首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of abundance, trends and distribution of cetacean populations is needed to inform marine conservation efforts, ecosystem models and spatial planning. We compiled a geo-spatial database of published data on cetacean abundance from dedicated visual line-transect surveys and encoded >1100 abundance estimates for 47 species from 430 surveys conducted worldwide from 1975–2005. Our subsequent analyses revealed large spatial, temporal and taxonomic variability and gaps in survey coverage. With the exception of Antarctic waters, survey coverage was biased toward the northern hemisphere, especially US and northern European waters. Overall, <25% of the world''s ocean surface was surveyed and only 6% had been covered frequently enough (≥5 times) to allow trend estimation. Almost half the global survey effort, defined as total area (km2) covered by all survey study areas across time, was concentrated in the Eastern Tropical Pacific (ETP). Neither the number of surveys conducted nor the survey effort had increased in recent years. Across species, an average of 10% of a species'' predicted range had been covered by at least one survey, but there was considerable variation among species. With the exception of three delphinid species, <1% of all species'' ranges had been covered frequently enough for trend analysis. Sperm whales emerged from our analyses as a relatively data-rich species. This is a notoriously difficult species to survey visually, and we use this as an example to illustrate the challenges of using available data from line-transect surveys for the detection of trends or for spatial planning. We propose field and analytical methods to fill in data gaps to improve cetacean conservation efforts.  相似文献   

2.
In order to predict the fate of biodiversity in a rapidly changing world, we must first understand how species adapt to new environmental conditions. The long-term evolutionary dynamics of species'' physiological tolerances to differing climatic regimes remain obscure. Here, we unite palaeontological and neontological data to analyse whether species'' environmental tolerances remain stable across 3 Myr of profound climatic changes using 10 phylogenetically, ecologically and developmentally diverse mollusc species from the Atlantic and Gulf Coastal Plains, USA. We additionally investigate whether these species'' upper and lower thermal tolerances are constrained across this interval. We find that these species'' environmental preferences are stable across the duration of their lifetimes, even when faced with significant environmental perturbations. The results suggest that species will respond to current and future warming either by altering distributions to track suitable habitat or, if the pace of change is too rapid, by going extinct. Our findings also support methods that project species'' present-day environmental requirements to future climatic landscapes to assess conservation risks.  相似文献   

3.
There is good evidence that species' distributions are shifting poleward in response to climate change and wide interest in the magnitude of such responses for scientific and conservation purposes. It has been suggested from the directions of climatic changes that species' distribution shifts may not be simply poleward, but this has been rarely tested with observed data. Here, we apply a novel approach to measuring range shifts on axes ranging through 360°, to recent data on the distributions of 122 species of British breeding birds during 1988–1991 and 2008–2011. Although previously documented poleward range shifts have continued, with an average 13.5 km shift northward, our analysis indicates this is an underestimate because it ignores common and larger shifts that occurred along axes oriented to the north‐west and north‐east. Trailing edges contracted from a broad range of southerly directions. Importantly, these results are derived from systematically collected data so confounding observer‐effort biases can be discounted. Analyses of climate for the same period show that whilst temperature trends should drive species along a north–north‐westerly trajectory, directional responses to precipitation will depend on both the time of year that is important for determining a species' distribution, and the location of the range margin. Directions of species' range centroid shift were not correlated with spatial trends in any single climate variable. We conclude that range shifts of British birds are multidirectional, individualistic and probably determined by species‐specific interactions of multiple climate factors. Climate change is predicted to lead to changes in community composition through variation in the rates that species' ranges shift; our results suggest communities could change further owing to constituent species shifting along different trajectories. We recommend more studies consider directionality in climate and range dynamics to produce more appropriate measures of observed and expected responses to climate change.  相似文献   

4.
While rare species are vulnerable to global change, large declines in common species (i.e., those with large population sizes, large geographic distributions, and/or that are habitat generalists) also are of conservation concern. Understanding if and how commonness mediates species' responses to global change, including land cover change, can help guide conservation strategies. We explored avian population responses to land cover change along a gradient from common to rare species using avian data from the North American Breeding Bird Survey (BBS) and land cover data from the National Land Cover Database for the conterminous United States. Specifically, we used generalized linear mixed effects models to ask if species' commonness affected the relationship between land cover and counts, using the initial amount of and change in land cover surrounding each North American BBS route from 2001 to 2016. We quantified species' commonness as a continuous metric at the national scale using the logarithm (base 10) of each species' total count across all routes in the conterminous United States in 2001. For our focal 15-year period, we found that higher proportions of initial natural land cover favored (i.e., were correlated with higher) counts of rare but not common species. We also found that commonness mediated how change in human land cover, but not natural land cover, was associated with species' counts at the end of the study period. Increases in developed lands did not favor counts of any species. Increases in agriculture and declines in pasture favored counts of common but not rare species. Our findings show a signal of commonness in how species respond to a major dimension of global change. Evaluating how and why commonness mediates species' responses to land cover change can help managers design conservation portfolios that sustain the spectrum of common to rare species.  相似文献   

5.
Conservation planning is crucial for megadiverse countries where biodiversity is coupled with incomplete reserve systems and limited resources to invest in conservation. Using Peru as an example of a megadiverse country, we asked whether the national system of protected areas satisfies biodiversity conservation needs. Further, to complement the existing reserve system, we identified and prioritized potential conservation areas using a combination of species distribution modeling, conservation planning and connectivity analysis. Based on a set of 2,869 species, including mammals, birds, amphibians, reptiles, butterflies, and plants, we used species distribution models to represent species'' geographic ranges to reduce the effect of biased sampling and partial knowledge about species'' distributions. A site-selection algorithm then searched for efficient and complementary proposals, based on the above distributions, for a more representative system of protection. Finally, we incorporated connectivity among areas in an innovative post-hoc analysis to prioritize those areas maximizing connectivity within the system. Our results highlight severe conservation gaps in the Coastal and Andean regions, and we propose several areas, which are not currently covered by the existing network of protected areas. Our approach helps to find areas that contribute to creating a more representative, connected and efficient network.  相似文献   

6.
Climate change may shrink and/or shift plant species ranges thereby increasing their vulnerability and requiring targeted conservation to facilitate adaptation. We quantified the vulnerability to climate change of plant species based on exposure, sensitivity and adaptive capacity and assessed the effects of including these components in complementarity‐based spatial conservation prioritisation. We modelled the vulnerability of 584 native plant species under three climate change scenarios in an 11.9 million hectare fragmented agricultural region in southern Australia. We represented exposure as species' geographical range under each climate change scenario as quantified using species distribution models. We calculated sensitivity as a function of the impact of climate change on species' geographical ranges. Using a dispersal kernel, we quantified adaptive capacity as species' ability to migrate to new geographical ranges under each climate change scenario. Using Zonation, we assessed the impact of individual components of vulnerability (exposure, sensitivity and adaptive capacity) on spatial conservation priorities and levels of species representation in priority areas under each climate change scenario. The full vulnerability framework proved an effective basis for identifying spatial conservation priorities under climate change. Including different dimensions of vulnerability had significant implications for spatial conservation priorities. Incorporating adaptive capacity increased the level of representation of most species. However, prioritising sensitive species reduced the representation of other species. We conclude that whilst taking an integrated approach to mitigating species vulnerability to climate change can ensure sensitive species are well‐represented in a conservation network, this can come at the cost of reduced representation of other species. Conservation planning decisions aimed at reducing species vulnerability to climate change need to be made in full cognisance of the sensitivity of spatial conservation priorities to individual components of vulnerability, and the trade‐offs associated with focussing on sensitive species.  相似文献   

7.
The effectiveness of a system of reserves may be compromised under climate change as species' habitat shifts to nonreserved areas, a problem that may be compounded when well‐studied vertebrate species are used as conservation umbrellas for other taxa. The Northwest Forest Plan was among the first efforts to integrate conservation of wide‐ranging focal species and localized endemics into regional conservation planning. We evaluated how effectively the plan's focal species, the Northern Spotted Owl, acts as an umbrella for localized species under current and projected future climates and how the regional system of reserves can be made more resilient to climate change. We used the program maxent to develop distribution models integrating climate data with vegetation variables for the owl and 130 localized species. We used the program zonation to identify a system of areas that efficiently captures habitat for both the owl and localized species and prioritizes refugial areas of climatic and topographic heterogeneity where current and future habitat for dispersal‐limited species is in proximity. We projected future species' distributions based on an ensemble of contrasting climate models, and incorporating uncertainty between alternate climate projections into the prioritization process. Reserve solutions based on the owl overlap areas of high localized‐species richness but poorly capture core areas of localized species' distribution. Congruence between priority areas across taxa increases when refugial areas are prioritized. Although core‐area selection strategies can potentially increase the conservation value and resilience of regional reserve systems, they accentuate contrasts in priority areas between species and over time and should be combined with a broadened taxonomic scope and increased attention to potential effects of climate change. Our results suggest that systems of fixed reserves designed for resilience can increase the likelihood of retaining the biological diversity of forest ecosystems under climate change.  相似文献   

8.
Despite their ubiquity, in most cases little is known about the impact of eukaryotic parasites on their mammalian hosts. Comparative approaches provide a powerful method to investigate the impact of parasites on host ecology and evolution, though two issues are critical for such efforts: controlling for variation in methods of identifying parasites and incorporating heterogeneity in sampling effort across host species. To address these issues, there is a need for standardized methods to catalogue eukaryotic parasite diversity across broad phylogenetic host ranges. We demonstrate the feasibility of a metabarcoding approach for describing parasite communities by analysing faecal samples from 11 nonhuman primate species representing divergent lineages of the primate phylogeny and the full range of sampling effort (i.e. from no parasites reported in the literature to the best‐studied primates). We detected a number of parasite families and regardless of prior sampling effort, metabarcoding of only ten faecal samples identified parasite families previously undescribed in each host (x? = 8.5 new families per species). We found more overlap between parasite families detected with metabarcoding and published literature when more research effort—measured as the number of publications—had been conducted on the host species' parasites. More closely related primates and those from the same continent had more similar parasite communities, highlighting the biological relevance of sampling even a small number of hosts. Collectively, results demonstrate that metabarcoding methods are sensitive and powerful enough to standardize studies of eukaryotic parasite communities across host species, providing essential new tools for macroecological studies of parasitism.  相似文献   

9.
10.
Dispersal is fundamental in determining biodiversity responses to rapid climate change, but recently acquired ecological and evolutionary knowledge is seldom accounted for in either predictive methods or conservation planning. We emphasise the accumulating evidence for direct and indirect impacts of climate change on dispersal. Additionally, evolutionary theory predicts increases in dispersal at expanding range margins, and this has been observed in a number of species. This multitude of ecological and evolutionary processes is likely to lead to complex responses of dispersal to climate change. As a result, improvement of models of species’ range changes will require greater realism in the representation of dispersal. Placing dispersal at the heart of our thinking will facilitate development of conservation strategies that are resilient to climate change, including landscape management and assisted colonisation. Synthesis This article seeks synthesis across the fields of dispersal ecology and evolution, species distribution modelling and conservation biology. Increasing effort focuses on understanding how dispersal influences species' responses to climate change. Importantly, though perhaps not broadly widely‐recognised, species' dispersal characteristics are themselves likely to alter during rapid climate change. We compile evidence for direct and indirect influences that climate change may have on dispersal, some ecological and others evolutionary. We emphasise the need for predictive modelling to account for this dispersal realism and highlight the need for conservation to make better use of our existing knowledge related to dispersal.  相似文献   

11.
12.
Evaluative bibliometrics uses advanced techniques to assess the impact of scholarly work in the context of other scientific work and usually compares the relative scientific contributions of research groups or institutions. Using publications from the National Institute of Allergy and Infectious Diseases (NIAID) HIV/AIDS extramural clinical trials networks, we assessed the presence, performance, and impact of papers published in 2006-2008. Through this approach, we sought to expand traditional bibliometric analyses beyond citation counts to include normative comparisons across journals and fields, visualization of co-authorship across the networks, and assess the inclusion of publications in reviews and syntheses. Specifically, we examined the research output of the networks in terms of the a) presence of papers in the scientific journal hierarchy ranked on the basis of journal influence measures, b) performance of publications on traditional bibliometric measures, and c) impact of publications in comparisons with similar publications worldwide, adjusted for journals and fields. We also examined collaboration and interdisciplinarity across the initiative, through network analysis and modeling of co-authorship patterns. Finally, we explored the uptake of network produced publications in research reviews and syntheses. Overall, the results suggest the networks are producing highly recognized work, engaging in extensive interdisciplinary collaborations, and having an impact across several areas of HIV-related science. The strengths and limitations of the approach for evaluation and monitoring research initiatives are discussed.  相似文献   

13.
Host-virus association data underpin research into the distribution and eco-evolutionary correlates of viral diversity and zoonotic risk across host species. However, current knowledge of the wildlife virome is inherently constrained by historical discovery effort, and there are concerns that the reliability of ecological inference from host-virus data may be undermined by taxonomic and geographical sampling biases. Here, we evaluate whether current estimates of host-level viral diversity in wild mammals are stable enough to be considered biologically meaningful, by analysing a comprehensive dataset of discovery dates of 6571 unique mammal host-virus associations between 1930 and 2018. We show that virus discovery rates in mammal hosts are either constant or accelerating, with little evidence of declines towards viral richness asymptotes, even in highly sampled hosts. Consequently, inference of relative viral richness across host species has been unstable over time, particularly in bats, where intensified surveillance since the early 2000s caused a rapid rearrangement of species'' ranked viral richness. Our results illustrate that comparative inference of host-level virus diversity across mammals is highly sensitive to even short-term changes in sampling effort. We advise caution to avoid overinterpreting patterns in current data, since it is feasible that an analysis conducted today could draw quite different conclusions than one conducted only a decade ago.  相似文献   

14.
As biodiversity declines, wildlife conservation focuses on in situ and ex situ management strategies. Zoo-based breeding programmes are often designed to contribute to the conservation of species that are threatened in the wild. Diet contributes to the reproductive success, disease status and longevity of all animals. It is near-impossible to replicate a species' diet in captivity using only the species they consume in the wild, but the nutritional composition of a wild diet, if known, can be closely matched using commercially available foods for which the nutritional composition has been calculated. Ecological research has identified food items of importance in the diet of many species. However, the nutritional composition of these food items is rarely evaluated, even though the composition of wild food items is important in understanding the dietary adaptations and requirements of wildlife. In contrast, the nutritional requirements of domestic species are well researched and can be used to predict a range of plausible nutrient requirements of some wild species, especially those with similar life histories. Access to wild populations provides further opportunities for nutritional science to determine the requirements of individual species. Small-scale dietary experimentation undertaken at conservation institutions may show positive effects on health and welfare but is rarely published in the scientific literature. This review describes current standards in nutritional management of birds and recommends pathways for filling knowledge gaps. Research on mammals has dominated the nutrition literature, so there is a relative lack of nutritional management information for birds. We combine concepts of domestic animal nutrition with recent findings on the nutritional requirements of birds to provide a foundation for further studies of avian nutrition. We call for the broader zoological community to share data and collaborate on nutritional research to support conservation institutions in nutritional management of wild birds.  相似文献   

15.
Analyses of knowledge gaps can highlight imbalances in research, encouraging greater proportionality in the distribution of research efforts. In this research we used generalized linear mixed models (GLMM) with the aim to determine if research efforts for the period 2005–2015 for terrestrial vertebrates of Amphibia, Aves, Mammalia and Reptilia in the South Pacific region were correlated with conservation status (critically endangered (CR), endangered (EN), vulnerable (VU), least concern (LC) and near threatened (NT)) or population trends (increasing, stable, decreasing and unknown) through the International Union for Conservation of Nature (IUCN) database. Our results showed that research distribution was uneven across different classes. Out of 633623 investigated papers, the average number of publications per species was 43.7, 306.7, 717.6 and 115.3 for Amphibia (284 species), Aves (1306 species), Mammalia (243 species) and Reptilia (400 species), respectively. Consistently, the lower publication effort on Amphibia compared to other taxonomic classes was revealed as significant by GLMM analysis. There was no significant differences in research effort among levels of conservation status. However, we found significantly different publication efforts among population trends of all examined species in that species with “unknown” population trends gained significantly lower researchers’ attention compared to species with “decreasing” trend. Results also indicated that, although it was not significant, the highest attention is given to species with “increasing” population trend over all taxonomic classes. Using the Information Theoretic approach we also generated a set of competing models to identify most important factors influencing research efforts, revealing that the highest ranked model included taxonomic class and population trend.  相似文献   

16.
Some species face greater anthropogenic threats than others, and have increased need for scarce conservation resources. Yet how resources are allocated for conservation remains little known. I examined the distribution of research effort, an index of resource allocation, across Felidae (the cat family), a diverse, widely-distributed, and threatened taxon. I performed complete searches of the published literature for all cat species from 1986 to 2007, collecting a total of 2,462 papers, of which 926 represented in situ studies. Threat status, as ranked by a World Conservation Union report in 1996, was significantly correlated with geographical range size, with narrowly distributed species tending to be more at risk. Unlike in many other taxa, threat status was not correlated with body size. The number of total and in situ publications (“research effort”) per species was significantly and positively related to body size, but not to threat status or geographical range size. Research effort, rather than being distributed according to actual threat status, is highly skewed towards large species. However, the ratio of the number of studies on the 10 smallest cat species to the number on the 10 largest species has increased significantly since 1986. Yet many species remain severely understudied; I identify 14 cat species that are threatened and have <10 in situ publications each. These species critically require a greater share of the conservation research effort.  相似文献   

17.
We modelled the future distribution in 2050 of 975 endemic plant species in southern Africa distributed among seven life forms, including new methodological insights improving the accuracy and ecological realism of predictions of global changes studies by: (i) using only endemic species as a way to capture the full realized niche of species, (ii) considering the direct impact of human pressure on landscape and biodiversity jointly with climate, and (iii) taking species' migration into account. Our analysis shows important promises for predicting the impacts of climate change in conjunction with land transformation. We have shown that the endemic flora of Southern Africa on average decreases with 41% in species richness among habitats and with 39% on species distribution range for the most optimistic scenario. We also compared the patterns of species' sensitivity with global change across life forms, using ecological and geographic characteristics of species. We demonstrate here that species and life form vulnerability to global changes can be partly explained according to species' (i) geographical distribution along climatic and biogeographic gradients, like climate anomalies, (ii) niche breadth or (iii) proximity to barrier preventing migration. Our results confirm that the sensitivity of a given species to global environmental changes depends upon its geographical distribution and ecological proprieties, and makes it possible to estimate a priori its potential sensitivity to these changes.  相似文献   

18.
Shifts in species'' traits across contrasting environments have the potential to influence ecosystem functioning. Plant communities on unusually harsh soils may have unique responses to environmental change, through the mediating role of functional plant traits. We conducted a field study comparing eight functional leaf traits of seventeen common species located on both serpentine and non-serpentine environments on Lesbos Island, in the eastern Mediterranean. We focused on species'' adaptive strategies across the two contrasting environments and investigated the effect of trait variation on the robustness of core ‘leaf economic’ relationships across local environmental variability. Our results showed that the same species followed a conservative strategy on serpentine substrates and an exploitative strategy on non-serpentine ones, consistent with the leaf economic spectrum predictions. Although considerable species-specific trait variability emerged, the single-trait responses across contrasting environments were generally consistent. However, multivariate-trait responses were diverse. Finally, we found that the strength of relationships between core ‘leaf economic’ traits altered across local environmental variability. Our results highlight the divergent trait evolution on serpentine and non-serpentine communities and reinforce other findings presenting species-specific responses to environmental variation.  相似文献   

19.
20.
The recent and rapid digitization of biodiversity data from natural history collection (NHC) archives has enriched collections based data repositories; this data continues to inform studies of species' geographic distributions. Here we investigate the relative impact of plant data from small natural history collections (collections with < 100,000 specimens) on species distributional models in an effort to document the potential of data from small NHCs to contribute to and inform biodiversity research. We modelled suitable habitat of five test case species from Fuireneae (Cyperaceae) in the United States using specimen records available via the Global Biodiversity Information Facility and that of data ready to mobilize from two regional small herbaria. Data were partitioned into three datasets based on their source: 1) collections-based records from large NHCs accessed GBIF, 2) collections-based records from small NHCs accessed from GBIF, and 3) collections-based records from two small regional herbaria not yet mobilized to GBIF. We extracted and evaluated the ecological niche represented for each of the three datasets by applying dataset occurrences to 14 environmental factors, and we modelled habitat suitability using Maxent to compare the represented distribution of the environmental values among the datasets. Our analyses indicate that the data from small NHCs contributed unique information in both geographic and environmental space. When data from small collections were combined with data from large collections, species models of the ecological niche resulted in more refined predictions of habitat suitability, indicating that small collections can contribute unique occurrence data which enhance species distribution models by bridging geographic collection gaps and shifting modelled predictions of suitable habitat. Inclusion of specimen records from small collections in ongoing digitization efforts is essential for generating informed models of a species' niche and distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号