首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gamma-glutamyltranspeptidase (GGT) is a novel protein involved in the induction of Helicobacter pylori-mediated apoptosis; however, the signal pathway involved in GGT-induced apoptosis remains unclear. Using DNA recombination techniques, ggt was cloned into pET117b and transformed into Escherichia coli. Recombinant GGT was purified using nickel-affinity resin and was digested by thrombin. Recombinant GGT induced apoptosis in AGS cells in a time-dependent manner, which was confirmed by TUNEL staining, the MTT assay and immunoblot analysis for caspases-9, -3, Bax, Bcl-2, Bcl-xL and cytochrome c release. Activation of caspase-3 and -9 following exposure to GGT increased in a time-dependent manner and upregulation of proapoptotic Bax and a downregulation of antiapoptotic Bcl-2 and Bcl-xL was detected. Apoptotic signals also trigger changes in mitochondria, which lead to a release of cytochrome c into the cytosolic space. The GGT-deficient mutant was not as able to induce apoptosis as the wild-type strain. These results indicate that GGT of H. pylori induces apoptosis via a mitochondria-mediated pathway.  相似文献   

2.
TNF-related apoptosis-inducing ligand (TRAIL) is a potential chemotherapeutic agent with high selectivity for malignant cells. Many tumors, however, are resistant to TRAIL cytotoxicity. Although cellular inhibitors of apoptosis 1 and 2 (cIAP-1 and -2) are often over-expressed in cancers, their role in mediating TRAIL resistance remains unclear. Here, we demonstrate that TRAIL-induced apoptosis of liver cancer cells is associated with degradation of cIAP-1 and X-linked IAP (XIAP), whereas cIAP-2 remains unchanged. Lower concentrations of TRAIL causing minimal or no apoptosis do not alter cIAP-1 or XIAP protein levels. Silencing of cIAP-1 expression, but not XIAP or cIAP-2, as well as co-treatment with a second mitochondrial activator of caspases (SMAC) mimetic (which results in rapid depletion of cIAP-1), sensitizes the cells to TRAIL. TRAIL-induced loss of cIAP-1 and XIAP requires caspase activity. In particular, caspase 8 knockdown stabilizes both cIAP-1 and XIAP, while caspase 9 knockdown prevents XIAP, but not cIAP-1 degradation. Cell-free experiments confirmed cIAP-1 is a substrate for caspase 8, with likely multiple cleavage sites. These results suggest that TRAIL-mediated apoptosis proceeds through caspase 8-dependent degradation of cIAP-1. Targeted depletion of cIAP-1 by SMAC mimetics in conjunction with TRAIL may be beneficial for the treatment of human hepatobiliary malignancies.  相似文献   

3.
Adipocyte apoptosis is an important regulator of adipocyte number in fat depots. We have previously shown that an inhibition of protein synthesis sensitizes human adipocytes for apoptosis. In vivo, dramatic changes in the fat cell's protein expression should be anticipated under special conditions such as calorie restriction. Here, we studied the underlying mechanism by which human preadipocytes and adipocytes are sensitized for death receptor induced apoptosis in vitro.The protein synthesis blocker cycloheximide (CHX) sensitized human fat cells for CD95-induced apoptosis in a caspase-dependent manner. Treatment with CHX differentially changed expression of pro- and anti-apoptotic proteins. Most noticeably, FLICE-like inhibitory protein (FLIP) expression rapidly decreased during CHX treatment. Reduction of FLIP levels resulted in undetectable amounts of FLIP at the CD95 death-inducing signaling complex (DISC) upon CD95 stimulation, thereby enhancing recruitment and activation at caspase-8. Down-regulation of FLIP by shRNA sensitized preadipocytes for CD95-induced apoptosis. In mice, adipose tissue mRNA levels of Flip were down-regulated upon fasting.In conclusion, we identify FLIP as an important regulator of apoptosis sensitivity in fat cells. Modulating adipocyte homeostasis by apoptosis might provide a new therapeutic concept to get rid of excess adipose tissue, and FLIP might be a possible target molecule.  相似文献   

4.
5.
Hypoxia is a common environmental stress. Particularly, the center of rapidly growing solid tumors is easily exposed to hypoxic conditions. Thus, tumor cell response to hypoxia plays an important role in tumor progression as well as tumor therapy. However, little is known about hypoxic effect on apoptotic cell death. To examine the effects of hypoxia on TRAIL-induced apoptosis, human lung carcinoma A549 cells were exposed to hypoxia and treated with TRAIL protein. Hypoxia significantly protected A549 cells from apoptosis induced by TRAIL. Western blotting analysis demonstrated that hypoxia increased expression of antiapoptotic proteins such as Bcl-2, Bcl-XL, and IAP family members. The increase of these antiapoptotic molecules is believed to play an hypoxia-mediated protective role in TRAIL-induced apoptosis. Our findings suggest that an increase of antiapoptotic proteins induced by hypoxia may regulate the therapeutic activity of TRAIL protein in cancer therapy.  相似文献   

6.
Infection with Helicobacter pylori (H. pylori) is considered a risk factor for gastric carcinoma. The purpose of this study was to clarify whether H. pylori infection plays a role in progression of gastric carcinoma. We examined the expression of genes encoding angiogenic factors and proteases by human gastric carcinoma cell lines (MKN-1 and TMK-1) co-cultured with or without H. pylori by cDNA microarray analysis. Co-culture with H. pylori increased expression of mRNAs encoding interleukin (IL)-8, vascular endothelial growth factor (VEGF), angiogenin, urokinase-type plasminogen activator (uPA), and metalloproteinase (MMP)-9 by gastric carcinoma cells. Up-regulation of these genes at the mRNA and protein levels was confirmed by Northern blot analysis, semi-quantitative RT-PCR analysis, and ELISA. In vitro angiogenic and collagenase activities of conditioned medium from the gastric carcinoma cells were also stimulated by co-culture with H. pylori. These results indicate that H. pylori infection may regulate angiogenesis and invasion of human gastric carcinoma.  相似文献   

7.
The human stomach is naturally colonized by Helicobacter pylori, which, when present, dominates the gastric bacterial community. In this study, we aimed to characterize the structure of the bacterial community in the stomach of patients of differing H. pylori status. We used a high-density 16S rRNA gene microarray (PhyloChip, Affymetrix, Inc.) to hybridize 16S rRNA gene amplicons from gastric biopsy DNA of 10 rural Amerindian patients from Amazonas, Venezuela, and of two immigrants to the United States (from South Asia and Africa, respectively). H. pylori status was determined by PCR amplification of H. pylori glmM from gastric biopsy samples. Of the 12 patients, 8 (6 of the 10 Amerindians and the 2 non-Amerindians) were H. pylori glmM positive. Regardless of H. pylori status, the PhyloChip detected Helicobacteriaceae DNA in all patients, although with lower relative abundance in patients who were glmM negative. The G2-chip taxonomy analysis of PhyloChip data indicated the presence of 44 bacterial phyla (of which 16 are unclassified by the Taxonomic Outline of the Bacteria and Archaea taxonomy) in a highly uneven community dominated by only four phyla: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Positive H. pylori status was associated with increased relative abundance of non-Helicobacter bacteria from the Proteobacteria, Spirochetes and Acidobacteria, and with decreased abundance of Actinobacteria, Bacteroidetes and Firmicutes. The PhyloChip detected richness of low abundance phyla, and showed marked differences in the structure of the gastric bacterial community according to H. pylori status.  相似文献   

8.
We present a comprehensive mathematical model describing Helicobacter pylori interaction with the human gastric acid secretion system. We use the model to explore host and bacterial conditions that allow persistent infection to develop and be maintained. Our results show that upon colonization, there is a transient period (day 1-20 post-infection) prior to the establishment of persistence. During this period, changes to host gastric physiology occur including elevations in positive effectors of acid secretion (such as gastrin and histamine). This is promoted by reduced somatostatin levels, an inhibitor of acid release. We suggest that these changes comprise compensatory mechanisms aimed at restoring acid to pre-infection levels. We also show that ammonia produced by bacteria sufficiently buffers acid promoting bacteria survival and growth.  相似文献   

9.
TNF-related apoptosis-inducing ligand (TRAIL/APO-2L) is a typical member of the TNF ligand family that induces apoptosis by activating the death receptors TRAIL-R1 and TRAIL-R2. TRAIL has attracted great attention in recent years as a promising anti cancer reagent because recombinant soluble TRAIL derivatives induce apoptosis in a broad range of tumor cells but not or only rarely in non-transformed cells. In this review we will address the putative role of TRAIL in cancer treatment in the light of the emerging importance of TRAIL in tumor surveillance and discuss the molecular basis of the cooperation of TRAIL and chemotherapeutic drugs. In particular, we debate controversial data in the literature concerning the cytotoxicity of different TRAIL derivatives on primary human cells.  相似文献   

10.
11.
The aim of this study was to determine whether the Helicobacter pylori-derived sphigomyelinase (SMase) affects the sphingomyelin pathway and growth in AGS epithelial cells. We showed that the exogenous SMase increased the intracellular level of ceramide in AGS cells and led to rapid stimulation of extracellular signal-regulated kinase (ERK) and c-Jun kinase (JNK) activities. Incubation of AGS cells with H. pylori-derived SMase also resulted in suppression of cell growth and a concomitant induction of apoptosis. Data showed that PD98059 (up to 50 microM), an ERK inhibitor, did not affect the cell viability, whereas the cytotoxicity of exogenous SMase was completely blocked by SP600125, a JNK inhibitor at a concentration of 210 nM. We conclude that the activation of the mitogen-activated protein (MAP) kinases in AGS cells by exogenous H. pylori SMase is a major pathway to mediate the cytotoxicity.  相似文献   

12.
The tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL or Apo2L) and its receptors are members of the tumor necrosis factor superfamily. TRAIL triggers apoptosis by binding to its two proapoptotic receptors DR4 and DR5, a process which is negatively regulated by binding of TRAIL to its two decoy receptors TRID and TRUNDD. Here, we show that TRAIL effectively induces apoptosis in H460 human non-small-cell lung carcinoma cells via cleavage of caspases 8, 9, 7, 3, and BID, release of cytochrome c from the mitochondria, and cleavage of poly (ADP-ribose) polymerase (PARP). However, overexpression of Bcl2 blocked TRAIL-induced apoptosis in H460 cells, which correlated with the Bcl2 protein levels. Importantly, the release of cytochrome c and cleavage of caspase 7 triggered by TRAIL were considerably blocked in Bcl2 overexpressing cells as compared to vector control cells. Moreover, inhibition of TRAIL-mediated cytochrome c release and caspase 7 activation by Bcl2 correlated with the inability of PARP to be cleaved and the inability of the Bcl2 transfectants to undergo apoptosis. Thus, these results suggest that Bcl2 can serve an anti-apoptotic function during TRAIL-dependent apoptosis by inhibiting the release of cytochrome c and activation of caspase 7, thereby blocking caspase 7-dependent cleavage of cellular substrates.  相似文献   

13.
In this study we investigated the roles of lipid rafts and glycosylphosphatidylinositol-anchored proteins (GPI-APs) in the process of VacA binding and internalization into epithelial cells. Vacuolating activity analysis in AGS, CHO cells, and a CHO-derived line that highly expresses GPI-linked fasI proteins indicated the significance of cholesterol and GPI-APs for VacA activity. Flow cytometric analysis along with VacA-cholesterol co-extraction experiments showed a cholesterol-dependent manner for VacA cell-binding activity, while GPI-APs were not related to it. Differential detergent extraction and fractionation in sucrose density gradient showed co-association of VacA and fasI with rafts on cell membranes. Subcellular distribution of fasI visualized by confocal microscope suggested that fasI trafficked via a newly defined endocytic pathway for GPI-APs in the derived line. Upon VacA intoxication, VacA was visualized to co-migrate along with fasI and finally induced vacuolation coupled with dramatic redistribution of fasI molecules. These results suggest that VacA exploits rafts for docking and entering the cell via the endocytic pathway of GPI-APs.  相似文献   

14.
The domains of virulent (Ureα/β, VacA-p55, and CagA) factors of Helicobacter pylori play a pivotal role in developmentalprocesses of numerous diseases including gastric cancer. The pharmacological role of curcumin indicates that it could regulate thesignaling of virulent factors by interacting with active domains. However, the controlling mechanism of the curcumin interactionsand the binding diversity on structural basis of virulent (Ureα/β, VacA-p55, and CagA) factors are unknown. Curcumin astherapeutic agent was filtered by using Lipinski rule׳s five and the druglikeness property for assessment of pharmacologicalproperties. Here outcome of molecular docking presented the 3-D structure of curcumin complex, that interacted with especiallyconserved residues of target domains. The structure revealed that the curcumin complexation with domains of these proteinsprovided structural insight into the diverse nature of proteins (Ureα/β, VacA-p55, and CagA) recognition. In silico studyelucidated that the broad specificity of curcumin was achieved by multiple binding mode mechanisms such as distinct hydrogenand hydrophobic interactions with involvement of binding energy. The higher score of curcumin in complexation with bothsubunits Ureα/β showed the stable binding, and less stability with VacA-p55 complexation with lower score. Curcumin exhibitedgood interaction with these targeted virulent factors, although extensive interactions of curcumin with Ureα/β subunits could havean important implication to prevent survival and colonisation of H. pylori in stomach.  相似文献   

15.
Previous studies have shown that activation of NF-kappaB can inhibit apoptosis induced by a number of stimuli. It is also known that TNF-related apoptosis-inducing ligand (TRAIL) can activate NF-kappaB through the death receptors TRAIL-R1 and TRAIL-R2, and decoy receptor TRAIL-R4. In view of these findings, we have investigated the extent to which activation of NF-kappaB may account for the variable responses of melanoma lines to apoptosis induced by TRAIL and other TNF family members. Pretreatment of the melanoma lines with the proteasome inhibitor N-acetyl-L-leucinyl-L-leucinyl-L-norleucinal (LLnL), which is known to inhibit activation of NF-kappaB, was shown to markedly increase apoptosis in 10 of 12 melanoma lines with death receptors for TRAIL. The specificity of results for inhibition of NF-kappaB activation was supported by an increase of TRAIL-induced apoptosis in melanoma cells transfected with a degradation-resistant IkappaBalpha. Furthermore, studies with NF-kappaB reporter constructs revealed that the resistance of melanoma lines to TRAIL-induced apoptosis was correlated to activation of NF-kappaB in response to TRAIL. TRAIL-resistant sublines that were generated by intermittent exposure to TRAIL were shown to have high levels of activated NF-kappaB, and resistance to TRAIL could be reversed by LLnL and by the superrepressor form of IkappaBalpha. Therefore, these results suggest that activation of NF-kappaB by TRAIL plays an important role in resistance of melanoma cells to TRAIL-induced apoptosis and further suggest that inhibitors of NF-kappaB may be useful adjuncts in clinical use of TRAIL against melanoma.  相似文献   

16.
The Helicobacter pylori infection of gastric mucosa is one of the most common infectious diseases and is associated with a variety of clinical outcomes, including peptic ulcer disease and gastric cancer. Helicobacter pylori-induced damage to gastric mucosal cells is controlled by bacterial virulence factors, which include VacA and CagA. Outer membrane vesicles are constantly shed by the bacteria and can provide an additional mechanism for pathogenicity by releasing non-secretable factors which can then interact with epithelial cells. The present report shows that external membrane vesicles are able to induce apoptosis not mediated by mitochondrial pathway in gastric (AGS) epithelial cells, as demonstrated by the lack of cytochrome c release with an activation of caspase 8 and 3. Apoptosis induced by these vesicles does not require a classic VacA+ phenotype, as a negative strain with a truncated and therefore non-secretable form of this protein can also induce cell death. These results should be taken into account in future studies of H. pylori pathogenicity in strains apparently VacA-.  相似文献   

17.
ThyX is an essential thymidylate synthase that is mechanistically and structurally unrelated to the functionally analogous human enzyme, thus providing means for selective inhibition of bacterial growth. To identify novel compounds with anti-bacterial activity against the human pathogenic bacterium Helicobacter pylori, based on our earlier biochemical and structural analyses, we designed a series of eighteen 2-hydroxy-1,4-naphthoquinones (2-OH-1,4-NQs) that target HpThyX. Our lead-like molecules markedly inhibited the NADPH oxidation and 2′-deoxythymidine-5′-monophosphate-forming activities of HpThyX enzyme in vitro, with inhibitory constants in the low nanomolar range. The identification of non-cytotoxic and non-mitotoxic 2-OH-1,4-NQ inhibitors permitted testing their in vivo efficacy in a mouse model for H. pylori infections. Despite the widely assumed toxicity of naphthoquinones (NQs), we identified tight-binding ThyX inhibitors that were tolerated in mice and can be associated with a modest effect in reducing the number of colonizing bacteria. Our results thus provide proof-of-concept that targeting ThyX enzymes is a highly feasible strategy for the development of therapies against H. pylori and a high number of other ThyX-dependent pathogenic bacteria. We also demonstrate that chemical reactivity of NQs does not prevent their exploitation as anti-microbial compounds, particularly when mitotoxicity screening is used to prioritize these compounds for further experimentation.  相似文献   

18.
WW domain-containing oxidoreductase (WWOX), a tumor suppressor gene, was reported to be downregulated in gastric cancer and other tumors. However, the mechanism by which WWOX is inactivated remains unclear. In our study, methylation status of WWOX was determined by MSP and sequencing. Our results showed that WWOX hypermethylation was frequently detected in gastric cancer, and also significantly correlated with Helicobacter pylori (H. pylori) infection. Promoter methylation of WWOX was induced in BCG823 and AGS cells co-cultured with H. pylori. Finally, we found that expression of DNMT1 and DNMT3A were enhanced when cells were co-cultured with H. pylori. Our study indicated that H. pylori infection promoted methylation of WWOX gene in gastric cancer.  相似文献   

19.
The mechanism by which tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death is the subject of intense scrutiny due to its preferential targeting of transformed cells for deletion. Based on recent findings that the TRAIL-dependent death inducing signaling complex (DISC) forms and signals at the plasma membrane without being internalized, we investigated the possibility that agents that prevent endocytosis may stabilize the surface bound DISC and thereby enhance TRAIL-dependent signaling. We utilized phenylarsine oxide (PAO), a trivalent arsenical that has been reported to inhibit endocytosis and to induce mitochondrial permeability transition. Therefore PAO could, by two separate and independent activities, enhance TRAIL-induced killing. Paradoxically, we found that rather than synergizing with TRAIL, PAO was an effective inhibitor of TRAIL-induced killing. Recruitment of FADD and caspase-8 to the TRAIL-dependent DISC was diminished in a concentration-dependent manner in cells exposed to PAO. The effects of PAO could not be reversed by washing cells under non-reducing conditions, suggesting covalent linkage of PAO with its cellular target(s); however, 2,3-dimercaptoethanol effectively overcame the inhibitory action of PAO and restored sensitivity to TRAIL-induced apoptosis. PAO inhibited formation of the TRAIL-dependent DISC and therefore prevented all subsequent apoptotic events.  相似文献   

20.
Induction of apoptosis in cells by TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF family, is believed to be regulated by expression of two death-inducing and two inhibitory (decoy) receptors on the cell surface. In previous studies we found no correlation between expression of decoy receptors and susceptibility of human melanoma cells to TRAIL-induced apoptosis. In view of this, we studied the localization of the receptors in melanoma cells by confocal microscopy to better understand their function. We show that the death receptors TRAIL-R1 and R2 are located in the trans-Golgi network, whereas the inhibitory receptors TRAIL-R3 and -R4 are located in the nucleus. After exposure to TRAIL, TRAIL-R1 and -R2 are internalized into endosomes, whereas TRAIL-R3 and -R4 undergo relocation from the nucleus to the cytoplasm and cell membranes. This movement of decoy receptors was dependent on signals from TRAIL-R1 and -R2, as shown by blocking experiments with Abs to TRAIL-R1 and -R2. The location of TRAIL-R1, -R3, and -R4 in melanoma cells transfected with cDNA for these receptors was similar to that in nontransfected cells. Transfection of TRAIL-R3 and -R4 increased resistance of the melanoma lines to TRAIL-induced apoptosis even in melanoma lines that naturally expressed these receptors. These results indicate that abnormalities in "decoy" receptor location or function may contribute to sensitivity of melanoma to TRAIL-induced apoptosis and suggest that further studies are needed on the functional significance of their nuclear location and TRAIL-induced movement within cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号