首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Genomics》2020,112(6):4608-4621
Soil salinity is one of the typical abiotic stresses affecting sustainability of wheat production worldwide. In the present study, we performed a 35 K SNP genotyping assay on association panel of 135 diverse wheat genotypes evaluated for vegetative stage tolerance in hydroponics. Association analyses using five multi-locus GWAS models revealed 42 reliable QTNs for 10 salt tolerance associated traits. Among these 42 reliable QTNs, 9, 17 and 16 QTNs were associated with physiological, biomass and shoot ionic traits respectively. Novel major QTNs were identified for chlorophyll content, shoot fresh weight, seedling total biomass, Na+ and K+ concentration and Na+/K+ ratio in shoots. Further, 10 major QTNs showed significant effect on the corresponding salt tolerance traits. Gene ontology analysis of the associated genomic regions identified 58 candidate genes. The information generated in this study will be of potential value for improvement of salt tolerance of wheat cultivars using marker assisted selection.  相似文献   

2.
Salinity tolerance in rice is highly desirable to sustain production in areas rendered saline due to various reasons. It is a complex quantitative trait having different components, which can be dissected effectively by genome-wide association study (GWAS). Here, we implemented GWAS to identify loci controlling salinity tolerance in rice. A custom-designed array based on 6,000 single nucleotide polymorphisms (SNPs) in as many stress-responsive genes, distributed at an average physical interval of <100 kb on 12 rice chromosomes, was used to genotype 220 rice accessions using Infinium high-throughput assay. Genetic association was analysed with 12 different traits recorded on these accessions under field conditions at reproductive stage. We identified 20 SNPs (loci) significantly associated with Na+/K+ ratio, and 44 SNPs with other traits observed under stress condition. The loci identified for various salinity indices through GWAS explained 5–18% of the phenotypic variance. The region harbouring Saltol, a major quantitative trait loci (QTLs) on chromosome 1 in rice, which is known to control salinity tolerance at seedling stage, was detected as a major association with Na+/K+ ratio measured at reproductive stage in our study. In addition to Saltol, we also found GWAS peaks representing new QTLs on chromosomes 4, 6 and 7. The current association mapping panel contained mostly indica accessions that can serve as source of novel salt tolerance genes and alleles. The gene-based SNP array used in this study was found cost-effective and efficient in unveiling genomic regions/candidate genes regulating salinity stress tolerance in rice.  相似文献   

3.
4.
Worldwide, salinity is a major environmental stress affecting agricultural production. Sodium (Na+) exclusion has long been recognised as a mechanism of salinity tolerance (ST) in cereals and several molecular markers have been suggested for breeding. However, there have been no empirical studies to show that selection for Na+ exclusion markers could improve grain yield in bread wheat under dryland salinity. In six field trials, a bread wheat mapping population was grown to validate Na+ exclusion quantitative trait loci (QTL) identified earlier in hydroponics, to determine the impact of Na+ exclusion on grain yield, and to identify QTL for yield-related traits. The traits included grain yield, grain number per m2, 1,000-grain weight, maturity, plant height, and leaf Na+ and K+ concentrations. The presence of numerous QTL with minor effects for most traits indicated the genetic complexity of these traits, and thus limited prospects for pyramiding at present. Considerable QTL-by-environment interactions were observed, with the stable QTL generally being co-located with maturity or early vigour/height genes, which demonstrates the importance of measuring major agronomic traits in order to discover genuine QTL for ST. Several QTL for seedling biomass and Na+ exclusion identified earlier in hydroponics were also detected in field trials but with marginal impact on grain yield. These results suggest that selection for Na+ exclusion and the use of hydroponics-based seedling assays may not necessarily result in improved ST. However, as this is the first report of its kind, there is an urgent need for testing other mapping populations in realistic environments to discover novel ST-QTL for breeding programs. In the meantime, grain yield QTL independent of maturity and height may offer potential to improve ST.  相似文献   

5.
Natural variation in salinity response, effects of population structure on growth and physiological traits and gene–trait association were examined in 56 global collections of diverse perennial ryegrass (Lolium perenne L.) accessions. Three population structure groups were identified with 66 simple sequence repeat markers, which on average accounted for 9 and 11% of phenotypic variation for the control and salinity treatment at 300 mm NaCl. Group 1 (10 accessions) had greater plant height, leaf dry weight and water content, chlorophyll index, K+ concentration and K+/Na+ than group 2 (39 accessions) and group 3 (7 accessions) under salinity stress, while group 3 had higher Na+ than groups 1 and 2. Eighty‐seven single nucleotide polymorphisms were detected from four partial candidate genes encoding aquaporin and Na+/H+ antiporter in both plasma and tonoplast membranes. Overall, rapid decay of linkage disequilibrium was observed within 500 bp. Significant associations were found between the putative LpTIP1 and Na+ for the control and between the putative LpNHX1 and K+/Na+ under the control and salinity treatments after controlling population structure. These results indicate that population structure influenced phenotypic traits, and allelic variation in LpNHX1 may affect salinity tolerance of perennial ryegrass.  相似文献   

6.
In order to understand the physiological traits important in conferring salt tolerance in three barley genotypes, this study was performed under field conditions with three water salinity levels (2, 10, and 18 dS m–1). High salinity decreased net photosynthetic rate, transpiration rate, and stomatal conductance, K+ concentration, K+:Na+ ratio, and grain yield, but increased electrolyte leakage and Na+ content. Under 10 and 18 dS m–1 salinity, Khatam (salt-tolerant) had the maximum stomatal conductance, K+, K+:Na+ ratio, and the grain yield, and a minimum Na+ content and electrolyte leakage, whereas Morocco (salt-sensitive) had the lowest net photosynthetic rate, stomatal conductance, K+ content, K+:Na+ ratio, and grain yield, and the highest Na+ content and electrolyte leakage. This study showed that tolerant genotypes of barley may avoid Na+ accumulation in aboveground parts, facilitating a higher photosynthetic rate and higher grain yield.  相似文献   

7.
Screening methods for salinity tolerance: a case study with tetraploid wheat   总被引:19,自引:1,他引:18  
Munns  Rana  James  Richard A. 《Plant and Soil》2003,253(1):201-218
Fast and effective glasshouse screening techniques that could identify genetic variation in salinity tolerance were tested. The objective was to produce screening techniques for selecting salt-tolerant progeny in breeding programs in which genes for salinity tolerance have been introduced by either conventional breeding or genetic engineering. A set of previously unexplored tetraploid wheat genotypes, from five subspecies of Triticum turgidum, were used in a case study for developing and validating glasshouse screening techniques for selecting for physiologically based traits that confer salinity tolerance. Salinity tolerance was defined as genotypic differences in biomass production in saline versus non-saline conditions over prolonged periods, of 3–4 weeks. Short-term experiments (1 week) measuring either biomass or leaf elongation rates revealed large decreases in growth rate due to the osmotic effect of the salt, but little genotypic differences, although there were genotypic differences in long-term experiments. Specific traits were assessed. Na+ exclusion correlated well with salinity tolerance in the durum subspecies, and K+/Na+ discrimination correlated to a lesser degree. Both traits were environmentally robust, being independent of root temperature and factors that might influence transpiration rates such as light level. In the other four T. turgidum subspecies there was no correlation between salinity tolerance and Na+ accumulation or K+/Na+ discrimination, so other traits were examined. The trait of tolerance of high internal Na+ was assessed indirectly, by measuring chlorophyll retention. Five landraces were selected as maintaining green healthy leaves despite high levels of Na+ accumulation. Factors affecting field performance of genotypes selected by trait-based techniques are discussed.  相似文献   

8.
Quinoa is regarded as a highly salt tolerant halophyte crop, of great potential for cultivation on saline areas around the world. Fourteen quinoa genotypes of different geographical origin, differing in salinity tolerance, were grown under greenhouse conditions. Salinity treatment started on 10 day old seedlings. Six weeks after the treatment commenced, leaf sap Na and K content and osmolality, stomatal density, chlorophyll fluorescence characteristics, and xylem sap Na and K composition were measured. Responses to salinity differed greatly among the varieties. All cultivars had substantially increased K+ concentrations in the leaf sap, but the most tolerant cultivars had lower xylem Na+ content at the time of sampling. Most tolerant cultivars had lowest leaf sap osmolality. All varieties reduced stomata density when grown under saline conditions. All varieties clustered into two groups (includers and excluders) depending on their strategy of handling Na+ under saline conditions. Under control (non-saline) conditions, a strong positive correlation was observed between salinity tolerance and plants ability to accumulate Na+ in the shoot. Increased leaf sap K+, controlled Na+ loading to the xylem, and reduced stomata density are important physiological traits contributing to genotypic differences in salinity tolerance in quinoa, a halophyte species from Chenopodium family.  相似文献   

9.
Uremia Salt Lake, in North West Iran, has a hyper-saline water. A rare highly salinity-tolerant grass species, Aegilops cylindrica grows along its shores. Salinity tolerance of 44 genotypes of Ae. cylindrica, mainly collected from the Lake, was evaluated under control and 400 mM NaCl conditions using the physiological traits of plant height, dry weight, proline content, Na+ and K+ concentrations as well as K+/Na+ ratio. To evaluate the association between microsatellite (EST-SSR and SSR) markers and salinity tolerance, 35 primer pairs were used. Results showed a significant variation in the 44 genotypes studied in terms of their traits except for proline content. Ten most salinity-tolerant genotypes were identified based on their ability to survive, to produce the highest dry weight, and to sustain the least leaf Na+ concentration under salinity stress. The very high negative correlation found between Na+ concentration and salinity tolerance revealed the importance of individual or a combination of Na+ exclusion and excretion mechanisms contributing to the hyper-salinity tolerance of these genotypes. Clustering analysis based on marker data divided the 44 studied genotypes into two groups that were consistent with their saline and non-saline geographical areas. Results of molecular markers showed that four microsatellite markers (Xgwm312, Xwmc170, Xgwm291 and Xgwm410) generated a distinguished banding pattern in ten most salinity-tolerant genotypes. These results supported previous reports on their linkage with Na+ exclusion genes (HKT1;5 and HKT1;4) in wheat, which provided further evidence of usefulness of both genes and the linked markers to the salinity tolerance of the halophytic grass family species.  相似文献   

10.
A field experiment was carried out to investigate the effects of presoaking the wheat grains (Triticum aestivum L.) in 33 or 66 mM NaCl and indolyl-3-acetic acid (IAA at 50 g m−3), gibberellic acid (GA3 at 100 g m−3) or kinetin (100 g m−3) on some tolerance criteria in wheat flag leaf at different stages of development. At various stages of flag leaf development pretreatment with 33 or 66 mM NaCl decreased degree of succulence (particularly 66 mM), relative growth rate, net assimilation rate, relative water content, K+ content and K+/Na+ ratio and at the same time induced accumulation of abscisic acid and Na+. In the majority of cases grain pretreatment with GA3 or kinetin and to a lesser extent with IAA alleviated either partially or completely the deleterious effect of salinity on the above mentioned parameters.  相似文献   

11.
Association mapping of salt tolerance in barley (Hordeum vulgare L.)   总被引:1,自引:0,他引:1  
A spring barley collection of 192 genotypes from a wide geographical range was used to identify quantitative trait loci (QTLs) for salt tolerance traits by means of an association mapping approach using a thousand SNP marker set. Linkage disequilibrium (LD) decay was found with marker distances spanning 2–8 cM depending on the methods used to account for population structure and genetic relatedness between genotypes. The association panel showed large variation for traits that were highly heritable under salt stress, including biomass production, chlorophyll content, plant height, tiller number, leaf senescence and shoot Na+, shoot Cl? and shoot, root Na+/K+ contents. The significant correlations between these traits and salt tolerance (defined as the biomass produced under salt stress relative to the biomass produced under control conditions) indicate that these traits contribute to (components of) salt tolerance. Association mapping was performed using several methods to account for population structure and minimize false-positive associations. This resulted in the identification of a number of genomic regions that strongly influenced salt tolerance and ion homeostasis, with a major QTL controlling salt tolerance on chromosome 6H, and a strong QTL for ion contents on chromosome 4H.  相似文献   

12.
The present study reports an unequivocal and improved protocol for efficient screening of salt tolerance at flowering stage in rice, which can aid phenotyping of population for subsequent identification of QTLs associated with salinity stress, particularly at reproductive stage. To validate the new method, the selection criteria, level and time of imposition of stress; plant growth medium were standardized using three rice genotypes. The setup was established with a piezometer placed in a perforated pot for continuous monitoring of soil EC and pH throughout the period of study. Further, fertilizer enriched soil was partially substituted by gravels for stabilization and maintaining the uniformity of soil EC in pots without hindering its buffering capacity. The protocol including modified medium (Soil:Stone, 4:1) at 8 dS m?1 salinity level was validated using seven different genotypes possessing differential salt sensitivity. Based on the important selection traits such as high stability index for plant yield, harvest index and number of grains/panicle and also high K+ concentration and low Na+– K+ ratio in flag leaf at grain filling stage were validated and employed in the evaluation of a mapping population in the modified screening medium. The method was found significantly efficient for easy maintenance of desired level of soil salinity and identification of genotypes tolerant to salinity at reproductive stage.  相似文献   

13.

Aims

To investigate the changes in physiological parameters in leaves of field-grown rice genotypes differing in their salt tolerance.

Methods

Thirty rice cultivars classified as tolerant (T; 11), moderately tolerant (MT; 5), moderately sensitive (MS; 7) and sensitive (S; 7) based on the previous screening at the seedling stage were established in a greenhouse. Thirty-day-old seedlings were then transplanted to a rice field, situated in a moderately saline area in northeastern Thailand, where EC slowly increased from 2.03 to 6.46 dS m?1 from the transplanting date to harvest. Leaf samples (the third leaves from the top or the flag leaves during the vegetative or the reproductive phase, respectively) were collected, at 1 month intervals, when the plants were 60-, 90-, 120- and 150-day-old corresponding to active tillering, early reproductive, late reproductive and harvest stage, respectively. Leaf samples were analyzed for changes in proline, chlorophyll and malondialdehyde (MDA). The harvested panicles were evaluated for the percentage of filled grain weight and the concentration of Na+ and K+ in the top internode.

Results

The patterns of change and the mean concentrations of most physiological parameters in rice leaves during the course of development were strikingly similar for the four classes of salt tolerance. Proline concentration remained relatively constant throughout the development and finally showed a dramatic increase in the flag leaves at harvest. MDA concentration tended to increase with age reaching the maximum in the flag leaves at harvest. The chlorophyll concentration was higher during the vegetative stage than the reproductive stages. At harvest corresponding to the time of maximum salinity, the T group tended to contain higher proline and stayed green longer than the other groups. Moreover, the T group showed higher percentage filled grain weight which was associated with lower Na+/K+ ratio in the top internode. The percentage filled grain weight was negatively correlated with Na+ concentration and Na+/K+ ratio in the top internode and proline concentration in flag leaves, but did not correlate with chlorophyll and MDA in flag leaves.

Conclusions

Rice cultivars which are tolerant at the seedling stage also showed higher tolerance in the field condition as shown by higher percentage filled grain weight and lower Na+ uptake to the panicles. Tolerant cultivars tended to accumulate less proline in their leaves similar to that found at the seedling stage.  相似文献   

14.
Ion homeostasis is considered to be one of the most important mechanisms underlying salt stress tolerance. We used the Steptoe × Morex barley doubled haploid population to screen for genetic variation in response to salinity stress at an early development stage in a hydroponics system, focusing on ion homeostasis. Salinity induced a strong adverse effect on growth of the parents and their derived population, with Steptoe as the more tolerant parent. Steptoe maintained higher concentrations of K+, Na+ and Cl? in the roots and a similar shoot/root ion ratio (<1) under stress conditions compared to control conditions. In contrast, Morex had higher concentrations of these ions in the shoots under stress and a doubled shoot/root ion ratio relative to control conditions, indicating that salt exclusion might contribute to the higher tolerance of Steptoe. Correlation and path analysis demonstrated that shoot Cl? contents most strongly affected salt tolerance and suggest that both Na+ and Cl? contents are important for salinity stress tolerance in barley. We identified 11 chromosomal regions involved in the control of the variation observed for salt tolerance and various salt stress response traits, including Na+, Cl? and K+ contents in shoots. Two specific regions on chromosomes 2H and 3H were found controlling ion contents and salt tolerance, pointing to genes involved in ion homeostasis that contribute to salt tolerance.  相似文献   

15.
Worldwide, dryland salinity is a major limitation to crop production. Breeding for salinity tolerance could be an effective way of improving yield and yield stability on saline-sodic soils of dryland agriculture. However, this requires a good understanding of inheritance of this quantitative trait. In the present study, a doubled-haploid bread wheat population (Berkut/Krichauff) was grown in supported hydroponics to identify quantitative trait loci (QTL) associated with salinity tolerance traits commonly reported in the literature (leaf symptoms, tiller number, seedling biomass, chlorophyll content, and shoot Na+ and K+ concentrations), understand the relationships amongst these traits, and determine their genetic value for marker-assisted selection. There was considerable segregation within the population for all traits measured. With a genetic map of 527 SSR-, DArT- and gene-based markers, a total of 40 QTL were detected for all seven traits. For the first time in a cereal species, a QTL interval for Na+ exclusion (wPt-3114-wmc170) was associated with an increase (10%) in seedling biomass. Of the five QTL identified for Na+ exclusion, two were co-located with seedling biomass (2A and 6A). The 2A QTL appears to coincide with the previously reported Na+ exclusion locus in durum wheat that hosts one active HKT1;4 (Nax1) and one inactive HKT1;4 gene. Using these sequences as template for primer design enabled mapping of at least three HKT1;4 genes onto chromosome 2AL in bread wheat, suggesting that bread wheat carries more HKT1;4 gene family members than durum wheat. However, the combined effects of all Na+ exclusion loci only accounted for 18% of the variation in seedling biomass under salinity stress indicating that there were other mechanisms of salinity tolerance operative at the seedling stage in this population. Na+ and K+ accumulation appear under separate genetic control. The molecular markers wmc170 (2A) and cfd080 (6A) are expected to facilitate breeding for salinity tolerance in bread wheat, the latter being associated with seedling vigour.  相似文献   

16.
17.
Rocket (Eruca sativa L.) is a medicinal plant that belongs to the Brassicaceae family and was reported to be a tolerant plant under soil salinity as well as high genetic diversity among its varieties. Since morphological and physiological changes to sodium sulfate stress toward this plant have not been investigated yet, the present study was implemented to assess the response of rocket (Eruca sativa L.) varieties to sodium sulfate (Na2SO4) stress as well as the relationship among these traits. Two varieties of rocket plants, the Iranian and Italian ones, were subjected to four salinity (Na2SO4) treatments [0 (control), 15, 30 and 60 mM of Na2SO4 solution] and three growth stages (49, 65, and 74 days) in factorial experiment with completely randomized design and three replications were considered. Some morphologic traits such as grain yield were measured during the growth period. The results of the analysis of variances between the mentioned variables indicated a significant difference between the varieties in terms of K+, Na+, Na+/K+, leaf length, grain yield, organic and mineral matter. The results of correlation and regression of the amounts of K+ showed a linear relationship with the grain yield and its variations were not independent from the variations of grain yield. Eventually, it seems that the Italian variety was more tolerant and having better performance in comparison with the Iranian variety, in response to salt stress.  相似文献   

18.
Durum wheat, Triticum turgidum L. (2n= 4x=28, genome formula AABB) is inferior to bread wheat, T. aestivum L. (2n=6x=42, genome formula AABBDD), in the ability to exclude Na+ under salt strees, in the ratio of the accumulated K+ to Na+ in the leaves under salt stress, and in tolerance of salt stress. Previous work showed that chromosome 4D has a major effect on Na+ and K+ accumulation in the leaves of bread wheat. The 4D chromosome was recombined with chromosome 4B in the genetic background of durum wheat. The recombinants showed that Na+ exclusion and enhanced K+/Na+ ratio in the shoots were controlled by a single locus, Kna1, in the long arm of chromosome 4D. The recombinant families were grown in the field under non-saline conditions and two levels of salinity to determine whether Kna1 confers salt tolerance. Under salt stress, the Kna1 families had higher K+/Na+ ratios in the flag leaves and higher yields of grain and biomass than the Kna1 - families and the parental cultivars. Kna1 is, therefore, one of the factors responsible for the higher salt tolerance of bread wheat relative to durum wheat. The present work provides conceptual evidence that tolerance of salt stress can be transferred between species in the tribe Triticeae.  相似文献   

19.
Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na+) than two Australian cultivars, Gladius and Scout, under salt stress in hydroponics. Despite high leaf and sheath Na+ concentrations, Mocho de Espiga Branca maintained similar salinity tolerance compared to Gladius and Scout. A naturally occurring single nucleotide substitution was identified in the gene encoding a major Na+ transporter TaHKT1;5-D in Mocho de Espiga Branca, which resulted in a L190P amino acid residue variation. This variant prevents Mocho de Espiga Branca from retrieving Na+ from the root xylem leading to a high shoot Na+ concentration. The identification of the tissue-tolerant Mocho de Espiga Branca will accelerate the development of more elite salt-tolerant bread wheat cultivars.  相似文献   

20.
Tibetan wild barley is rich in genetic diversity with potential allelic variation useful for salinity-tolerant improvement of the crop. The objectives of this study were to evaluate salinity tolerance and analysis of the allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Salinity tolerance of 189 Tibetan wild barley accessions was evaluated in terms of reduced dry biomass under salinity stress. In addition, Na+ and K+ concentrations of 48 representative accessions differing in salinity tolerance were determined. Furthermore, the allelic and functional diversity of HvHKT1 and HvHKT2 was determined by association analysis as well as gene expression assay. There was a wide variation among wild barley genotypes in salt tolerance, with some accessions being higher in tolerance than cultivated barley CM 72, and salinity tolerance was significantly associated with K+/Na+ ratio. Association analysis revealed that HvHKT1 and HvHKT2 mainly control Na+ and K+ transporting under salinity stress, respectively, which was validated by further analysis of gene expression. The present results indicated that Tibetan wild barley offers elite alleles of HvHKT1 and HvHKT2 conferring salinity tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号