首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To reveal the genetic basis of potassium use efficiency(KUE) in rapeseed, root morphology(RM), biomass and KUE-related traits were measured in a recombinant inbred line population with 175 F7 lines that were subjected to high-potassium(HK) and low-potassium(LK) treatments by hydroponics. A total of 109 significant QTLs were identified to be associated with the examined traits. Sixty-one of these QTLs were integrated into nine stable QTLs. The higher heritability for RM and biomass traits and lower heritability for KUE-related traits, as well as nine stable QTLs for RM traits and only two for KUE-related traits,suggested that regulating RM traits would be more effective than selecting KUE traits directly to improve KUE by markerassisted selection. Furthermore, the integration of stable QTLs identified in the HK, LK, high-nitrogen(HN) and low-nitrogen(LN) conditions gave 10 QTL clusters. Seven of these clusters were classified into major QTLs that explained 7.4%–23.7% of the total phenotypic variation. Five of the major QTL clusters were detected under all of the treated conditions, and four clusters were specifically detected under the LK and LN conditions. These common and specific QTL clusters may be useful for the simultaneous improvement of multiple traits by marker-assisted selection.  相似文献   

2.
Mapping quantitative trait loci (QTLs) is a foundation for molecular marker-assisted selection and map-based gene cloning. During the past decade, numerous QTLs for seed yield (SY) and yield-related traits in Brassica napus L. have been identified. However, integration of these results in order to compare QTLs from different mapping populations has not been undertaken, due to the lack of common molecular markers between studies. Using previously reported Brassica rapa and Brassica oleracea genome sequences, we carried out in silico integration of 1,960 QTLs associated with 13 SY and yield-related traits from 15 B. napus mapping experiments over the last decade. A total of 736 SY and yield-related QTLs were mapped onto 283 loci in the A and C genomes of B. napus. These QTLs were unevenly distributed across the 19 B. napus chromosomes, with the most on chromosome A3 and the least on chromosome C6. Our integrated QTL map identified 142 loci where the conserved QTLs were detected and 25 multifunctional loci, mostly for the traits of flowering time (FT), plant height, 1,000-seed weight, maturity time and SY. These conserved QTLs and multifunctional loci may result from pleiotropism or clustered genes. At the same time, a total of 146 genes underlying the QTLs for FT and other yield-related traits were identified by comparative mapping with the Arabidopsis genome. These results facilitate the retrieval of B. napus SY and yield-related QTLs for research communities, increase the density of targeted QTL-linked markers, validate the existence of QTLs across different populations, and advance the fine mapping of genes.  相似文献   

3.
Low boron (B) seriously limits the growth of oilseed rape (Brassica napus L.), a high B demand species that is sensitive to low B conditions. Significant genotypic variations in response to B deficiency have been observed among B. napus cultivars. To reveal the genetic basis for B efficiency in B. napus, quantitative trait loci (QTLs) for the plant growth traits, B uptake traits and the B efficiency coefficient (BEC) were analyzed using a doubled haploid (DH) population derived from a cross between a B-efficient parent, Qingyou 10, and a B-inefficient parent, Westar 10. A high-density genetic map was constructed based on single nucleotide polymorphisms (SNPs) assayed using Brassica 60 K Infinium BeadChip Array, simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). The linkage map covered a total length of 2139.5 cM, with 19 linkage groups (LGs) and an average distance of 1.6 cM between adjacent markers. Based on hydroponic evaluation of six B efficiency traits measured in three separate repeated trials, a total of 52 QTLs were identified, accounting for 6.14–46.27% of the phenotypic variation. A major QTL for BEC, qBEC-A3a, was co-located on A3 with other QTLs for plant growth and B uptake traits under low B stress. Using a subset of substitution lines, qBEC-A3a was validated and narrowed down to the interval between CNU384 and BnGMS436. The results of this study provide a novel major locus located on A3 for B efficiency in B. napus that will be suitable for fine mapping and marker-assisted selection breeding for B efficiency in B. napus.  相似文献   

4.
Ding G  Zhao Z  Liao Y  Hu Y  Shi L  Long Y  Xu F 《Annals of botany》2012,109(4):747-759

Background and Aims

One of the key targets of breeding programmes in rapeseed (Brassica napus) is to develop high-yield varieties. However, the lack of available phosphorus (P) in soils seriously limits rapeseed production. The aim of this study was to dissect the genetic control of seed yield and yield-related traits in B. napus grown with contrasting P supplies.

Methods

Two-year field trials were conducted at one site with normal and low P treatments using a population of 124 recombinant inbred lines derived from a cross between ‘B104-2’ and ‘Eyou Changjia’. Seed yield, seed weight, seed number, pod number, plant height, branch number and P efficiency coefficient (PEC) were investigated. Quantitative trait locus (QTL) analysis was performed by composite interval mapping.

Key Results

The phenotypic values of most of the tested traits were reduced under the low P conditions. In total, 74 putative QTLs were identified, contributing 7·3–25·4 % of the phenotypic variation. Of these QTLs, 16 (21·6 %) were detected in two seasons and in the mean value of two seasons, and eight QTLs for two traits were conserved across P levels. Low-P-specific QTLs were clustered on chromosomes A1, A6 and A8. By comparative mapping between Arabidopsis and B. napus, 161 orthologues of 146 genes involved in Arabidopsis P homeostasis and/or yield-related trait control were associated with 45 QTLs corresponding to 23 chromosomal regions. Four gene-based markers developed from genes involved in Arabidopsis P homeostasis were mapped to QTL intervals.

Conclusions

Different genetic determinants were involved in controlling seed yield and yield-related traits in B. napus under normal and low P conditions. The QTLs detected under reduced P supply may provide useful information for improving the seed yield of B. napus in soils with low P availability in marker-assisted selection.  相似文献   

5.
Yield is one of the most important traits for rapeseed (Brassica napus L.) breeding, but its genetic basis remains largely ambiguous. Association mapping has provided a robust approach to understand the genetic basis of complex agronomic traits in crops. In this study, a panel of 192 inbred lines of B. napus from all over the world was genotyped using 451 single-locus microsatellite markers and 740 amplified fragment length polymorphism markers. Six yield-related traits of these inbred lines were investigated in three consecutive years with three replications, and genome-wide association studies were conducted for these six traits. Using the model controlling both population structure and relative kinship (Q + K), a total of 43 associations (P < 0.001) were detected using the means of the six yield-related traits across 3 years, with two to fourteen markers associated with individual traits. Among these, 18 markers were repeatedly detected in at least 2 years, and 12 markers were located within or close to QTLs identified in previous studies. Six markers commonly associated with correlated traits. Conditional association analysis indicated that five of the associations between markers and correlated traits are caused by one QTL with pleiotropic effects, and the remaining association is caused by linked but independent QTLs. The combination of favorable alleles of multiple associated markers significantly enhances trait performance, illustrating a great potential of utilization of the associations in rapeseed breeding programs.  相似文献   

6.
Increasing seed oil content is one of the most important goals in breeding of rapeseed (B. napus L.). To dissect the genetic basis of oil content in B. napus, a large and new double haploid (DH) population containing 348 lines was obtained from a cross between ‘KenC-8’ and ‘N53-2’, two varieties with >10% difference in seed oil content, and this population was named the KN DH population. A genetic linkage map consisting of 403 markers was constructed, which covered a total length of 1783.9 cM with an average marker interval of 4.4 cM. The KN DH population was phenotyped in eight natural environments and subjected to quantitative trait loci (QTL) analysis for oil content. A total of 63 identified QTLs explaining 2.64–17.88% of the phenotypic variation were identified, and these QTLs were further integrated into 24 consensus QTLs located on 11 chromosomes using meta-analysis. A high-density consensus map with 1335 marker loci was constructed by combining the KN DH map with seven other published maps based on the common markers. Of the 24 consensus QTLs in the KN DH population, 14 were new QTLs including five new QTLs in A genome and nine in C genome. The analysis revealed that a larger population with significant differences in oil content gave a higher power detecting new QTLs for oil content, and the construction of the consensus map provided a new clue for comparing the QTLs detected in different populations. These findings enriched our knowledge of QTLs for oil content and should be a potential in marker-assisted breeding of B. napus.  相似文献   

7.
MethodsGenetic variation in [K]shoot was estimated using a structured diversity foundation set (DFS) of 376 accessions and in 74 commercial genotypes grown in glasshouse and field experiments that included phosphorus (P) supply as a treatment factor. Chromosomal quantitative trait loci (QTL) associated with [K]shoot and KUpE were identified using a genetic mapping population grown in the glasshouse and field. Putative QTL were tested using recurrent backcross substitution lines in the glasshouse.ConclusionsThere is sufficient genetic variation in B. oleracea to breed for both KUtE and KUpE. However, as QTL associated with these traits differ between glasshouse and field environments, marker-assisted breeding programmes must consider carefully the conditions under which the crop will be grown.Key words: Arabidopsis, Brassica oleracea, genetics, potassium (K), potassium use efficiency (KUE), quantitative trait loci (QTL), shoot  相似文献   

8.
Nutrient use efficiency (NuUE), comprising nutrient uptake and utilization efficiency, is regarded as one of the most important factors for wheat yield. In the present study, six morphological, nine nutrient content and nine nutrient utilization efficiency traits were investigated at the seedling stage using a set of recombinant inbred lines (RILs), under hydroponic culture of 12 treatments including single nutrient levels and two- and three-nutrient combinations treatments of N, P and K. For the 12 designed treatments, a total of 380 quantitative trait loci (QTLs) on 20 chromosomes for the 24 traits were detected. Of these, 87, 149 and 144 QTLs for morphological, nutrient content and nutrient utilization efficiency traits were found, respectively. Using the data of the average value (AV) across 12 treatments, 70 QTLs were detected for 23 traits. Most QTLs were located in new marker regions. Twenty-six important QTL clusters were mapped on 13 chromosomes, 1A, 1B, 1D, 2B, 3A, 3B, 4A, 4B, 5D, 6A, 6B, 7A and 7B. Of these, ten clusters involved 147 QTLs (38.7%) for investigated traits, indicating that these 10 loci were more important for the NuUE of N, P and K. We found evidence for cooperative uptake and utilization (CUU) of N, P and K in the early growth period at both the phenotype and QTL level. The correlation coefficients (r) between nutrient content and nutrient utilization efficiency traits for N, P and K were almost all significantly positive correlations. A total of 32 cooperative CUU loci (L1–L32) were found, which included 190 out of the 293 QTLs (64.8%) for the nutrient uptake and utilization efficiency traits, indicating that the CUU-QTLs were common for N, P and K. The CUU-QTLs in L3, L7, L16 and L28 were relatively stable. The CUU-QTLs may explain the CUU phenotype at the QTL level.  相似文献   

9.

Background

Map-based cloning of quantitative trait loci (QTLs) in polyploidy crop species remains a challenge due to the complexity of their genome structures. QTLs for seed weight in B. napus have been identified, but information on candidate genes for identified QTLs of this important trait is still rare.

Results

In this study, a whole genome genetic linkage map for B. napus was constructed using simple sequence repeat (SSR) markers that covered a genetic distance of 2,126.4 cM with an average distance of 5.36 cM between markers. A procedure was developed to establish colinearity of SSR loci on B. napus with its two progenitor diploid species B. rapa and B. oleracea through extensive bioinformatics analysis. With the aid of B. rapa and B. oleracea genome sequences, the 421 homologous colinear loci deduced from the SSR loci of B. napus were shown to correspond to 398 homologous loci in Arabidopsis thaliana. Through comparative mapping of Arabidopsis and the three Brassica species, 227 homologous genes for seed size/weight were mapped on the B. napus genetic map, establishing the genetic bases for the important agronomic trait in this amphidiploid species. Furthermore, 12 candidate genes underlying 8 QTLs for seed weight were identified, and a gene-specific marker for BnAP2 was developed through molecular cloning using the seed weight/size gene distribution map in B. napus.

Conclusions

Our study showed that it is feasible to identify candidate genes of QTLs using a SSR-based B. napus genetic map through comparative mapping among Arabidopsis and B. napus and its two progenitor species B. rapa and B. oleracea. Identification of candidate genes for seed weight in amphidiploid B. napus will accelerate the process of isolating the mapped QTLs for this important trait, and this approach may be useful for QTL identification of other traits of agronomic significance.
  相似文献   

10.
High yield is the most important goal in crop breeding, and boron (B) is an essential micronutrient for plants. However, B deficiency, leading to yield decreases, is an agricultural problem worldwide. Brassica napus is one of the most sensitive crops to B deficiency, and considerable genotypic variation exists among different cultivars in response to B deficiency. To dissect the genetic basis of tolerance to B deficiency in B. napus, we carried out QTL analysis for seed yield and yield-related traits under low and normal B conditions using the double haploid population (TNDH) by two-year and the BQDH population by three-year field trials. In total, 80 putative QTLs and 42 epistatic interactions for seed yield, plant height, branch number, pod number, seed number, seed weight and B efficiency coefficient (BEC) were identified under low and normal B conditions, singly explaining 4.15–23.16% and 0.53–14.38% of the phenotypic variation. An additive effect of putative QTLs was a more important controlling factor than the additive-additive effect of epistatic interactions. Four QTL-by-environment interactions and 7 interactions between epistatic interactions and the environment contributed to 1.27–4.95% and 1.17–3.68% of the phenotypic variation, respectively. The chromosome region on A2 of SYLB-A2 for seed yield under low B condition and BEC-A2 for BEC in the two populations was equivalent to the region of a reported major QTL, BE1. The B. napus homologous genes of Bra020592 and Bra020595 mapped to the A2 region and were speculated to be candidate genes for B efficiency. These findings reveal the complex genetic basis of B efficiency in B. napus. They provide a basis for the fine mapping and cloning of the B efficiency genes and for breeding B-efficient cultivars by marker-assisted selection (MAS).  相似文献   

11.

Aims

Potassium (K) is one of the most important mineral nutrients limiting plant growth in agricultural systems. This study investigated the effects of low-K treatments and detected quantitative trait loci (QTLs) for K efficiency traits at the seedling and adult stages of wheat.

Methods

Eleven seedling traits under a hydroponic culture trial with five K treatments and nine adult traits in a pot trial and a field trial with three K treatments were investigated using a set of wheat recombinant inbred lines (RILs).

Results

Values of most of the seedling and adult traits decreased with decreasing K supply, but the K-use efficiency and ratio of dry weight between seedling roots and shoots (RSDW) increased. A total of 87 QTLs for seedling traits in the hydroponic culture trial and 51 and 29 QTLs for adult traits in the pot and field trials, respectively, were detected. We also identified 15 relatively high-frequency QTLs (RHF-QTLs) which can be detected in over half of the treatments and 21 QTL clusters which is defined as the co-location of QTLs for more than two traits.

Conclusions

K efficiency traits and the related QTLs of wheat were greatly affected by K treatments. Several relatively stable QTLs and important QTL clusters may be potential targets for marker-assisted selection for wheat nutrient efficiency.  相似文献   

12.
Flowering time adaptation is a major breeding goal in the allopolyploid species Brassica napus. To investigate the genetic architecture of flowering time, a genome-wide association study (GWAS) of flowering time was conducted with a diversity panel comprising 523 B. napus cultivars and inbred lines grown in eight different environments. Genotyping was performed with a Brassica 60K Illumina Infinium SNP array. A total of 41 single-nucleotide polymorphisms (SNPs) distributed on 14 chromosomes were found to be associated with flowering time, and 12 SNPs located in the confidence intervals of quantitative trait loci (QTL) identified in previous researches based on linkage analyses. Twenty-five candidate genes were orthologous to Arabidopsis thaliana flowering genes. To further our understanding of the genetic factors influencing flowering time in different environments, GWAS was performed on two derived traits, environment sensitivity and temperature sensitivity. The most significant SNPs were found near Bn-scaff_16362_1-p380982, just 13 kb away from BnaC09g41990D, which is orthologous to A. thaliana CONSTANS (CO), an important gene in the photoperiod flowering pathway. These results provide new insights into the genetic control of flowering time in B. napus and indicate that GWAS is an effective method by which to reveal natural variations of complex traits in B. napus.  相似文献   

13.
Phosphorus (P) deficiency in soils is a major limiting factor for plant growth worldwide. Plants have developed adaptive strategies in response to P deficiency. The objective of this study was to map quantitative trait loci (QTL) for P efficiency using a recombinant inbred (RI) population consisting of 124 lines derived from a cross between Brassica napus P-inefficient cv. B104-2 and P-efficient cv. Eyou Changjia. Six traits (shoot dry weight, root dry weight, root/shoot ratio, P concentration, shoot P uptake and shoot P use efficiency) at vegetative stage were examined under high P (HP, 1 mM) and low P (LP, 5 ??M) conditions during three separate experimental trial periods. Their relative values (i.e., the ratio of a trait value under the LP condition to that under the HP condition) of these six traits were also determined. Eyou Changjia produced more biomass and acquired more P under the LP condition and, thus, had a higher relative dry weight and relative P uptake than B104-2, indicating Eyou Changjia was high P efficiency. A total of 71 QTL were detected on 13 linkage groups, including 28 QTL under the LP condition, 22 QTL under the HP condition and 21 QTL for relative traits. Nineteen and nine QTL were specific for the LP and HP conditions, respectively, suggesting that different mechanisms existed under the two P condition. Twelve of the twenty-one QTL for relative traits co-localized with QTL identified under the two P conditions. In addition, 18 orthologous genes involved in the P metabolic pathway of Arabidopsis were in silico mapped to the QTL confidence intervals identified in B. napus by comparative genomic analysis. These QTL and their corresponding candidate genes should be further investigated to better understand P efficiency in B. napus.  相似文献   

14.
Background and AimsOilseed rape (Brassica napus) is one of the most important oil crops worldwide. Phosphorus (P) deficiency severely decreases the plant height and branch number of B. napus. However, the genetic bases controlling plant height and branch number in B. napus under P deficiency remain largely unknown. This study aims to mine candidate genes for plant height and branch number by genome-wide association study (GWAS) and determine low-P-tolerance haplotypes.MethodsAn association panel of B. napus was grown in the field with a low P supply (P, 0 kg ha−1) and a sufficient P supply (P, 40 kg ha−1) across 2 years and plant height and branch number were investigated. More than five million single-nucleotide polymorphisms (SNPs) were used to conduct GWAS of plant height and branch number at two contrasting P supplies.Key ResultsA total of 2127 SNPs were strongly associated (P < 6·25 × 10−07) with plant height and branch number at two P supplies. There was significant correlation between phenotypic variation and the number of favourable alleles of associated loci on chromosomes A10 (chrA10_821671) and C08 (chrC08_27999846), which will contribute to breeding improvement by aggregating these SNPs. BnaA10g09290D and BnaC08g26640D were identified to be associated with chrA10_821671 and chrC08_27999846, respectively. Candidate gene association analysis and haplotype analysis showed that the inbred lines carrying ATT at BnaA10g09290Hap1 and AAT at BnaC08g26640Hap1 had greater plant height than lines carrying other haplotype alleles at low P supply.ConclusionOur results demonstrate the power of GWAS in identifying genes of interest in B. napus and provided insights into the genetic basis of plant height and branch number at low P supply in B. napus. Candidate genes and favourable haplotypes may facilitate marker-based breeding efforts aimed at improving P use efficiency in B. napus.  相似文献   

15.

Key message

The present study identified some new important genomic regions and demonstrated the availability of conditional analysis in dissecting QTLs induced by environmental factors.

Abstract

The high input and low use efficiency of nutrient fertilizers require knowledge of the genetic control of crop reaction to nutrient supplements. In this study, 14 morphological and 8 physiological traits of a set of 182 wheat (Triticum aestivum L.) recombinant inbred lines (Xiaoyan 54 × Jing 411) were investigated in six environments to map quantitative trait loci (QTLs). The influence of nitrogen (N) and phosphorus (P) fertilization on QTL expression was studied by unconditional and conditional analysis. A total of 117 and 30 QTLs were detected by unconditional and conditional analysis, respectively, among which 21 were common for both methods. Thirty-four QTL clusters were identified. Eighteen conserved QTLs (15.4 % of the 117 QTLs) between years, but within nutritional treatment were found. The three major QTLs on chromosomes 2D, 4B and 6A were coincident with Rht8, Rht-B1b and TaGW2, respectively. The other two important intervals on chromosomes 4B and 7A for yield component traits were newly detected QTLs that warrant further study. By conditional analysis, spikelet number per spike was found to be induced by P fertilization mostly, whereas N fertilization had more effects on the expression of the QTLs for nitrogen concentration and utilization efficiency traits. QTLs that respond to N and P interactions were also detected. The results are helpful for understanding the genetic basis of N utilization efficiency in wheat under different N and P supplement environments and provide evidence for the availability of conditional analysis in dissecting QTLs induced by environmental factors.  相似文献   

16.
Drought is the major factor limiting wheat productivity worldwide. The gene pool of wild emmer wheat, Triticum turgidum ssp. dicoccoides , harbours a rich allelic repertoire for morpho-physiological traits conferring drought resistance. The genetic and physiological bases of drought responses were studied here in a tetraploid wheat population of 152 recombinant inbreed lines (RILs), derived from a cross between durum wheat (cv. Langdon) and wild emmer (acc# G18-16), under contrasting water availabilities. Wide genetic variation was found among RILs for all studied traits. A total of 110 quantitative trait loci (QTLs) were mapped for 11 traits, with LOD score range of 3.0–35.4. Several QTLs showed environmental specificity, accounting for productivity and related traits under water-limited (20 QTLs) or well-watered conditions (15 QTLs), and in terms of drought susceptibility index (22 QTLs). Major genomic regions controlling productivity and related traits were identified on chromosomes 2B, 4A, 5A and 7B. QTLs for productivity were associated with QTLs for drought-adaptive traits, suggesting the involvement of several strategies in wheat adaptation to drought stress. Fifteen pairs of QTLs for the same trait were mapped to seemingly homoeologous positions, reflecting synteny between the A and B genomes. The identified QTLs may facilitate the use of wild alleles for improvement of drought resistance in elite wheat cultivars.  相似文献   

17.
Time of flowering is a key adaptive trait in plants and is conditioned by the interaction of genes and environmental cues including length of photoperiod, ambient temperature and vernalisation. Here we investigated the photoperiod responsiveness of summer annual-types of Brassica napus (rapeseed, canola). A population of 131 doubled haploid lines derived from a cross between European and Australian parents was evaluated for days to flowering, thermal time to flowering (measured in degree-days) and the number of leaf nodes at flowering in a compact and efficient glasshouse-based experiment with replicated short and long day treatments. All three traits were under strong genetic control with heritability estimates ranging from 0.85–0.93. There was a very strong photoperiod effect with flowering in the population accelerated by 765 degree-days in the long day versus short day treatments. However, there was a strong genetic correlation of line effects (0.91) between the long and short day treatments and relatively low genotype x treatment interaction indicating that photoperiod had a similar effect across the population. Bivariate analysis of thermal time to flowering in short and long days revealed three main effect quantitative trait loci (QTLs) that accounted for 57.7% of the variation in the population and no significant interaction QTLs. These results provided insight into the contrasting adaptations of Australian and European varieties. Both parents responded to photoperiod and their alleles shifted the population to earlier flowering under long days. In addition, segregation of QTLs in the population caused wide transgressive segregation in thermal time to flowering. Potential candidate flowering time homologues located near QTLs were identified with the aid of the Brassica rapa reference genome sequence. We discuss how these results will help to guide the breeding of summer annual types of B. napus adapted to new and changing environments.  相似文献   

18.
Starch content and its components are important for determining wheat end-use quality and yield. However, little information is available about their interactions at the QTL/gene level in more than one population using different QTL mapping methods. Therefore, to dissect these interactions, two mapping populations from two locations over 2 years were used. The QTLs for the populations were analyzed by unconditional and conditional QTL mapping by two different analysis methods. In the two populations, there were a total of 24 unconditional additive QTLs detected for flour amylose (FAMS), flour amylopectin (FAMP), flour total starch (FTSC), and the ratio of FAMS to FAMP using ICIMapping4.1 methods, but 26 unconditional QTLs were found using QTLNetwork2.0 methods. Of these QTLs, 10 stable major additive QTLs were identified in more than one environment, mainly distributed on chromosomes 3B, 4A, 5A, and 7D. The maximum percentage of phenotypic variance explained (PVE) reached 54.31%. Two new unconditional major additive QTLs on chromosome 3B (Qftsc3B and Qfamp3B) were found. A total of 23 and 19 conditional additive QTLs were identified in the two populations using two different methods, respectively. Of which, eight and six stable major conditional QTLs were detected on chromosomes 3B, 4A, and 7D, respectively. New repressed QTLs were identified, such as Qftsc/fams5B-1 and Qftsc/fams5B-2. There were 20 epistatic unconditional and 15 conditional QTLs detected. In all, important QTLs on chromosomes 3B, 4A, and 7A were found in both populations. However, the number of important QTLs in the special recombinant inbred line (RIL) population was higher than that in the double haploid (DH) population, especially on chromosomes 7D and 5B. Moreover, the QTLs on chromosomes 4A, 7A, and 7D were close to the Wx-1 loci in the RIL population. These indicated better results can be obtained by a special population to target traits than by a common population. The important QTLs on key chromosomes can always be detected no matter what kinds of populations are used, such as the QTLs on chromosome 4A. In addition, QTL clusters were found on chromosomes 4A, 3B, 7A, 7D, and 5A in the two populations, indicating these chromosome regions were very important for starch biosynthesis.  相似文献   

19.
The genetic architecture determinants of yield traits in peanut (Arachis hypogaea L.) are poorly understood. In the present study, an effort was made to map quantitative trait loci (QTLs) for yield traits using recombinant inbred lines (RIL). A genetic linkage map was constructed containing 609 loci, covering a total of 1557.48 cM with an average distance of 2.56 cM between adjacent markers. The present map exhibited good collinearity with the physical map of diploid species of Arachis. Ninety-two repeatable QTLs were identified for 11 traits including height of main stem, total branching number, and nine pod- and seed-related traits. Of the 92 QTLs, 15 QTLs were expressed across three environments and 65 QTLs were newly identified. Twelve QTLs for the height of main stem and the pod- and seed-related traits explaining more than 10 % of phenotypic variation showed a great potential for marker-assisted selection in improving these traits. 相似文献   

20.

Background and Aims

Oilseed rape (Brassica napus) is an important oil crop worldwide. The aim of this study was to identify the variation in nitrogen (N) efficiency of new-type B. napus (genome ArArCcCc) genotypes, and to characterize some critical physiological and molecular mechanisms in response to N limitation.

Methods

Two genotypes with contrasting N efficiency (D4-15 and D1-1) were identified from 150 new-type B. napus lines, and hydroponic and pot experiments were conducted. Root morphology, plant biomass, N uptake parameters and seed yield of D4-15 and D1-1 were investigated. Two traditional B. napus (genome AnAnCnCn) genotypes, QY10 and NY7, were also cultivated. Introgression of exotic genomic components in D4-15 and D1-1 was evaluated with molecular markers.

Key Results

Large genetic variation existed among traits contributing to the N efficiency of new-type B. napus. Under low N levels at the seedling stage, the N-efficient new-type D4-15 showed higher values than the N-inefficient D1-1 line and the traditional B. napus QY10 and NY7 genotypes with respect to several traits, including root and shoot biomass, root morphology, N accumulation, N utilization efficiency (NutE), N uptake efficiency (NupE), activities of nitrate reductase (NR) and glutamine synthetase (GS), and expression levels of N transporter genes and genes that are involved in N assimilation. Higher yield was produced by the N-efficient D4-15 line compared with the N-inefficient D1-1 at maturity. More exotic genome components were introgressed into the genome of D4-15 (64·97 %) compared with D1-1 (32·23 %).

Conclusions

The N-efficient new-type B. napus identified in this research had higher N efficiency (and tolerance to low-N stress) than traditional B. napus cultivars, and thus could have important potential for use in breeding N-efficient B. napus cultivars in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号