首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin receptor (IR) proteins were essential intracellular signaling peptides in the insulin action cascade. Insulin receptor substrate proteins (IRS-1and IRS-2) serve and regulate the insulin level in the normal insulin action. The broad role of IRS-1 and IRS-2 in cell growth and survival reveals a common regulatory pathway linking development, somatic growth, fertility, neuronal proliferation, and aging to the core mechanisms used by vertebrates for nutrient sensing. Such type of proteins were cyclic adenosine monophosphate-activated protein kinase, this proteins play a key role in the insulin response and regulation. Type -2 Diabetes mellitus occurs during prolonged periods of peripheral insulin resistance due to inactivation of IRS proteins. The compounds isolated from the medicinal plants were safer than synthetic drugs and possess high bio activity. In the present study, four compounds were elucidated from fruits of Helicteres isora. The elucidated compounds were evaluated for the antidiabetic activity using in silico docking study. The receptor was analyzed for the active site and pocket finder tools. The aminoacids such as Phenylalanine, Lysine, Glutamic acid and Asparigine were predicted as active site binding residues. Docking studies were done through Autodock 4 software. All the compounds from fruits of Helicteres isora showed good docking profiles with AMP Kinase, except compound-3 (1,2,3,4-tetrahydro-1,5,6,8-tetramethyl-7-(2-methylprop-1-enylnaphthalene-4-ylpivalate). Finally the result from the study demonstrates that the HS-1, HS-2 and HS-4 posses potent anti diabetic activity against type-2 diabetes mellitus through drug action on AMP kinase cascade system.  相似文献   

2.
Immunization of mice with recombinant IgA1 protease of Neisseria meningitidis or several structural derivatives thereof protects the animals infected with a variety of deadly pathogens, including N. meningitidis serogroups A, B, and C and 3 serotypes of Streptococcus pneumonia. In sera of rabbits immunized with inactivated pneumococcal cultures, antibodies binding IgA1-protease from N. meningitidis serogroup B were detected. Thus, the cross-reactive protection against meningococcal and pneumococcal infections has been demonstrated in vivo. Presumably it indicates the presence of common epitopes in the N. meningitidis IgA1 protease and S. pneumoniae surface proteins.  相似文献   

3.
Dengue virus belongs to the virus family Flaviviridae. Dengue hemorrhagic disease caused by dengue virus is a public health problem worldwide. The viral non structural 2B and 3 (NS2B-NS3) protease complex is crucial for virus replication and hence, it is considered to be a good anti-viral target. Leaf extracts from Carica papaya is generally prescribed for patients with dengue fever, but there are no scientific evidences for its anti-dengue activity; hence we intended to investigate the anti-viral activity of compounds present in the leaves of Carica papaya against dengue 2 virus (DENV-2). We analysed the anti-dengue activities of the extracts from Carica papaya by using bioinformatics tools. Interestingly, we find the flavonoid quercetin with highest binding energy against NS2B-NS3 protease which is evident by the formation of six hydrogen bonds with the amino acid residues at the binding site of the receptor. Our results suggest that the flavonoids from Carica papaya have significant anti-dengue activities.

Abbreviations

ADME - Absorption, distribution, metabolism and excretion, BBB - Blood brain barrier, CYP - Cytochrome P450, DENV - – Dengue virus, DHF - Dengue hemorrhagic fever, DSS - Dengue shock syndrome, GCMS - – Gas chromatography- Mass spectrometry, MOLCAD - Molecular Computer Aided Design, NS - Non structural, PDB - Protein data bank, PMF - Potential Mean Force.  相似文献   

4.
Streptococcus mutans is frequently associated with dental caries. Bacterial fermentation of food debris generates an acidic environment on the tooth surface, ultimately resulting in tooth deterioration. Therefore, various mouthwashes have been used to reduce and prevent Streptococcus mutans. The aim of this study was to evaluate the antimicrobial activities of 4 commercial mouthwashes and those of 10% and 20% ethanol solutions (formula A, B, C, D, E and F) against Streptococcus mutans using biofilm and planktonic methods. The range of reduction in the viable cell count of Streptococcus mutans as estimated by the biofilm and planktonic methods was 0.05-5.51 log (P ≤ 0.01) and 1.23-7.51 log (P ≤ 0.001) compared with the negative control, respectively, indicating that the planktonic method had a stronger antibacterial effect against S. mutans. Among the tested formulations, formula A(Garglin regular mouthwash) was the most effective against Streptococcus mutans (P ≤ 0.001). [BMB Reports 2015; 48(1): 42-47]  相似文献   

5.
Acetohydroxyacid synthase (AHAS), a potential target for antimicrobial agents, catalyzes the first common step in the biosynthesis of branched-chain amino acids. The gene coding for the AHAS catalytic subunit from Haemophilus influenzae (Hi) was cloned, overexpressed in Escherichia coli, and purified. To identify new inhibitory scaffolds, we used a high-throughput screen to test 221 small diverse chemical compounds against Hi-AHAS. Compounds were selected for their ability to inhibit AHAS in vitro. The screen identified 3 compounds, each representing a structural class, as Hi-AHAS inhibitors with an IC50 in the low micromolar range (4.4-14.6 μM). The chemical scaffolds of the three compounds were oxa-1-thia-4-aza-cyclopenta[b]naphthalene (KHG25229), phenyl-2,3-dihydro-isothiazole (KHG25386), and phenyl-pyrrolidine-3-carboxylic acid phenylamide (KHG25056). Further, molecular docking of the two most potent chemicals, KHG25229 and KHG25386, in Hi-AHAS yielded binding energies of −10.41 and −9.21 kcal/mol, respectively. The binding modes were consistent with inhibition mechanisms, as both chemicals oriented outside the active site. As the need for novel antibiotic classes to combat drug resistant bacteria increases, screening compounds that act against Hi-AHAS may assist in the identification of potential new anti-Hi drugs.  相似文献   

6.
To cause infections microbes need to evade host defense systems, one of these being the evolutionarily old and important arm of innate immunity, the alternative pathway of complement. It can attack all kinds of targets and is tightly controlled in plasma and on host cells by plasma complement regulator factor H (FH). FH binds simultaneously to host cell surface structures such as heparin or glycosaminoglycans via domain 20 and to the main complement opsonin C3b via domain 19. Many pathogenic microbes protect themselves from complement by recruiting host FH. We analyzed how and why different microbes bind FH via domains 19–20 (FH19-20). We used a selection of FH19-20 point mutants to reveal the binding sites of several microbial proteins and whole microbes (Haemophilus influenzae, Bordetella pertussis, Pseudomonas aeruginosa, Streptococcus pneumonia, Candida albicans, Borrelia burgdorferi, and Borrelia hermsii). We show that all studied microbes use the same binding region located on one side of domain 20. Binding of FH to the microbial proteins was inhibited with heparin showing that the common microbial binding site overlaps with the heparin site needed for efficient binding of FH to host cells. Surprisingly, the microbial proteins enhanced binding of FH19-20 to C3b and down-regulation of complement activation. We show that this is caused by formation of a tripartite complex between the microbial protein, FH, and C3b. In this study we reveal that seven microbes representing different phyla utilize a common binding site on the domain 20 of FH for complement evasion. Binding via this site not only mimics the glycosaminoglycans of the host cells, but also enhances function of FH on the microbial surfaces via the novel mechanism of tripartite complex formation. This is a unique example of convergent evolution resulting in enhanced immune evasion of important pathogens via utilization of a “superevasion site.”  相似文献   

7.
Inhibition of the Tryparedoxin peroxidase interaction has been becomes a new therapeutic strategy in leishmaniasis. Docking analysis was carried out to study the effects of quercetin and taxifolin on Tryparedoxin Peroxidase (TryP). Tryparedoxin peroxidase of Trypanosomatidae functions as antioxidants through their Peroxidase and peroxynitrite reductase activities. The 3D models of Tryparedoxin Peroxidase of Leishmania braziliensis (L. braziliensis TryP) was modeled using the template Tryparedoxin Peroxidase I from Leishmania Major (L. Major TryPI) (PDB ID: 3TUE). Further, we evaluated for TryP inhibitory activity of flavonoids such as quercetin and taxifolin using in silico docking studies. Docking results showed the binding energies of - 11.8601and -8.0851 for that quercetin and taxifolin respectively. Flavonoids contributed better L. braziliensis TryP inhibitory activity because of its structural parameters. Thus, from our in silico studies we identify that quercetin and taxifolin posses anti-leishmanial acitivities mediated through TryP inhibition mechanism.  相似文献   

8.
Understanding the requirements for protection against pneumococcal carriage and pneumonia will greatly benefit efforts in controlling these diseases. Several proteins and polysaccharide capsule have recently been implicated in the virulence of and protective immunity against Streptococcus pneumonia. Pneumococcal surface protein A (PspA) is highly conserved among S. pneumonia strains, inhibits complement activation, binds lactoferrin, elicits protective systemic immunity against pneumococcal infection, and is necessary for full pneumococcal virulence. Identification of PspA peptides that optimally bind human leukocyte antigen (HLA) would greatly contribute to global vaccine efforts, but this is hindered by the multitude of HLA polymorphisms. Here, we have used an experimental data set of 54 PspA peptides and in silico methods to predict peptide binding to HLA and murine major histocompatibility complex (MHC) class II. We also characterized spleen- and cervical lymph node (CLN)-derived helper T lymphocyte (HTL) cytokine responses to these peptides after S. pneumonia strain EF3030-challenge in mice. Individual, yet overlapping peptides, 15 amino acids in length revealed residues 199 to 246 of PspA (PspA199–246) consistently caused the greatest IFN-γ, IL-2, IL-5 and proliferation as well as moderate IL-10 and IL-4 responses by ex vivo stimulated splenic and CLN CD4+ T cells isolated from S. pneumonia strain EF3030-challeged F1 (B6×BALB/c) mice. IEDB, RANKPEP, SVMHC, MHCPred, and SYFPEITHI in silico analysis tools revealed peptides in PspA199–246 also interact with a broad range of HLA-DR, -DQ, and -DP allelles. These data suggest that predicted MHC class II-peptide binding affinities do not always correlate with T helper (Th) cytokine or proliferative responses to PspA peptides, but when used together with in vivo validation can be a useful tool to choose candidate pneumococcal HTL epitopes.  相似文献   

9.
Thirty seven N-(5-methoxyphenyl)-4-methoxybenzenesulphonamide with methoxy or/and bromo substitutions (series 1-4) and with different substituents on the sulphonamide nitrogen have been synthesised. 21 showed sub-micromolar cytotoxicity against HeLa and HT-29 human tumour cell lines, and were particularly effective against MCF7. The most potent series has 2,5-dimethoxyanilines, especially the 4-brominated compounds 23–25. The active compounds inhibit microtubular protein polymerisation at micromolar concentrations, thus pointing at tubulin as the target. Co-treatment with the MDR inhibitor verapamil suggests that they are not MDR substrates. Compound 25 showed nanomolar antiproliferative potency. It severely disrupts the microtubule network in cells and arrests cells at the G2/M cell-cycle phase, thus confirming tubulin targeting. 25 triggered apoptotic cell death, and induced autophagy. Docking studies suggest binding in a distinct way to the colchicine site. These compounds are promising new antitumor agents acting on tubulin.  相似文献   

10.
Diabetes is a non-communicable disease, which occurs either due to the lack of insulin or the inability of the human body to recognize it. The recent data indicates an increase in the trend of people diagnosed with Type 2 diabetes mellitus (T2DM). α-Glucosidase inhibitors are known to reduce the impact of carbohydrates on blood glucose level and prevent the digestion of carbohydrates. α-glucosidase inhibitors hold great potential for the treatment of T2DM. In search of better α-glucosidase inhibitors, a series of novel (R)-4-fluorophenyl-1H-1,2,3-triazole derivatives were synthesized (6 and 8a-n) and evaluated for their α-glucosidase inhibitory activity in vitro. All new compounds were characterized by 1H NMR, 13C NMR, 19F NMR, ESI-MS, and where applicable by single crystal X-ray diffraction (8 m). A preliminary structure-activity relationship suggested that the presence of 1H-1,2,3-triazole ring in (R)-4-fluorophenyl-1H-1,2,3-triazole derivatives has remarkable contribution in the overall activity. Molecular docking studies were carried out to investigate the binding mode of compounds within the active site of the α-glucosidase enzyme. Docking results are in complete agreement with the experimental finding. This study unravelled a new class of triazole derivatives with α-glucosidase inhibitory activity.  相似文献   

11.
New pyridine derivatives were designed and synthesized as Isonicotinic acid hydrazide (INH) analogues. The synthesized compounds were evaluated for their antitubercular activity against Mycobacterium tuberculosis strain H37Rv. Ten compounds (3c, 3e-g, 5a-c, 6h, 10 and 11b) showed promising antitubercular activity with MIC range 7.30 µM–19.39 µM. Compounds 3e, 3g, 5b and 11b were the most potent analogues, with MIC 7.30–8.74 µM. They were equipotent to the standard drug Ethambutol (MIC 7.64 µM) and more active than the standard drug Pyrazinamide (MIC 50.77 µM). They were further examined for cytotoxicity in human embryonic kidney (HEK) cell line at the concentration of 50 µg/mL using MTT assay. Results declared that most compounds showed acceptable safety margin. Molecular Docking studies into 2-trans-enoyl-acyl carrier protein reductase, called InhA have been conducted for compounds 3e, 3g, 5b and 11b using Molecular Operating Enviroment software (MOE 2016.0802), where reasonable binding interactions have been identified and effective overall docking scores have been recorded. Their drug-likeness has been assessed using Molinspiration and Osiris software.  相似文献   

12.
A novel series of 2-(3,6-dimethyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yloxy)-N-(4-substitutedbenzylidene)acetohydrazide (12ag) was prepared and their structures were confirmed by spectral and elemental analyses. The cytotoxic activity of the newly synthesized compounds was evaluated against breast carcinoma (MCF-7), non-small cell lung cancer (A549) and human colorectal adenocarcinoma (HT-29) cell lines using MTT and colony formation assays. The tested compounds showed a marked anticancer activity against all the tested cell lines, especially compound 12g, which was the most potent anticancer agent with half maximal inhibitory concentrations (IC50) between 5.36 and 9.09 μM. Docking studies into ATP binding site of EGFR protein tyrosine kinase were performed to predict their scores and mode of binding to amino acids, In addition, the inhibitory activity of the target compounds against epidermal growth factor receptor tyrosine kinase (EGFR-TK) was evaluated. Results indicated the ability of the target compounds to inhibit EGFR-TK with half maximal inhibitory concentrations (IC50) in the range of 4.18–35.88 μM. Furthermore, The most active compounds 12g, 12c and 12d were assayed against Fibroblast Growth Factor Receptor (FGFR), Insulin Receptor (IR) and Vascular Endothelial Growth Factor Receptor (VEGFR). The activity of the reported compounds warrants further optimization as novel members in cancer treatment protocols.  相似文献   

13.
Bacterial infections are the most important problem of health care worldwide. The hemolymph antibacterial proteins of Mesocyclops leuckarti was isolated for the first time and its antibacterial efficacy was evaluated against four different human pathogenic microbes viz., Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia and Shigella flexneri. The antibacterial potential of the antimicrobial proteins of hemolymph samples from plankton cultured in water enriched with Cow Urine Distillate (CUD) was compared with normal ones. The results indicated that the hemolymph proteins were more potential against Gram negative bacteria than Gram positive bacteria. Klebsiella pneumonia was more susceptible to the hemolymph proteins exhibiting a zone of inhibition measuring 27 mm. The supplement of CUD to the culture media further enriched the antibacterial activity of the hemolymph proteins (29 mm). The SDS-PAGE analysis indicated two different types of clear bands representing proteins of 53 kDa and 19 kDa. Overall, this investigation signified that the microcrustaceans have a defence mechanism hemolymph of Mesocyclops leuckarti have a potential agent for novel antibiotics.  相似文献   

14.
Azoreductases are important due to their ability to activate anti-inflammatory azo pro-drugs and to detoxify azo dyes. Three genes encoding azoreductases have been identified in Pseudomonas aeruginosa. We describe here a comparison of the three enzymes. The pure recombinant proteins each have a distinct substrate specificity profile against a range of azo substrates. Using the structure of P. aeruginosa azoreductase (paAzoR) 1 and the homology models of paAzoR2 and paAzoR3, we have identified residues important for substrate specificity. We have defined a novel flavin mononucleotide binding cradle, which is a recurrent motif in many flavodoxin-like proteins. A novel structure of paAzoR1 with the azo pro-drug balsalazide bound within the active site was determined by X-ray crystallography and demonstrates that the substrate is present in a hydrazone tautomer conformation. We propose that the structure with balsalazide bound represents an enzyme intermediate and, together with the flavin mononucleotide binding cradle, we propose a novel catalytic mechanism.  相似文献   

15.
Background: The fatty-acid profile of the vegetable oils determines its properties and nutritional value. Palm-oil obtained from the African oil-palm [Elaeis guineensis Jacq. (Tenera)] contains 44% palmitic acid (C16:0), but, palm-oil obtained from the American oilpalm [Elaeis oleifera] contains only 25% C16:0. In part, the b-ketoacyl-[ACP] synthase II (KASII) [EC: 2.3.1.179] protein is responsible for the high level of C16:0 in palm-oil derived from the African oil-palm. To understand more about E. guineensis KASII (EgKASII) and E. oleifera KASII (EoKASII) proteins, it is essential to know its structures. Hence, this study was undertaken. Objective: The objective of this study was to predict three-dimensional (3D) structure of EgKASII and EoKASII proteins using molecular modelling tools. Materials and Methods: The amino-acid sequences for KASII proteins were retrieved from the protein database of National Center for Biotechnology Information (NCBI), USA. The 3D structures were predicted for both proteins using homology modelling and ab-initio technique approach of protein structure prediction. The molecular dynamics (MD) simulation was performed to refine the predicted structures. The predicted structure models were evaluated and root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values were calculated. Results: The homology modelling showed that EgKASII and EoKASII proteins are 78% and 74% similar with Streptococcus pneumonia KASII and Brucella melitensis KASII, respectively. The EgKASII and EoKASII structures predicted by using ab-initio technique approach shows 6% and 9% deviation to its structures predicted by homology modelling, respectively. The structure refinement and validation confirmed that the predicted structures are accurate. Conclusion: The 3D structures for EgKASII and EoKASII proteins were predicted. However, further research is essential to understand the interaction of EgKASII and EoKASII proteins with its substrates.  相似文献   

16.
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins constitute an RNA-guided microbial defense system against invading foreign genetic materials. Cas2 is one of the core Cas proteins found universally in all the subtypes of CRISPR-Cas systems and is required for incorporating new spacers into CRISPR loci. Cas2 homologues from different CRISPR-Cas subtypes were characterized previously as metal-dependent nucleases with different substrate preferences, and it was proposed that a pH-dependent conformational change mediates metal binding and catalysis. Here, we report the crystal structures of Streptococcus pyogenes Cas2 at three different pHs (5.6, 6.5, and 7.5), as well as the results of its nuclease activity assay against double-stranded DNAs at varying pHs (6.0–9.0). Although S. pyogenes Cas2 exhibited strongly pH-dependent catalytic activity, there was no significant conformational difference among the three crystal structures. However, structural comparisons with other Cas2 homologues revealed structural variability and the flexible nature of its putative hinge regions, supporting the hypothesis that conformational switching is important for catalysis. Taken together, our results confirm that Cas2 proteins have pH-dependent nuclease activity against double-stranded DNAs, and provide indirect structural evidence for their conformational changes.  相似文献   

17.
A series of 1-(1-benzyl-2-methyl-5-((1-phenyl-1H-1,2,3-triazol-4-yl)methoxy)-1H-indol-3-yl)ethanone and ethyl 1-benzyl-2-methyl-5-((1-phenyl-1H-1,2,3-triazol-4-yl)methoxy)-1H-indole-3-carboxylate derivatives were designed based on bioisosteric replacement of previously reported antitubercular agent (IND-07). Twenty ligands were successfully synthesized and some of them were found to have good in vitro activity (MIC?<?10?μM) against the H37Rv strain of Mycobacterium tuberculosis. Among these compounds, KC-08 and KC-11 inhibited Mtb-DHFR with 4- and 18-fold selectivity for Mtb-DHFR over h-DHFR, respectively. Compound KC-11 display acceptable ADME, and better pharmacokinetic profiles than IND-07. Docking studies were performed to predict the binding mode of the compounds within the active site of Mtb-DHFR and h-DHFR. The results of our study suggest that compound KC-11 may serve as a valuable lead for the design and development of selective inhibitors of Mtb-DHFR with potential therapeutic application in tuberculosis.  相似文献   

18.
In Streptococcus pneumonia, phosphoenolpyruvate protein phosphotransferase (PtsA) is an intracellular protein of the monosaccharide phosphotransferase systems. Biochemical and immunostaining methods were applied to show that PtsA also localizes to the bacterial cell-wall. Thus, it was suspected that PtsA has functions other than its main cytoplasmic enzymatic role. Indeed, recombinant PtsA and anti-rPtsA antiserum were shown to inhibit adhesion of S. pneumoniae to cultured human lung adenocarcinoma A549 cells. Screening of a combinatorial peptide library expressed in a filamentous phage with rPtsA identified epitopes that were capable of inhibiting S. pneumoniae adhesion to A549 cells. The insert peptides in the phages were sequenced, and homologous sequences were found in human BMPER, multimerin1, protocadherin19, integrinβ4, epsin1 and collagen type VIIα1 proteins, all of which can be found in A549 cells except the latter. Six peptides, synthesized according to the homologous sequences in the human proteins, specifically bound rPtsA in the micromolar range and significantly inhibited pneumococcal adhesion in vitro to lung- and tracheal-derived cell lines. In addition, the tested peptides inhibited lung colonization after intranasal inoculation of mice with S. pneumoniae. Immunization with rPtsA protected the mice against a sublethal intranasal and a lethal intravenous pneumococcal challenge. In addition, mouse anti rPtsA antiserum reduced bacterial virulence in the intravenous inoculation mouse model. These findings showed that the surface-localized PtsA functions as an adhesin, PtsA binding peptides derived from its putative target molecules can be considered for future development of therapeutics, and rPtsA should be regarded as a candidate for vaccine development.  相似文献   

19.
Litsea spp of Laural family are traditionally used as herbal medicine for treating inflammation including gastroenterologia, oedema and rheumatic arthritis. Therefore, it is of interest to investigate and understand the molecular principles for such actions. Here, we have illustrated the binding of thirteen Litsea derived biologically active compounds against the inflammation associated target COX (cyclo-oxygenase) -2 enzymes. We compared the binding information of these compounds with a selected number of already known COX-2 inhibitors. The comparison reflected that some of these compounds such as linderol, catechin, 6''-hydroxy-2'',3'',4'' - trimethoxy-chalcone and litseaone have better or equivalent binding features compared to already known inhibitory compounds namely celecoxib, acetylsalicylic acid, rofecoxib. Therefore, all these small compounds reported from plant Litsea spp were found to possess potential medicinal values with anti-inflammatory properties.  相似文献   

20.
In our search for novel small molecules targeting histone deacetylases, we have designed and synthesized several series of novel N-hydroxybenzamides/N-hydroxypropenamides incorporating quinazolin-4(3H)-ones (4a-h, 8a-d, 10a-d). Biological evaluation showed that these hydroxamic acids were generally cytotoxic against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung cancer). It was found that the N-hydroxypropenamides (10a-d) were the most potent, both in term of HDAC inhibition and cytotoxicity. Several compounds, e.g. 4e, 8b-c, and 10a-c, displayed up to 4-fold more potent than SAHA (suberoylanilide hydroxamic acid, vorinostat) in term of cytotoxicity. These compounds also comparably inhibited HDACs with IC50 values in sub-micromolar range. Docking experiments on HDAC2 isozyme revealed some important features contributing to the inhibitory activity of synthesized compounds, especially for propenamide analogues. Importantly, the free binding energy computed was found to have high quantitative correlation (R2 ∼ 95%) with experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号