrangement, the first genome scaffold structure of H. pylori last common ancestor was produced. The core genome consists of 1186 genes, of which 22 genes could particularly adapt to human stomach niche. H. pylori contains high proportion of pseudogenes whose genesis was principally caused by homopolynucleotide (HPN) mutations. Such mutations are reversible and facilitate the control of gene expression through the change of DNA structure. The reversible mutations and a quasi-panmictic feature could allow such genes or gene fragments frequently transferred within or between populations. Hence, pseudogenes could be a reservoir of adaptation materials and the HPN mutations could be favorable to H. pylori adaptation, leading to HPN accumulation on the genomes, which corresponds to a special feature of Helicobacter species: extremely high HPN composition of genome.

Conclusion

Our research demonstrated that both genome content and structure of H. pylori have been highly adapted to its particular life style.  相似文献   

6.
The discordant prevalence of Helicobacter pylori and its related diseases, for a long time, fostered certain enigmatic situations observed in the countries of the southern world. Variation in H. pylori infection rates and disease outcomes among different populations in multi-ethnic Malaysia provides a unique opportunity to understand dynamics of host–pathogen interaction and genome evolution. In this study, we extensively analyzed and compared genomes of 27 Malaysian H. pylori isolates and identified three major phylogeographic lineages: hspEastAsia, hpEurope and hpSouthIndia. The analysis of the virulence genes within the core genome, however, revealed a comparable pathogenic potential of the strains. In addition, we identified four genes limited to strains of East-Asian lineage. Our analyses identified a few strain-specific genes encoding restriction modification systems and outlined 311 core genes possibly under differential evolutionary constraints, among the strains representing different ethnic groups. The cagA and vacA genes also showed variations in accordance with the host genetic background of the strains. Moreover, restriction modification genes were found to be significantly enriched in East-Asian strains. An understanding of these variations in the genome content would provide significant insights into various adaptive and host modulation strategies harnessed by H. pylori to effectively persist in a host-specific manner.  相似文献   

7.

Background

Detection of mutations in one or a couple of genes may not provide enough data or cover all the genomic DNA variance related to antibiotic resistance of Helicobacter pylori to clarithromycin (CLA) and levofloxacin (LVX). We aimed to perform whole genome sequencing to explore novel antibiotic resistance-related genes to increase predictive accuracy for future targeted sequencing tests.

Methods

Gastric mucosal biopsies were taken during upper endoscopy in 27 H. pylori-infected patients. According to culture-based antibacterial susceptibility test, H. pylori strains were divided into three groups, with nine strains in each group: CLA single-drug resistance (group C), LVX single-drug resistance (group L), and strains sensitive to all antibacterial drugs (group S). Based on whole genome sequencing with group S being the control, group C and group L group-specific single nucleotide variants and amino acid mutations were screened, and potential candidate genes related to CLA and LVX resistance were identified.

Results

The median age of study subjects was 35 years (IQR: 31–40), and 17 (63.0%) were male. All nine CLA-resistant strains had A2143G mutations in 23S rRNA, while none of nine sensitive strains had the mutation. Six of nine strains in group L and six of nine strains in group S had 87th or 91st mutation in gyrA. After comparing sequencing data of strains among the three groups, we identified five mutated positions belonging to four genes related to CLA resistance, and 31 mutated positions belonging to 20 genes related to LVX resistance. Novel genetic mutations were detected for CLA resistance (including fliJ and clpX) and LVX resistance (including fliJ, cheA, hemE, Val360Ile, and HP0568). Missense mutations in fliJ and cheA gene were mainly involved in chemotaxis and flagellar motility to facilitate bacterial escape of antibiotics, while the functions of other novel gene mutations underpinning antibiotic resistance remain to be investigated.

Conclusion

Whole genome sequencing detected potential novel genetic mutations conferring resistance of H. pylori to CLA and LVX including fliJ and cheA. Further studies to correlate these findings with treatment outcome should be performed.  相似文献   

8.
The genome of Helicobacter pylori is remarkable for its large number of restriction-modification (R-M) systems, and strain-specific diversity in R-M systems has been suggested to limit natural transformation, the major driving force of genetic diversification in H. pylori. We have determined the comprehensive methylomes of two H. pylori strains at single base resolution, using Single Molecule Real-Time (SMRT®) sequencing. For strains 26695 and J99-R3, 17 and 22 methylated sequence motifs were identified, respectively. For most motifs, almost all sites occurring in the genome were detected as methylated. Twelve novel methylation patterns corresponding to nine recognition sequences were detected (26695, 3; J99-R3, 6). Functional inactivation, correction of frameshifts as well as cloning and expression of candidate methyltransferases (MTases) permitted not only the functional characterization of multiple, yet undescribed, MTases, but also revealed novel features of both Type I and Type II R-M systems, including frameshift-mediated changes of sequence specificity and the interaction of one MTase with two alternative specificity subunits resulting in different methylation patterns. The methylomes of these well-characterized H. pylori strains will provide a valuable resource for future studies investigating the role of H. pylori R-M systems in limiting transformation as well as in gene regulation and host interaction.  相似文献   

9.
Helicobacter pylori has probably infected the human stomach since our origins and subsequently diversified in parallel with their human hosts. The genetic population history of H. pylori can therefore be used as a marker for human migration. We analysed seven housekeeping gene sequences of H. pylori strains isolated from 78 Senegalese and 24 Malagasy patients and compared them with the sequences of strains from other geographical locations. H. pylori from Senegal and Madagascar can be placed in the previously described HpAfrica1 genetic population, subpopulations hspWAfrica and hspSAfrica, respectively. These 2 subpopulations correspond to the distribution of Niger-Congo speakers in West and most of subequatorial Africa (due to Bantu migrations), respectively. H. pylori appears as a single population in Senegal, indicating a long common history between ethnicities as well as frequent local admixtures. The lack of differentiation between these isolates and an increasing genetic differentiation with geographical distance between sampling locations in Africa was evidence for genetic isolation by distance. The Austronesian expansion that started from Taiwan 5000 years ago dispersed one of the 10 subgroups of the Austronesian language family via insular Southeast Asia into the Pacific and Madagascar, and hspMaori is a marker for the entire Austronesian expansion. Strain competition and replacement of hspMaori by hpAfrica1 strains from Bantu migrants are the probable reasons for the presence of hspSAfrica strains in Malagasy of Southeast Asian descent. hpAfrica1 strains appear to be generalist strains that have the necessary genetic diversity to efficiently colonise a wide host spectrum.  相似文献   

10.

Background

Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of hospital-associated infection, but there is growing awareness of the emergence of multidrug-resistant lineages in community settings around the world. One such lineage is ST772-MRSA-V, which has disseminated globally and is increasingly prevalent in India. Here, we present the complete genome sequence of DAR4145, a strain of the ST772-MRSA-V lineage from India, and investigate its genomic characteristics in regards to antibiotic resistance and virulence factors.

Results

Sequencing using single-molecule real-time technology resulted in the assembly of a single continuous chromosomal sequence, which was error-corrected, annotated and compared to nine draft genome assemblies of ST772-MRSA-V from Australia, Malaysia and India. We discovered numerous and redundant resistance genes associated with mobile genetic elements (MGEs) and known core genome mutations that explain the highly antibiotic resistant phenotype of DAR4145. Staphylococcal toxins and superantigens, including the leukotoxin Panton-Valentinin Leukocidin, were predominantly associated with genomic islands and the phage φ-IND772PVL. Some of these mobile resistance and virulence factors were variably present in other strains of the ST772-MRSA-V lineage.

Conclusions

The genomic characteristics presented here emphasize the contribution of MGEs to the emergence of multidrug-resistant and highly virulent strains of community-associated MRSA. Antibiotic resistance was further augmented by chromosomal mutations and redundancy of resistance genes. The complete genome of DAR4145 provides a valuable resource for future investigations into the global dissemination and phylogeography of ST772-MRSA-V.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1599-9) contains supplementary material, which is available to authorized users.  相似文献   

11.
A versatile plasmid shuttle vector system was constructed, which is useful for genetic complementation of Helicobacter pylori strains or mutants with cloned genes of homologous or heterologous origin. The individual plasmid vectors consist of the minimal essential genetic elements, including an origin of replication for Escherichia coli, a H. pylori-specific replicon originally identified on a small cryptic H. pylori plasmid, an oriT sequence and a multiple cloning site. Shuttle plasmid pHel2 carries a chloramphenicol resistance cassette (cat GC) and pHel3 contains a kanamycin resistance gene (aphA-3) as the selectable marker; both are functional in E. coli and H. pylori. The shuttle plasmids were introduced into the H. pylori strain P1 by natural transformation. A efficiency of 7.0?×?10?7 and 4.7?×?10?7 transformants per viable recipient was achieved with pHel2 and pHel3, respectively, and both vectors showed stable, autonomous replication in H. pylori. An approximately 100-fold higher H. pylori transformation rate was obtained when the shuttle vectors for transformation were isolated from the homologous H. pylori strain, rather than E. coli, indicating that DNA restriction and modification mechanisms play a crucial role in plasmid transformation. Interestingly, both shuttle vectors could also be mobilized efficiently from E. coli into different H.?pylori recipients, with pHel2 showing an efficiency of 2.0?×?10?5 transconjugants per viable H. pylori P1 recipient. Thus, DNA restriction seems to be strongly reduced or absent during conjugal transfer. The functional complementation of a recA-deficient H. pylori mutant by the cloned H. pylorirecA + gene, and the expression of the heterologous green fluorescent protein (GFP) in H.?pylori demonstrate the general usefulness of?this system, which will significantly facilitate the molecular analysis of H. pylori virulence factors in the future.  相似文献   

12.
Here we describe ISHp609 of Helicobacter pylori, a new member of the IS605 mobile element family that is novel and contains two genes whose functions are unknown, jhp960 and jhp961, in addition to homologs of two other H. pylori insertion sequence (IS) element genes, orfA, which encodes a putative serine recombinase-transposase, and orfB, whose homologs in other species are also often annotated as genes that encode transposases. The complete four-gene element was found in 10 to 40% of strains obtained from Africa, India, Europe, and the Americas but in only 1% of East Asian strains. Sequence comparison of 10 representative ISHp609 elements revealed higher levels of DNA sequence matches (99%) than those seen in normal chromosomal genes (88 to 98%) or in other IS elements (95 to 97% for IS605, IS606, and IS607) from the same H. pylori populations. Sequence analysis suggested that ISHp609 can insert at many genomic sites with its left end preferentially next to TAT, with no target specificity for its right end, and without duplicating or deleting target sequences. A deleted form of ISHp609, containing just jhp960 and jhp961 and 37 bp of orfA, found in reference strain J99, was at the same chromosomal site in 15 to 40% of the strains from many geographic regions but again in only 1% of the East Asian strains. The abundance and sequence homogeneity of ISHp609 and of this nonmobile remnant suggested a recent bottleneck and then rapid spread in H. pylori populations, possibly selected by the contributions of the elements to bacterial fitness.  相似文献   

13.
Isolates of Helicobacter pylori can be classified phylogeographically. High genetic diversity and rapid microevolution are a hallmark of H. pylori genomes, a phenomenon that is proposed to play a functional role in persistence and colonization of diverse human populations. To provide further genomic evidence in the lineage of H. pylori and to further characterize diverse strains of this pathogen in different human populations, we report the finished genome sequence of Sahul64, an H. pylori strain isolated from an indigenous Australian. Our analysis identified genes that were highly divergent compared to the 38 publically available genomes, which include genes involved in the biosynthesis and modification of lipopolysaccharide, putative prophage genes, restriction modification components, and hypothetical genes. Furthermore, the virulence-associated vacA locus is a pseudogene and the cag pathogenicity island (cagPAI) is not present. However, the genome does contain a gene cluster associated with pathogenicity, including dupA. Our analysis found that with the addition of Sahul64 to the 38 genomes, the core genome content of H. pylori is reduced by approximately 14% (∼170 genes) and the pan-genome has expanded from 2,070 to 2,238 genes. We have identified three putative horizontally acquired regions, including one that is likely to have been acquired from the closely related Helicobacter cetorum prior to speciation. Our results suggest that Sahul64, with the absence of cagPAI, highly divergent cell envelope proteins, and a predicted nontransportable VacA protein, could be more highly adapted to ancient indigenous Australian people but with lower virulence potential compared to other sequenced and cagPAI-positive H. pylori strains.  相似文献   

14.

Background

Antibiotic combination therapy for Helicobacter pylori eradication must be adapted to local resistance patterns, but the epidemiology of H. pylori resistance to antibiotics is poorly documented in Africa. The aim was to determine the antibiotic resistance rates, as well as the associated molecular mechanisms, of strains isolated in Dakar, Senegal.

Methods

One hundred and eight H. pylori strains were isolated between 2007 and 2009 from 108 patients presenting with upper abdominal pain to the Gastroenterology Department of Le Dantec Hospital. Antimicrobial susceptibility testing was performed for amoxicillin, clarithromycin, metronidazole, levofloxacin and tetracyclin using the E-test method. Mutations in the 23S rRNA gene of clarithromycin-resistant strains and in gyrA and gyrB of levofloxacin-resistant strains were investigated.

Results

Isolates were characterized by no resistance to amoxicillin (0%), tetracycline (0%), and very low rate of resistance to clarithromycin (1%), but a high rate of resistance to metronidazole (85%). The clarithromycin-resistant strain displayed the A2143G mutation. A worrying rate of levofloxacin resistance was detected (15%). N87I and D91N were the most common mutations in the quinolone-resistance-determining region of gyrA.

Conclusions

The first-line empirical regimen for H. pylori eradication in Senegal should include clarithromycin. Increasing rates of fluoroquinolone resistance detected should discourage the use of levofloxacin-containing regimens without prior antimicrobial susceptibility testing.  相似文献   

15.
Gain and loss of multiple genes during the evolution of Helicobacter pylori   总被引:1,自引:0,他引:1  
Sequence diversity and gene content distinguish most isolates of Helicobacter pylori. Even greater sequence differences differentiate distinct populations of H. pylori from different continents, but it was not clear whether these populations also differ in gene content. To address this question, we tested 56 globally representative strains of H. pylori and four strains of Helicobacter acinonychis with whole genome microarrays. Of the weighted average of 1,531 genes present in the two sequenced genomes, 25% are absent in at least one strain of H. pylori and 21% were absent or variable in H. acinonychis. We extrapolate that the core genome present in all isolates of H. pylori contains 1,111 genes. Variable genes tend to be small and possess unusual GC content; many of them have probably been imported by horizontal gene transfer. Phylogenetic trees based on the microarray data differ from those based on sequences of seven genes from the core genome. These discrepancies are due to homoplasies resulting from independent gene loss by deletion or recombination in multiple strains, which distort phylogenetic patterns. The patterns of these discrepancies versus population structure allow a reconstruction of the timing of the acquisition of variable genes within this species. Variable genes that are located within the cag pathogenicity island were apparently first acquired en bloc after speciation. In contrast, most other variable genes are of unknown function or encode restriction/modification enzymes, transposases, or outer membrane proteins. These seem to have been acquired prior to speciation of H. pylori and were subsequently lost by convergent evolution within individual strains. Thus, the use of microarrays can reveal patterns of gene gain or loss when examined within a phylogenetic context that is based on sequences of core genes.  相似文献   

16.
Plasmids remain important microbial components mediating the horizontal gene transfer (HGT) and dissemination of antimicrobial resistance. To systematically explore the relationship between mobile genetic elements (MGEs) and antimicrobial resistance genes (ARGs), a novel strategy using single-molecule real-time (SMRT) sequencing was developed. This approach was applied to pooled conjugative plasmids from clinically isolated multidrug-resistant (MDR) Klebsiella pneumoniae from a tertiary referral hospital over a 9-month period. The conjugative plasmid pool was obtained from transconjugants that acquired antimicrobial resistance after plasmid conjugation with 53 clinical isolates. The plasmid pool was then subjected to SMRT sequencing, and 82 assembled plasmid fragments were obtained. In total, 124 ARGs (responsible for resistance to β-lactam, fluoroquinolone, and aminoglycoside, among others) and 317 MGEs [including transposons (Tns), insertion sequences (ISs), and integrons] were derived from these fragments. Most of these ARGs were linked to MGEs, allowing for the establishment of a relationship network between MGEs and/or ARGs that can be used to describe the dissemination of resistance by mobile elements. Key elements involved in resistance transposition were identified, including IS26, Tn3, IS903B, ISEcp1, and ISKpn19. As the most predominant IS in the network, a typical IS26-mediated multicopy composite transposition event was illustrated by tracing its flanking 8-bp target site duplications (TSDs). The landscape of the pooled plasmid sequences highlights the diversity and complexity of the relationship between MGEs and ARGs, underpinning the clinical value of dominant HGT profiles.  相似文献   

17.

Background

Helicobacter pylori is the etiological agent for diseases ranging from chronic gastritis and peptic ulcer disease to gastric adenocarcinoma and primary gastric B-cell lymphoma. Emergence of resistance to antibiotics possesses a challenge to the effort to eradicate H. pylori using conventional antibiotic-based therapies. The molecular mechanisms that contribute to the resistance of these strains have yet to be identified and are important for understanding the evolutional pattern and selective pressure imposed by the environment.

Methods and Findings

H. pylori was isolated from 102 patients diagnosed with gastrointestinal diseases, who underwent endoscopy at University Malaya Medical Centre (UMMC). The isolates were tested for their susceptibility on eleven antibiotics using Etest. Based on susceptibility test, 32.3% of the isolates were found to have primary metronidazole resistance; followed by clarithromycin (6.8%) and fluoroquinolones (6.8%). To further investigate the resistant strains, mutational patterns of gene rdxA, frxA, gyrA, gyrB, and 23S rRNA were studied. Consistent with the previous reports, metronidazole resistance was prevalent in the local population. However, clarithromycin, fluoroquinolone and multi-drug resistance were shown to be emerging. Molecular patterns correlated well with phenotypic data. Interestingly, multi-drug resistant (MDR) strains were found to be associated with higher minimum inhibitory concentration (MIC) than their single-drug resistant (SDR) counterparts. Most importantly, clarithromycin-resistant strains were suggested to have a higher incidence for developing multi-drug resistance.

Conclusion

Data from this study highlighted the urgency to monitor closely the prevalence of antibiotic resistance in the Malaysian population; especially that of clarithromycin and multi-drug resistance. Further study is needed to understand the molecular association between clarithromycin resistance and multi-drug resistance in H. pylori. The report serves a reminder that a strict antibiotic usage policy is needed in Malaysia and other developing countries (especially those where H. pylori prevalence remained high).  相似文献   

18.

Background

Helicobacter mustelae causes gastritis, ulcers and gastric cancer in ferrets and other mustelids. H. mustelae remains the only helicobacter other than H. pylori that causes gastric ulceration and cancer in its natural host. To improve understanding of H. mustelae pathogenesis, and the ulcerogenic and carcinogenic potential of helicobacters in general, we sequenced the H. mustelae genome, and identified 425 expressed proteins in the envelope and cytosolic proteome.

Results

The H. mustelae genome lacks orthologs of major H. pylori virulence factors including CagA, VacA, BabA, SabA and OipA. However, it encodes ten autotransporter surface proteins, seven of which were detected in the expressed proteome, and which, except for the Hsr protein, are of unknown function. There are 26 putative outer membrane proteins in H. mustelae, some of which are most similar to the Hof proteins of H. pylori. Although homologs of putative virulence determinants of H. pylori (NapA, plasminogen adhesin, collagenase) and Campylobacter jejuni (CiaB, Peb4a) are present in the H. mustelae genome, it also includes a distinct complement of virulence-related genes including a haemagglutinin/haemolysin protein, and a glycosyl transferase for producing blood group A/B on its lipopolysaccharide. The most highly expressed 264 proteins in the cytosolic proteome included many corresponding proteins from H. pylori, but the rank profile in H. mustelae was distinctive. Of 27 genes shown to be essential for H. pylori colonization of the gerbil, all but three had orthologs in H. mustelae, identifying a shared set of core proteins for gastric persistence.

Conclusions

The determination of the genome sequence and expressed proteome of the ulcerogenic species H mustelae provides a comparative model for H. pylori to investigate bacterial gastric carcinogenesis in mammals, and to suggest ways whereby cag minus H. pylori strains might cause ulceration and cancer. The genome sequence was deposited in EMBL/GenBank/DDBJ under accession number FN555004.  相似文献   

19.
Although Helicobacter pylori (H. pylori) is a highly significant pathogen, its source remains unclear. Many people consume chicken daily as a source of animal protein worldwide; thus, hygienic methods of supplying chickens for consumption are critical for public health. Therefore, our study examined the distribution of the glmM (ureC), babA2, vacA and cagA virulence genes in H. pylori strains in chicken meat and giblets (gizzards and livers) and the resistance of the strains to various antibiotics. Ninety chicken meat, gizzard and liver samples were obtained from a semi-automatic abattoir in Sadat City, Egypt, and were cultured and preliminarily analyzed using biochemical tests. The presence of the ureC, babA2, vacA and cagA genotypes was tested for in samples positive for H. pylori by multiplex polymerase chain reaction (Multiplex-PCR). The resistance of H. pylori to various antimicrobial drugs was tested using the disc diffusion method. In total, 7 of the 90 chicken samples were positive for H. pylori (7.78%); in 3/7 (42.85%) samples, the bacteria were found in the chicken liver, while the bacteria were found in the meat in 2/7 (28.57%) and in the gizzard in 2/7 (28.57%) samples. The total prevalence of both the ureC and babA2 genes in the isolated H. pylori strains was 100%, while the prevalence of the vacA and cagA genes was 57.1% and 42.9%, respectively. The resistance of H. pylori to the antibiotics utilized in our study was 100% for streptomycin; 85.7% for amoxicillin and penicillin; 71.4% for oxytetracycline, nalidixic acid and ampicillin; 57.1% for sulfamethoxazole and erythromycin; and 42.9% for neomycin, chloramphenicol and norfloxacin. In conclusion, the chicken meat and giblets were tainted by H. pylori, with a higher occurrence of the ureC, babA2, vacA and cagA genotypes. Future investigations should investigate the resistance of H. pylori to various antimicrobial agents in Egypt.  相似文献   

20.
The human gastric pathogen Helicobacter pylori causes chronic gastritis, peptic ulcer disease, gastric carcinoma, and mucosa-associated lymphoid tissue (MALT) lymphoma. It infects over 50% of the worlds' population, however, only a small subset of infected people experience H. pylori-associated illnesses. Associations with disease-specific factors remain enigmatic years after the genome sequences were deciphered. Infection with strains of Helicobacter pylori that carry the cytotoxin-associated antigen A (cagA) gene is associated with gastric carcinoma. Recent studies revealed mechanisms through which the cagA protein triggers oncopathogenic activities. Other candidate genes such as some members of the so-called plasticity region cluster are also implicated to be associated with carcinoma of stomach. Study of the evolution of polymorphisms and sequence variation in H. pylori populations on a global basis has provided a window into the history of human population migration and co-evolution of this pathogen with its host. Possible symbiotic relationships were debated since the discovery of this pathogen. The debate has been further intensified as some studies have posed the possibility that H. pylori infection may be beneficial in some humans. This assumption is based on increased incidence of gastro-oesophageal reflux disease (GERD), Barrett's oesophagus and adenocarcinoma of the oesophagus following H. pylori eradication in some countries. The contribution of comparative genomics to our understanding of the genome organisation and diversity of H. pylori and its pathophysiological importance to human healthcare is exemplified in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号