共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
Neurons encode information in sequences of spikes, which are triggered when their membrane potential crosses a threshold. In vivo, the spiking threshold displays large variability suggesting that threshold dynamics have a profound influence on how the combined input of a neuron is encoded in the spiking. Threshold variability could be explained by adaptation to the membrane potential. However, it could also be the case that most threshold variability reflects noise and processes other than threshold adaptation. Here, we investigated threshold variation in auditory neurons responses recorded in vivo in barn owls. We found that spike threshold is quantitatively predicted by a model in which the threshold adapts, tracking the membrane potential at a short timescale. As a result, in these neurons, slow voltage fluctuations do not contribute to spiking because they are filtered by threshold adaptation. More importantly, these neurons can only respond to input spikes arriving together on a millisecond timescale. These results demonstrate that fast adaptation to the membrane potential captures spike threshold variability in vivo. 相似文献
3.
Hongbiao Huang Ningning Liu Changshan Yang Siyan Liao Haiping Guo Kai Zhao Xiaofen Li Shouting Liu Lixia Guan Chunjiao Liu Li Xu Change Zhang Wenbin Song Bing Li Ping Tang Q. Ping Dou Jinbao Liu 《PloS one》2012,7(12)
Combinations of proteasome inhibitors and histone deacetylases (HDAC) inhibitors appear to be the most potent to produce synergistic cytotoxicity in preclinical trials. We have recently confirmed that L-carnitine (LC) is an endogenous HDAC inhibitor. In the current study, the anti-tumor effect of LC plus proteasome inhibitor bortezomib (velcade, Vel) was investigated both in cultured hepatoma cancer cells and in Balb/c mice bearing HepG2 tumor. Cell death and cell viability were assayed by flow cytometry and MTS, respectively. Gene, mRNA expression and protein levels were detected by gene microarray, quantitative real-time PCR and Western blot, respectively. The effect of Vel on the acetylation of histone H3 associated with the p21cip1 gene promoter was examined by using ChIP assay and proteasome peptidase activity was detected by cell-based chymotrypsin-like (CT-like) activity assay. Here we report that (i) the combination of LC and Vel synergistically induces cytotoxicity in vitro; (ii) the combination also synergistically inhibits tumor growth in vivo; (iii) two major pathways are involved in the synergistical effects of the combinational treatment: increased p21cip1 expression and histone acetylation in vitro and in vivo and enhanced Vel-induced proteasome inhibition by LC. The synergistic effect of LC and Vel in cancer therapy should have great potential in the future clinical trials. 相似文献
4.
《PloS one》2015,10(11)
Interleukin-6 (IL-6) is an important member of the cytokine superfamily, exerting pleiotropic actions on many physiological processes. Over-production of IL-6 is a hallmark of immune-mediated inflammatory diseases such as Castleman’s Disease (CD) and rheumatoid arthritis (RA). Antagonism of the interleukin IL-6/IL-6 receptor (IL-6R)/gp130 signaling complex continues to show promise as a therapeutic target. Monoclonal antibodies (mAbs) directed against components of this complex have been approved as therapeutics for both CD and RA. To potentially provide an additional modality to antagonize IL-6 induced pathophysiology, a peptide-based antagonist approach was undertaken. Using a combination of molecular design, phage-display, and medicinal chemistry, disulfide-rich peptides (DRPs) directed against IL-6 were developed with low nanomolar potency in inhibiting IL-6-induced pSTAT3 in U937 monocytic cells. Targeted PEGylation of IL-6 binding peptides resulted in molecules that retained their potency against IL-6 and had a prolongation of their pharmacokinetic (PK) profiles in rodents and monkeys. One such peptide, PN-2921, contained a 40 kDa polyethylene glycol (PEG) moiety and inhibited IL-6-induced pSTAT3 in U937 cells with sub-nM potency and possessed 23, 36, and 59 h PK half-life values in mice, rats, and cynomolgus monkeys, respectively. Parenteral administration of PN-2921 to mice and cynomolgus monkeys potently inhibited IL-6-induced biomarker responses, with significant reductions in the acute inflammatory phase proteins, serum amyloid A (SAA) and C-reactive protein (CRP). This potent, PEGylated IL-6 binding peptide offers a new approach to antagonize IL-6-induced signaling and associated pathophysiology. 相似文献
5.
Hidemasa Katsumi Jun-ichi Sano Makiya Nishikawa Keiko Hanzawa Toshiyasu Sakane Akira Yamamoto 《PloS one》2015,10(8)
To establish a rational molecular design for bisphosphonate (BP)-modified proteins for efficient bone targeting, a pharmacokinetic study was performed using a series of alendronate (ALN), a nitrogen-containing BP, modified proteins with various molecular weights and varying degrees of modification. Four proteins with different molecular weight—yeast glutathione reductase (GR; MW: 112,000 Da), bovine serum albumin (BSA; MW: 67,000 Da), recombinant human superoxide dismutase (SOD; MW: 32,000 Da), and chicken egg white lysozyme (LZM; MW: 14,000 Da)—were modified with ALN to obtain ALN-modified proteins. Pharmacokinetic analysis of the tissue distribution of the ALN-modified and unmodified proteins was performed after radiolabeling them with indium-111 (111In) by using a bifunctional chelating agent. Calculation of tissue uptake clearances revealed that the bone uptake clearances of 111In-ALN-modified proteins were proportional to the degree of ALN modification. 111In-GR-ALN and BSA-ALN, the two high-molecular-weight proteins, efficiently accumulated in bones, regardless of the degree of ALN modification. Approximately 36 and 34% of the dose, respectively, was calculated to be delivered to the bones. In contrast, the maximum amounts taken up by bone were 18 and 13% of the dose for 111In-SOD-ALN(32) and LZM-ALN(9), respectively, because of their high renal clearance. 111In-SOD modified with both polyethylene glycol (PEG) and ALN (111In-PEG-SOD-ALN) was efficiently delivered to the bone. Approximately 36% of the dose was estimated to be delivered to the bones. In an experimental bone metastasis mouse model, treatment with PEG-SOD-ALN significantly reduced the number of tumor cells in the bone of the mice. These results indicate that the combination of PEG and ALN modification is a promising approach for efficient bone targeting of proteins with a high total-body clearance. 相似文献
6.
Akinori Hasegawa Kengo Sato Remina Shirai Rena Watanabe Keigo Yamamoto Kaho Watanabe Kyoko Nohtomi Tsutomu Hirano Takuya Watanabe 《PloS one》2014,9(12)
Aim
Atherosclerosis is the complex lesion that consists of endothelial inflammation, macrophage foam cell formation, vascular smooth muscle cell (VSMC) migration and proliferation, and extracellular matrix production. Human urocortin 1 (Ucn1), a 40-amino acid peptide member of the corticotrophin-releasing factor/urotensin I family, has potent cardiovascular protective effects. This peptide induces potent and long-lasting hypotension and coronary vasodilation. However, the relationship of Ucn1 with atherosclerosis remains unclear. The present study was performed to clarify the effects of Ucn1 on atherosclerosis.Methods
We assessed the effects of Ucn1 on the inflammatory response and proliferation of human endothelial cells (ECs), human macrophage foam cell formation, migration and proliferation of human VSMCs, extracellular matrix expression in VSMCs, and the development of atherosclerosis in apolipoprotein E-deficient (Apoe −/−) mice.Results
Ucn1 significantly suppressed cell proliferation without inducing apoptosis, and lipopolysaccharide-induced up-regulation of monocyte chemoattractant protein-1 and intercellular adhesion molecule-1 in human ECs. Ucn1 significantly reduced oxidized low-density lipoprotein-induced foam cell formation with a significant down-regulation of CD36 and acyl-CoA:cholesterol acyltransferase 1 in human monocyte-derived macrophages. Ucn1 significantly suppressed the migration and proliferation of human VSMCs and increased the activities of matrix metalloproteinase-2 (MMP2) and MMP9 in human VSMCs. Intraperitoneal injection of Ucn1 into Apoe −/− mice for 4 weeks significantly retarded the development of aortic atherosclerotic lesions.Conclusions
This study provided the first evidence that Ucn1 prevents the development of atherosclerosis by suppressing EC inflammatory response and proliferation, macrophage foam cell formation, and VSMC migration and proliferation. Thus, Ucn1 could serve as a novel therapeutic target for atherosclerotic cardiovascular diseases. 相似文献7.
David M. Lucas Lapo Alinari Derek A. West Melanie E. Davis Ryan B. Edwards Amy J. Johnson Kristie A. Blum Craig C. Hofmeister Michael A. Freitas Mark R. Parthun Dasheng Wang Amy Lehman Xiaoli Zhang David Jarjoura Samuel K. Kulp Carlo M. Croce Michael R. Grever Ching-Shih Chen Robert A. Baiocchi John C. Byrd 《PloS one》2010,5(6)
Background
While deacetylase (DAC) inhibitors show promise for the treatment of B-cell malignancies, those introduced to date are weak inhibitors of class I and II DACs or potent inhibitors of class I DAC only, and have shown suboptimal activity or unacceptable toxicities. We therefore investigated the novel DAC inhibitor AR-42 to determine its efficacy in B-cell malignancies.Principal Findings
In mantle cell lymphoma (JeKo-1), Burkitt''s lymphoma (Raji), and acute lymphoblastic leukemia (697) cell lines, the 48-hr IC50 (50% growth inhibitory concentration) of AR-42 is 0.61 µM or less. In chronic lymphocytic leukemia (CLL) patient cells, the 48-hr LC50 (concentration lethal to 50%) of AR-42 is 0.76 µM. AR-42 produces dose- and time-dependent acetylation both of histones and tubulin, and induces caspase-dependent apoptosis that is not reduced in the presence of stromal cells. AR-42 also sensitizes CLL cells to TNF-Related Apoptosis Inducing Ligand (TRAIL), potentially through reduction of c-FLIP. AR-42 significantly reduced leukocyte counts and/or prolonged survival in three separate mouse models of B-cell malignancy without evidence of toxicity.Conclusions/Significance
Together, these data demonstrate that AR-42 has in vitro and in vivo efficacy at tolerable doses. These results strongly support upcoming phase I testing of AR-42 in B-cell malignancies. 相似文献8.
Liver transplants have their highest technical failure rate in the first two weeks following surgery. Currently, there are limited devices for continuous, real-time monitoring of the graft. In this work, a three wavelengths system is presented that combines near-infrared spectroscopy and photoplethysmography with a processing method that can uniquely measure and separate the venous and arterial oxygen contributions. This strategy allows for the quantification of tissue oxygen consumption used to study hepatic metabolic activity and to relate it to tissue stress. The sensor is battery operated and communicates wirelessly with a data acquisition computer which provides the possibility of implantation provided sufficient miniaturization. In two in vivo porcine studies, the sensor tracked perfusion changes in hepatic tissue during vascular occlusions with a root mean square error (RMSE) of 0.135 mL/min/g of tissue. We show the possibility of using the pulsatile wave to measure the arterial oxygen saturation similar to pulse oximetry. The signal is also used to extract the venous oxygen saturation from the direct current (DC) levels. Arterial and venous oxygen saturation changes were measured with an RMSE of 2.19% and 1.39% respectively when no vascular occlusions were induced. This error increased to 2.82% and 3.83% when vascular occlusions were induced during hypoxia. These errors are similar to the resolution of a commercial oximetry catheter used as a reference. This work is the first realization of a wireless optical sensor for continuous monitoring of hepatic hemodynamics. 相似文献
9.
Analysis of general and specific protein synthesis provides important information, relevant to cellular physiology and function. However, existing methodologies, involving metabolic labelling by incorporation of radioactive amino acids into nascent polypeptides, cannot be applied to monitor protein synthesis in specific cells or tissues, in live specimens. We have developed a novel approach for monitoring protein synthesis in specific cells or tissues, in vivo. Fluorescent reporter proteins such as GFP are expressed in specific cells and tissues of interest or throughout animals using appropriate promoters. Protein synthesis rates are assessed by following fluorescence recovery after partial photobleaching of the fluorophore at targeted sites. We evaluate the method by examining protein synthesis rates in diverse cell types of live, wild type or mRNA translation-defective Caenorhabditis elegans animals. Because it is non-invasive, our approach allows monitoring of protein synthesis in single cells or tissues with intrinsically different protein synthesis rates. Furthermore, it can be readily implemented in other organisms or cell culture systems. 相似文献
10.
Rebekah Baskin Sung O. Park Gy?rgy M. Keser? Kirpal S. Bisht Heather L. Wamsley Peter P. Sayeski 《PloS one》2014,9(8)
Glioblastoma multiforme (GBM) is the most common and the most aggressive form of primary brain tumor. Jak2 is a non-receptor tyrosine kinase that is involved in proliferative signaling through its association with various cell surface receptors. Hyperactive Jak2 signaling has been implicated in numerous hematological disorders as well as in various solid tumors including GBM. Our lab has developed a Jak2 small molecule inhibitor known as G6. It exhibits potent efficacy in vitro and in several in vivo models of Jak2-mediated hematological disease. Here, we hypothesized that G6 would inhibit the pathogenic growth of GBM cells expressing hyperactive Jak2. To test this, we screened several GBM cell lines and found that T98G cells express readily detectable levels of active Jak2. We found that G6 treatment of these cells reduced the phosphorylation of Jak2 and STAT3, in a dose-dependent manner. In addition, G6 treatment reduced the migratory potential, invasive potential, clonogenic growth potential, and overall viability of these cells. The effect of G6 was due to its direct suppression of Jak2 function and not via off-target kinases, as these effects were recapitulated in T98G cells that received Jak2 specific shRNA. G6 also significantly increased the levels of caspase-dependent apoptosis in T98G cells, when compared to cells that were treated with vehicle control. Lastly, when T98G cells were injected into nude mice, G6 treatment significantly reduced tumor volume and this was concomitant with significantly decreased levels of phospho-Jak2 and phospho-STAT3 within the tumors themselves. Furthermore, tumors harvested from mice that received G6 had significantly less vimentin protein levels when compared to tumors from mice that received vehicle control solution. Overall, these combined in vitro and in vivo results indicate that G6 may be a viable therapeutic option against GBM exhibiting hyperactivation of Jak2. 相似文献
11.
Background
Carcinomas make up the majority of cancers. Their accurate and specific diagnoses are of great significance for the improvement of patients'' curability.Methodology/Principal Findings
In this paper, we report an effectual example of the in vivo fluorescence molecular imaging of carcinomas with extremely high specificity based on whole cell-SELEX aptamers. Firstly, S6, an aptamer against A549 lung carcinoma cells, was adopted and labeled with Cy5 to serve as a molecular imaging probe. Flow cytometry assays revealed that Cy5-S6 could not only specifically label in vitro cultured A549 cells in buffer, but also successfully achieve the detection of ex vivo cultured target cells in serum. When applied to in vivo imaging, Cy5-S6 was demonstrated to possess high specificity in identifying A549 carcinoma through a systematic comparison investigation. Particularly, after Cy5-S6 was intravenously injected into nude mice which were simultaneously grafted with A549 lung carcinoma and Tca8113 tongue carcinoma, a much longer retention time of Cy5-S6 in A549 tumor was observed and a clear targeted cancer imaging result was presented. On this basis, to further promote the application to imaging other carcinomas, LS2 and ZY8, which are two aptamers selected by our group against Bel-7404 and SMMC-7721 liver carcinoma cells respectively, were tested in a similar way, both in vitro and in vivo. Results showed that these aptamers were even effective in differentiating liver carcinomas of different subtypes in the same body.Conclusions/Significance
This work might greatly advance the application of whole cell-SELEX aptamers to carcinomas-related in vivo researches. 相似文献12.
Background: Parkinson's disease (PD) is a common progressive neurodegenerative and the prevailing treatments are ineffective in the early stages of the disease. Therefore, other strategies must be devised to halt the steady decrease of dopaminergic neurons in the brain. In Parkinson's disease, a dysregulated ACE/Ang II/AT1R axis in the brain causes free radical damage, apoptosis, and neuronal destruction. Current PD treatments only alleviate symptoms and do not reverse the degradation mechanism of dopaminergic neurons. As a result, it is critical to discover alternate, dependable medicines for the treatment of Parkinson's disease. Method : In the present study, homology modelling of MAS receptor, in silico docking and molecular dynamic studies (MDS) were employed to determine the efficacy of flavonoids as MASR activators. Result : The flavonoids Pterosupin and Amentoflavone exhibited best binding and therefore, the stability of these complexes were evaluated with MDS studies. The Pterosupin-MASR complex demonstrated better stability, stronger interactions and minimal fluctuation than the Amentoflavone-MASR complex. Conclusion : The data from the present study indicated that the flavonoid Pterosupin possesses better binding, favourable pharmacokinetic properties and stability. However, subsequent in vitro and in vivo assessments are necessary to validate its efficacy. 相似文献
13.
Abass Eidizadeh Manuel Khajehalichalehshtari Dorette Freyer George Trendelenburg 《PloS one》2015,10(12)
Metallothionein-II (MT-II) is an ubiquitously expressed small-molecular-weight protein and highly induced in various species and tissues upon stress, inflammation, and ischemia. MT-deficiency exacerbates ischemic injury in rodent stroke models in vitro and in vivo. However, there is conflicting data on the potential neuroprotective effect of exogenously applied metallothionein. Thus, we applied MT-II in an in vitro stroke model and intraperitoneally (i.p.) in two in vivo standard models of transient middle cerebral artery occlusion (MCAO) (a ‘stringent’ one [60min MCAO/48h reperfusion] and a ‘mild’ one [30min MCAO/72h reperfusion]), as well as i.v. together with recombinant tissue plasminogen activator (rtPA) to evaluate if exogenous MT-II-application protects against ischemic stroke. Whereas MT-II did not protect against 60min MCAO, there was a significant reduction of direct and indirect infarct volumes and neurological deficit in the MT-II (i.p.) treated animals in the ‘mild’ model at 3d after MCAO. Furthermore, MT-II also improved survival of the mice after MCAO, suppressed TNF-α mRNA induction in ischemic brain tissue, and protected primary neuronal cells against oxygen-glucose-deprivation in vitro. Thus, exogenous application of MT-II protects against ischemic injury in vitro and in vivo. However, long-term studies with different species and larger sampling sizes are required before a clinical use can be envisaged. 相似文献
14.
Katrin Einfinger Sigrun Badrnya Margareta Furtmüller Daniela Handschuh Herbert Lindner Margarethe Geiger 《PloS one》2015,10(11)
Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles. 相似文献
15.
Chris Coward Olivier Restif Richard Dybowski Andrew J. Grant Duncan J. Maskell Pietro Mastroeni 《PLoS pathogens》2014,10(9)
Salmonella enterica infections are a significant global health issue, and development of vaccines against these bacteria requires an improved understanding of how vaccination affects the growth and spread of the bacteria within the host. We have combined in vivo tracking of molecularly tagged bacterial subpopulations with mathematical modelling to gain a novel insight into how different classes of vaccines and branches of the immune response protect against secondary Salmonella enterica infections of the mouse. We have found that a live Salmonella vaccine significantly reduced bacteraemia during a secondary challenge and restrained inter-organ spread of the bacteria in the systemic organs. Further, fitting mechanistic models to the data indicated that live vaccine immunisation enhanced both the bacterial killing in the very early stages of the infection and bacteriostatic control over the first day post-challenge. T-cell immunity induced by this vaccine is not necessary for the enhanced bacteriostasis but is required for subsequent bactericidal clearance of Salmonella in the blood and tissues. Conversely, a non-living vaccine while able to enhance initial blood clearance and killing of virulent secondary challenge bacteria, was unable to alter the subsequent bacterial growth rate in the systemic organs, did not prevent the resurgence of extensive bacteraemia and failed to control the spread of the bacteria in the body. 相似文献
16.
Jeehee Kim Aurora Badaloni Torsten Willert Ursula Zimber-Strobl Ralf Kühn Wolfgang Wurst Matthias Kieslinger 《PloS one》2013,8(11)
Genetic redundancy poses a major problem to the analysis of gene function. RNA interference allows the down-regulation of several genes simultaneously, offering the possibility to overcome genetic redundancy, something not easily achieved with traditional genetic approaches. Previously we have used a polycistronic miR155-based framework to knockdown expression of three genes of the early B cell factor family in cultured cells. Here we develop the system further by generating transgenic mice expressing the RNAi construct in vivo in an inducible manner. Expression of the transgene from the strong CAG promoter is compatible with a normal function of the basal miRNA/RNAi machinery, and the miR155 framework readily allows inducible expression from the Rosa26 locus as shown by Gfp. However, expression of the transgene in hematopoietic cells does not lead to changes in B cell development and neuronal expression does not affect cerebellar architecture as predicted from genetic deletion studies. Protein as well as mRNA levels generated from Ebf genes in hetero- and homozygous animals are comparable to wild-type levels. A likely explanation for the discrepancy in the effectiveness of the RNAi construct between cultured cells and transgenic animals lies in the efficiency of the sequences used, possibly together with the complexity of the transgene. Since new approaches allow to overcome efficiency problems of RNAi sequences, the data lay the foundation for future work on the simultaneous knockdown of several genes in vivo. 相似文献
17.
Dariusz Ekonomiuk Xun-Cheng Su Kiyoshi Ozawa Christophe Bodenreider Siew Pheng Lim Zheng Yin Thomas H. Keller David Beer Viral Patel Gottfried Otting Amedeo Caflisch Danzhi Huang 《PLoS neglected tropical diseases》2009,3(1)
Background
The non-structural 3 protease (NS3pro) is an essential flaviviral enzyme and therefore one of the most promising targets for drug development against West Nile virus (WNV) and dengue infections.Methodology
In this work, a small-molecule inhibitor of the WNV NS3pro has been identified by automatic fragment-based docking of about 12000 compounds and testing by nuclear magnetic resonance (NMR) spectroscopy of only 22 molecules. Specific binding of the inhibitor into the active site of NS3pro and its binding mode are confirmed by 15N-HSQC NMR spectra. The inhibitory activity is further validated by an enzymatic assay and a tryptophan fluorescence quenching assay.Conclusion
The inhibitor [4-(carbamimidoylsulfanylmethyl)-2,5-dimethylphenyl]-methylsulfanylmethanimidamide has a good ratio of binding affinity versus molecular weight (ligand efficiency of 0.33 kcal/mol per non-hydrogen atom), and thus has good potential as lead compound for further development to combat West Nile virus infections. 相似文献18.
Wnt/β-catenin signaling induced by the Norrin/Frizzled-4 pathway has been shown to improve capillary repair following oxygen induced retinopathy (OIR) in the mouse, a model for retinopathy of prematurity. Here we investigated if treatment with the monovalent cation lithium that has been shown to augment Wnt/β-catenin signaling in vitro and in vivo has similar effects. In cultured human microvascular endothelial cells, LiCl as well as SB 216763, another small molecule that activates Wnt/β-catenin signaling, induced proliferation, survival and migration, which are all common parameters for angiogenic properties in vitro. Moreover, treatment with both agents caused an increase in the levels of β-catenin and their translocation to nuclei while quercetin, an inhibitor of Wnt/β-catenin signaling, completely blocked the effects of LiCl on proliferation. In mice with OIR, intraperitonal or intravitreal treatment with LiCl markedly increased the retinal levels of β-catenin, but did not improve capillary repair. In contrast, repair was significantly improved following intravitreal treatment with Norrin. The effects of LiCl on HDMEC in vitro have minor relevance for OIR in vivo, and the influence of the Norrin/Frizzled-4 pathway on capillary repair in OIR is not reproducible upon enhancing Wnt/β-catenin signaling by LiCl treatment strongly indicating the presence of additional and essential mechanisms. 相似文献
19.