首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transfer of mitochondrial genetic material into the nuclear genomes of eukaryotes is a well-established phenomenon that has been previously limited to the study of static reference genomes. The recent advancement of high throughput sequencing has enabled an expanded exploration into the diversity of polymorphic nuclear mitochondrial insertions (NumtS) within human populations. We have developed an approach to discover and genotype novel Numt insertions using whole genome, paired-end sequencing data. We have applied this method to a thousand individuals in 20 populations from the 1000 Genomes Project and other datasets and identified 141 new sites of Numt insertions, extending our current knowledge of existing NumtS by almost 20%. We find that recent Numt insertions are derived from throughout the mitochondrial genome, including the D-loop, and have integration biases that differ in some respects from previous studies on older, fixed NumtS in the reference genome. We determined the complete inserted sequence for a subset of these events and have identified a number of nearly full-length mitochondrial genome insertions into nuclear chromosomes. We further define their age and origin of insertion and present an analysis of their potential impact to ongoing studies of mitochondrial heteroplasmy and disease.  相似文献   

2.
Somatic transposon mutagenesis in mice is an efficient strategy to investigate the genetic mechanisms of tumorigenesis. The identification of tumor driving transposon insertions traditionally requires the generation of large tumor cohorts to obtain information about common insertion sites. Tumor driving insertions are also characterized by their clonal expansion in tumor tissue, a phenomenon that is facilitated by the slow and evolving transformation process of transposon mutagenesis. We describe here an improved approach for the detection of tumor driving insertions that assesses the clonal expansion of insertions by quantifying the relative proportion of sequence reads obtained in individual tumors. To this end, we have developed a protocol for insertion site sequencing that utilizes acoustic shearing of tumor DNA and Illumina sequencing. We analyzed various solid tumors generated by PiggyBac mutagenesis and for each tumor >106 reads corresponding to >104 insertion sites were obtained. In each tumor, 9 to 25 insertions stood out by their enriched sequence read frequencies when compared to frequencies obtained from tail DNA controls. These enriched insertions are potential clonally expanded tumor driving insertions, and thus identify candidate cancer genes. The candidate cancer genes of our study comprised many established cancer genes, but also novel candidate genes such as Mastermind-like1 (Mamld1) and Diacylglycerolkinase delta (Dgkd). We show that clonal expansion analysis by high-throughput sequencing is a robust approach for the identification of candidate cancer genes in insertional mutagenesis screens on the level of individual tumors.  相似文献   

3.
Virus populations can display high genetic diversity within individual hosts. The intra-host collection of viral haplotypes, called viral quasispecies, is an important determinant of virulence, pathogenesis, and treatment outcome. We present HaploClique, a computational approach to reconstruct the structure of a viral quasispecies from next-generation sequencing data as obtained from bulk sequencing of mixed virus samples. We develop a statistical model for paired-end reads accounting for mutations, insertions, and deletions. Using an iterative maximal clique enumeration approach, read pairs are assembled into haplotypes of increasing length, eventually enabling global haplotype assembly. The performance of our quasispecies assembly method is assessed on simulated data for varying population characteristics and sequencing technology parameters. Owing to its paired-end handling, HaploClique compares favorably to state-of-the-art haplotype inference methods. It can reconstruct error-free full-length haplotypes from low coverage samples and detect large insertions and deletions at low frequencies. We applied HaploClique to sequencing data derived from a clinical hepatitis C virus population of an infected patient and discovered a novel deletion of length 357±167 bp that was validated by two independent long-read sequencing experiments. HaploClique is available at https://github.com/armintoepfer/haploclique. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2-5.  相似文献   

4.
Transposable elements (TEs) account for nearly half (44 %) of the human genome. However, their overall activity has been steadily declining over the past 35–50 million years, so that <0.05 % of TEs are presumably still “alive” (potentially transposable) in human populations. All the active elements are retrotransposons, either autonomous (LINE-1 and possibly the endogenous retrovirus ERVK), or non-autonomous (Alu and SVA, whose transposition is dependent on the LINE-1 enzymatic machinery). Here we show that a lineage of the endogenous retrovirus ERVE was recently engaged in ectopic recombination events and may have at least one potentially fully functional representative, initially reported as a novel retrovirus isolated from blood cells of a Chinese patient with chronic myeloid leukemia, which bears signals of positive selection on its envelope region. Altogether, there is strong evidence that ERVE should be included in the short list of potentially active TEs, and we give clues on how to identify human specific insertions of this element that are likely to be segregating in some of our populations.  相似文献   

5.
Long interspersed element-1 (LINE-1 or L1) retrotransposition induces insertional mutations that can result in diseases. It was recently shown that the copy number of L1 and other retroelements is stable in induced pluripotent stem cells (iPSCs). However, by using an engineered reporter construct over-expressing L1, another study suggests that reprogramming activates L1 mobility in iPSCs. Given the potential of human iPSCs in therapeutic applications, it is important to clarify whether these cells harbor somatic insertions resulting from endogenous L1 retrotransposition. Here, we verified L1 expression during and after reprogramming as well as potential somatic insertions driven by the most active human endogenous L1 subfamily (L1Hs). Our results indicate that L1 over-expression is initiated during the reprogramming process and is subsequently sustained in isolated clones. To detect potential somatic insertions in iPSCs caused by L1Hs retotransposition, we used a novel sequencing strategy. As opposed to conventional sequencing direction, we sequenced from the 3′ end of L1Hs to the genomic DNA, thus enabling the direct detection of the polyA tail signature of retrotransposition for verification of true insertions. Deep coverage sequencing thus allowed us to detect seven potential somatic insertions with low read counts from two iPSC clones. Negative PCR amplification in parental cells, presence of a polyA tail and absence from seven L1 germline insertion databases highly suggested true somatic insertions in iPSCs. Furthermore, these insertions could not be detected in iPSCs by PCR, likely due to low abundance. We conclude that L1Hs retrotransposes at low levels in iPSCs and therefore warrants careful analyses for genotoxic effects.  相似文献   

6.
Konkel MK  Wang J  Liang P  Batzer MA 《Gene》2007,390(1-2):28-38
Mobile elements represent a relatively new class of markers for the study of human evolution. Long interspersed elements (LINEs) belong to a group of retrotransposons comprising approximately 21% of the human genome. Young LINE-1 (L1) elements that have integrated recently into the human genome can be polymorphic for insertion presence/absence in different human populations at particular chromosomal locations. To identify putative novel L1 insertion polymorphisms, we computationally compared two draft assemblies of the whole human genome (Public and Celera Human Genome assemblies). We identified a total of 148 potential polymorphic L1 insertion loci, among which 73 were candidates for novel polymorphic loci. Based on additional analyses we selected 34 loci for further experimental studies. PCR-based assays and DNA sequence analysis were performed for these 34 loci in 80 unrelated individuals from four diverse human populations: African-American, Asian, Caucasian, and South American. All but two of the selected loci were confirmed as polymorphic in our human population panel. Approximately 47% of the analyzed loci integrated into other repetitive elements, most commonly older L1s. One of the insertions was accompanied by a BC200 sequence. Collectively, these mobile elements represent a valuable source of genomic polymorphism for the study of human population genetics. Our results also suggest that the exhaustive identification of L1 insertion polymorphisms is far from complete, and new whole genome sequences are valuable sources for finding novel retrotransposon insertion polymorphisms.  相似文献   

7.
8.
9.
SINE-VNTR-Alu (SVA) elements are non-autonomous, hominid-specific non-LTR retrotransposons and distinguished by their organization as composite mobile elements. They represent the evolutionarily youngest, currently active family of human non-LTR retrotransposons, and sporadically generate disease-causing insertions. Since preexisting, genomic SVA sequences are characterized by structural hallmarks of Long Interspersed Elements 1 (LINE-1, L1)-mediated retrotransposition, it has been hypothesized for several years that SVA elements are mobilized by the L1 protein machinery in trans. To test this hypothesis, we developed an SVA retrotransposition reporter assay in cell culture using three different human-specific SVA reporter elements. We demonstrate that SVA elements are mobilized in HeLa cells only in the presence of both L1-encoded proteins, ORF1p and ORF2p. SVA trans-mobilization rates exceeded pseudogene formation frequencies by 12- to 300-fold in HeLa-HA cells, indicating that SVA elements represent a preferred substrate for L1 proteins. Acquisition of an AluSp element increased the trans-mobilization frequency of the SVA reporter element by ~25-fold. Deletion of (CCCTCT)(n) repeats and Alu-like region of a canonical SVA reporter element caused significant attenuation of the SVA trans-mobilization rate. SVA de novo insertions were predominantly full-length, occurred preferentially in G+C-rich regions, and displayed all features of L1-mediated retrotransposition which are also observed in preexisting genomic SVA insertions.  相似文献   

10.
LINE-1 is a family of repetitive DNA sequences interspersed among mammalian genes. In the mouse haploid genome there are about 100,000 LINE-1 copies. We asked if the subspecies Mus spretus and Mus domesticus have developed species-specific LINE-1 subfamilies. Sequences from 14 M. spretus LINE-1 elements were obtained and compared to M. domesticus LINE-1 sequences. Using a molecular phylogenetic tree we identified several differences shared among a subset of young repeats in one or the other species as candidates for species-specific LINE-1 variants. Species specificity was tested using oligonucleotide probes complementary to each putative species-specific variant. When hybridized to genomic DNAs, single-variant probes detected an expanded number of elements in the expected mouse. In the other species these probes detected a smaller number of matches consistent with the average rate of random divergence among LINE-1 elements. It was further found that the combination of two species-specific sequence differences in the same probe reduced the detection background in the wrong species below our detection limit.  相似文献   

11.
We investigated the potential for using mark–recapture models to estimate abundance of bottlenose dolphin populations in open systems (e.g., bays, estuaries). A major challenge in these systems is that immigration and emigration occur during sampling, thus violating one of the most basic assumptions of mark–recapture models. We assumed that dolphins using our study site were composed of both residents (those that used the study area almost exclusively during our study), and transients (those that passed through our study area but did not remain long), and examined several mark–recapture estimators for their ability to accurately and precisely estimate the abundance of residents and the superpopulation (i.e., residents + transients). Using simulated data, we found that a novel approach accounting for transients resulted in estimators with less bias, smaller absolute relative error, and confidence interval coverage closer to nominal than other approaches, but this novel approach required intensive sampling and that the “correct” transient pattern be specified. In contrast, classical mark–recapture estimators for closed populations often overestimated the number of residents and underestimated the superpopulation. Using photo-identification records, a model-averaged estimate of the superpopulation of bottlenose dolphins in and around Choctawhatchee Bay, Florida was 232 (SE = 13) animals. We estimated resident abundance at 179 (SE = 8), which was lower than the number of unique animals we encountered (188). Our results appear promising for developing monitoring programs for bottlenose dolphins and other taxa in open systems. Our estimators should prove useful to wildlife managers who wish to base conservation decisions on estimates of the number of animals that reside primarily in their study or management area. © 2011 The Wildlife Society.  相似文献   

12.
Long interspersed element 1s (LINE-1s or L1s) are a family of non-long-terminal-repeat retrotransposons that predominate in the human genome. Active LINE-1 elements encode proteins required for their mobilization. L1-encoded proteins also act in trans to mobilize short interspersed elements (SINEs), such as Alu elements. L1 and Alu insertions have been implicated in many human diseases, and their retrotransposition provides an ongoing source of human genetic diversity. L1/Alu elements are expected to ensure their transmission to subsequent generations by retrotransposing in germ cells or during early embryonic development. Here, we determined that several subfamilies of Alu elements are expressed in undifferentiated human embryonic stem cells (hESCs) and that most expressed Alu elements are active elements. We also exploited expression from the L1 antisense promoter to map expressed elements in hESCs. Remarkably, we found that expressed Alu elements are enriched in the youngest subfamily, Y, and that expressed L1s are mostly located within genes, suggesting an epigenetic control of retrotransposon expression in hESCs. Together, these data suggest that distinct subsets of active L1/Alu elements are expressed in hESCs and that the degree of somatic mosaicism attributable to L1 insertions during early development may be higher than previously anticipated.  相似文献   

13.
Genomic sequence duplication is an important mechanism for genome evolution, often resulting in large sequence variations with implications for disease progression. Although paired-end sequencing technologies are commonly used for structural variation discovery, the discovery of novel duplicated sequences remains an unmet challenge. We analyze duplicons starting from identified high-copy number variants. Given paired-end mapped reads, and a candidate high-copy region, our tool, Reprever, identifies (a) the insertion breakpoints where the extra duplicons inserted into the donor genome and (b) the actual sequence of the duplicon. Reprever resolves ambiguous mapping signatures from existing homologs, repetitive elements and sequencing errors to identify breakpoint. At each breakpoint, Reprever reconstructs the inserted sequence using profile hidden Markov model (PHMM)-based guided assembly. In a test on 1000 artificial genomes with simulated duplication, Reprever could identify novel duplicates up to 97% of genomes within 3 bp positional and 1% sequence errors. Validation on 680 fosmid sequences identified and reconstructed eight duplicated sequences with high accuracy. We applied Reprever to reanalyzing a re-sequenced data set from the African individual NA18507 to identify >800 novel duplicates, including insertions in genes and insertions with additional variation. polymerase chain reaction followed by capillary sequencing validated both the insertion locations of the strongest predictions and their predicted sequence.  相似文献   

14.
Characterization of pre-insertion loci of de novo L1 insertions   总被引:1,自引:0,他引:1  
The human Long Interspersed Element-1 (LINE-1) and the Short Interspersed Element (SINE) Alu comprise 28% of the human genome. They share the same L1-encoded endonuclease for insertion, which recognizes an A+T-rich sequence. Under a simple model of insertion distribution, this nucleotide preference would lead to the prediction that the populations of both elements would be biased towards A+T-rich regions. Genomic L1 elements do show an A+T-rich bias. In contrast, Alu is biased towards G+C-rich regions when compared to the genome average. Several analyses have demonstrated that relatively recent insertions of both elements show less G+C content bias relative to older elements. We have analyzed the repetitive element and G+C composition of more than 100 pre-insertion loci derived from de novo L1 insertions in cultured human cancer cells, which should represent an evolutionarily unbiased set of insertions. An A+T-rich bias is observed in the 50 bp flanking the endonuclease target site, consistent with the known target site for the L1 endonuclease. The L1, Alu, and G+C content of 20 kb of the de novo pre-insertion loci shows a different set of biases than that observed for fixed L1s in the human genome. In contrast to the insertion sites of genomic L1s, the de novo L1 pre-insertion loci are relatively L1-poor, Alu-rich and G+C neutral. Finally, a statistically significant cluster of de novo L1 insertions was localized in the vicinity of the c-myc gene. These results suggest that the initial insertion preference of L1, while A+T-rich in the initial vicinity of the break site, can be influenced by the broader content of the flanking genomic region and have implications for understanding the dynamics of L1 and Alu distributions in the human genome.  相似文献   

15.
16.
17.

Background

There are over a half a million copies of L1 retroelements in the human genome which are responsible for as much as 0.5% of new human genetic diseases. Most new L1 inserts arise from young source elements that are polymorphic in the human genome. Highly active polymorphic “hot” L1 source elements have been shown to be capable of extremely high levels of mobilization and result in numerous instances of disease. Additionally, hot polymorphic L1s have been described to be highly active within numerous cancer genomes. These hot L1s result in mutagenesis by insertion of new L1 copies elsewhere in the genome, but also have been shown to generate additional full length L1 insertions which are also hot and able to further retrotranspose. Through this mechanism, hot L1s may amplify within a tumor and result in a continued cycle of mutagenesis.

Results and conclusions

We have developed a method to detect full-length, polymorphic L1 elements using a targeted next generation sequencing approach, Sequencing Identification and Mapping of Primed L1 Elements (SIMPLE). SIMPLE has 94% sensitivity and detects nearly all full-length L1 elements in a genome. SIMPLE will allow researchers to identify hot mutagenic full-length L1s as potential drivers of genome instability. Using SIMPLE we find that the typical individual has approximately 100 non-reference, polymorphic L1 elements in their genome. These elements are at relatively low population frequencies relative to previously identified polymorphic L1 elements and demonstrate the tremendous diversity in potentially active L1 elements in the human population.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1374-y) contains supplementary material, which is available to authorized users.  相似文献   

18.
A majority of large-scale bacterial genome rearrangements involve mobile genetic elements such as insertion sequence (IS) elements. Here we report novel insertions and excisions of IS elements and recombination between homologous IS elements identified in a large collection of Escherichia coli mutation accumulation lines by analysis of whole genome shotgun sequencing data. Based on 857 identified events (758 IS insertions, 98 recombinations and 1 excision), we estimate that the rate of IS insertion is 3.5 × 10−4 insertions per genome per generation and the rate of IS homologous recombination is 4.5 × 10−5 recombinations per genome per generation. These events are mostly contributed by the IS elements IS1, IS2, IS5 and IS186. Spatial analysis of new insertions suggest that transposition is biased to proximal insertions, and the length spectrum of IS-caused deletions is largely explained by local hopping. For any of the ISs studied there is no region of the circular genome that is favored or disfavored for new insertions but there are notable hotspots for deletions. Some elements have preferences for non-coding sequence or for the beginning and end of coding regions, largely explained by target site motifs. Interestingly, transposition and deletion rates remain constant across the wild-type and 12 mutant E. coli lines, each deficient in a distinct DNA repair pathway. Finally, we characterized the target sites of four IS families, confirming previous results and characterizing a highly specific pattern at IS186 target-sites, 5′-GGGG(N6/N7)CCCC-3′. We also detected 48 long deletions not involving IS elements.  相似文献   

19.
Transposable elements (TEs) are mobile genetic elements that parasitize genomes by semi-autonomously increasing their own copy number within the host genome. While TEs are important for genome evolution, appropriate methods for performing unbiased genome-wide surveys of TE variation in natural populations have been lacking. Here, we describe a novel and cost-effective approach for estimating population frequencies of TE insertions using paired-end Illumina reads from a pooled population sample. Importantly, the method treats insertions present in and absent from the reference genome identically, allowing unbiased TE population frequency estimates. We apply this method to data from a natural Drosophila melanogaster population from Portugal. Consistent with previous reports, we show that low recombining genomic regions harbor more TE insertions and maintain insertions at higher frequencies than do high recombining regions. We conservatively estimate that there are almost twice as many "novel" TE insertion sites as sites known from the reference sequence in our population sample (6,824 novel versus 3,639 reference sites, with on average a 31-fold coverage per insertion site). Different families of transposable elements show large differences in their insertion densities and population frequencies. Our analyses suggest that the history of TE activity significantly contributes to this pattern, with recently active families segregating at lower frequencies than those active in the more distant past. Finally, using our high-resolution TE abundance measurements, we identified 13 candidate positively selected TE insertions based on their high population frequencies and on low Tajima's D values in their neighborhoods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号