首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomewide association studies (GWAs) initially investigate hundreds of thousands of single-nucleotide polymorphisms (SNPs), and the most promising SNPs are further evaluated with additional subjects, for replication or a joint analysis. Deciding which SNPs merit follow-up is one of the most crucial aspects of these studies. We present here an approach for selecting the most-promising SNPs that incorporates into a hierarchical model both conventional results and other existing information about the SNPs. The model is developed for general use, its potential value is shown by application, and tools are provided for undertaking hierarchical modeling. By quantitatively harnessing all available information in GWAs, hierarchical modeling may more clearly distinguish true causal variants from noise.  相似文献   

2.
With numbers of common variants identified mainly through genome-wide association studies (GWASs), there is great interest in incorporating the findings into screening individuals at high risk of psoriasis. The purpose of this study is to establish genetic prediction models and evaluate its discriminatory ability in psoriasis in Han Chinese population. We built the genetic prediction models through weighted polygenic risk score (PRS) using 14 susceptibility variants in 8,819 samples. We found the risk of psoriasis among individuals in the top quartile of PRS was significantly larger than those in the lowest quartile of PRS (OR = 28.20, P < 2.0×10-16). We also observed statistically significant associations between the PRS, family history and early age onset of psoriasis. We also built a predictive model with all 14 known susceptibility variants and alcohol consumption, which achieved an area under the curve statistic of ~ 0.88. Our study suggests that 14 psoriasis known susceptibility loci have the discriminating potential, as is also associated with family history and age of onset. This is the genetic predictive model in psoriasis with the largest accuracy to date.  相似文献   

3.
Data sets of colorectal cancer (CRC) were obtained from The Cancer Genome Atlas (TCGA), three N6-methyladenosine (m6A) subtypes were identified using 21 m6A-related long noncoding RNAs (lncRNAs) and differential m6A subtypes of different CRC tumors were determined in this study to evaluate the m6A expression and the prognosis of patients with CRC. Subsequently, eight key lncRNAs were identified based on co-expression with 21 m6A-related genes in CRC tumors using the single-factor Cox and least absolute shrinkage and selection operator. Finally, an m6A-related lncRNA risk score model of CRC tumor was established using multifactor Cox regression based on the eight important lncRNAs and found to have a better performance in evaluating the prognosis of patients in the TCGA-CRC data set. TCGA-CRC tumor samples were divided based on the risk scores: high and low. Then, the clinical characteristics, tumor mutation load, and tumor immune cell infiltration difference between the high- and low-risk-score groups were explored, and the predictive ability of the risk score was assessed for immunotherapeutic benefits. We found that the risk score model can determine the overall survival, be a relatively independent prognostic indicator, and better evaluate the immunotherapeutic benefits for patients with CRC. This study provides data support for accurate immunotherapy in CRC.  相似文献   

4.
BackgroundThe classical protein tyrosine phosphatases (PTPs) have been widely reported to be associated with various human malignancies including colorectal cancer (CRC). However, there are few comprehensive analyses of the association between the classical PTP genes and CRC risk.MethodsFirst, a bioinformatics analysis was performed to identify missense variants within the classical PTP gene family. Second, exome-wide association data and an independent population study were conducted to evaluate effects of candidate variants on CRC risk. Finally, functional assays based on signaling pathways were applied to uncover the potential pathogenic mechanism.ResultsWe identified that PTPN12 rs3750050 G allele presented a 19% increase the risk of CRC, with an OR of 1.19 (95% CI = 1.09–1.30, P = 1.015×10−4) under an additive model in the combined analysis. Furthermore, biochemical assays illustrated that rs3750050 could impair the inhibitory effect of PTPN12 on Ras/MEK/ERK signaling by impeding SHC dephosphorylation, increase the expression of cyclin D1 and ultimately lead to aberrant cell proliferation, thus contributing to CRC pathogenesis.ConclusionOur study highlights that PTPN12 rs3750050 could increase CRC risk by modifying Ras/MEK/ERK signaling. This work provides a novel insight into the roles of genetic variants within PTP genes in the pathogenesis of CRC.  相似文献   

5.
Diao D  Wang L  Zhang JX  Chen D  Liu H  Wei Y  Lu J  Peng J  Wang J 《DNA and cell biology》2012,31(3):342-349
Mitogen/extracellular signal-regulated kinase kinase-5 (MEK5), which belongs to a network of mitogen-activated protein kinase pathways, play a pivotal role in carcinogenesis. The purpose of this study was to investigate whether variants in the MEK5 gene promoter were involved in susceptivity of individuals to sporadic colorectal cancer (CRC). In the present hospital-based case-control study of 737 patients with sporadic CRC and 703 healthy control subjects in a southern Chinese population, the two polymorphisms of MEK5 promoter (i.e., rs7172582C>T and rs3743354T>C) were genotyped by TaqMan assay. There were significant differences between cases and controls in the genotype and allele distribution of the MEK5 gene rs3743354T>C polymorphism. The rs3743354 CC genotype was associated with a significantly decreased risk of CRC when compared with the TT genotype (adjusted odds ratios [ORs]=0.43; 95% confidence interval [CI], 0.24-0.77). Compared to the T allele, a significant correlation was detected between the presence of the C allele and decreased risk of CRC (adjusted OR=0.79; 95% CI, 0.61-0.94). The decreased risk of CRC associated with rs3743354 variant genotypes (i.e., CT+CC) was found in the smoker subgroup (adjusted OR=0.63; 95% CI=0.45-0.88). Further, environmental factors, including smoking and drinking, interacted with rs3743354C variant genotypes to reduce CRC risk. Western blot analysis showed that the levels of MEK5 protein in sporadic CRC neoplastic tissues and adjacent normal colorectal epithelium tissues were lower in the carriers of rs3743354 CC genotypes than that in those with rs3743354 TT genotypes or those with rs3743354 TC genotypes. However, no significant association was found between the rs7172582C>T polymorphism and risk of CRC. These data indicate that the rs3743354 polymorphism in the MEK5 promoter may affect the risk of developing CRC.  相似文献   

6.
The progression and the metastatic potential of colorectal cancer (CRC) are intricately linked to the epithelial–mesenchymal transition (EMT) process. The present study harnesses the power of machine learning combined with multi-omics data to develop a risk stratification model anchored on EMT-associated genes. The aim is to facilitate personalized prognostic assessments in CRC. We utilized publicly accessible gene expression datasets to pinpoint EMT-associated genes, employing a CoxBoost algorithm to sift through these genes for prognostic significance. The resultant model, predicated on gene expression levels, underwent rigorous independent validation across various datasets. Our model demonstrated a robust capacity to segregate CRC patients into distinct high- and low-risk categories, each correlating with markedly different survival probabilities. Notably, the risk score emerged as an independent prognostic indicator for CRC. High-risk patients were characterized by an immunosuppressive tumor milieu and a heightened responsiveness to certain chemotherapeutic agents, underlining the model's potential in steering tailored oncological therapies. Moreover, our research unearthed a putative repressive interaction between the long non-coding RNA PVT1 and the EMT-associated genes TIMP1 and MMP1, offering new insights into the molecular intricacies of CRC. In essence, our research introduces a sophisticated risk model, leveraging machine learning and multi-omics insights, which accurately prognosticates outcomes for CRC patients, paving the way for more individualized and effective oncological treatment paradigms.  相似文献   

7.
Despite the fact that colorectal cancer (CRC) is a highly treatable form of cancer if detected early, a very low proportion of the eligible population undergoes screening for this form of cancer. Integrating a genomic screening profile as a component of existing screening programs for CRC could potentially improve the effectiveness of population screening by allowing the assignment of individuals to different types and intensities of screening and also by potentially increasing the uptake of existing screening programs. We evaluated the utility and predictive value of genomic profiling as applied to CRC, and as a potential component of a population-based cancer screening program. We generated simulated data representing a typical North American population including a variety of genetic profiles, with a range of relative risks and prevalences for individual risk genes. We then used these data to estimate parameters characterizing the predictive value of a logistic regression model built on genetic markers for CRC. Meta-analyses of genetic associations with CRC were used in building science to inform the simulation work, and to select genetic variants to include in logistic regression model-building using data from the ARCTIC study in Ontario, which included 1,200 CRC cases and a similar number of cancer-free population-based controls. Our simulations demonstrate that for reasonable assumptions involving modest relative risks for individual genetic variants, that substantial predictive power can be achieved when risk variants are common (e.g., prevalence > 20%) and data for enough risk variants are available (e.g., ~140–160). Pilot work in population data shows modest, but statistically significant predictive utility for a small collection of risk variants, smaller in effect than age and gender alone in predicting an individual’s CRC risk. Further genotyping and many more samples will be required, and indeed the discovery of many more risk loci associated with CRC before the question of the potential utility of germline genomic profiling can be definitively answered.  相似文献   

8.
Changes in the methylation levels of DNA from white blood cells (WBCs) are putatively associated with an elevated risk for several cancers. The aim of this study was to investigate the association between colorectal cancer (CRC) and the methylation status of three DNA repetitive elements in DNA from peripheral blood. WBC DNA from 539 CRC cases diagnosed before 60 years of age and 242 sex and age frequency-matched healthy controls from the Australasian Colorectal Cancer Family Registry were assessed for methylation across DNA repetitive elements Alu, LINE-1 and Sat2 using MethyLight. The percentage of methylated reference (PMR) of cases and controls was calculated for each marker. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable logistic regression adjusted for potential confounders. CRC cases demonstrated a significantly higher median PMR for LINE-1 (p < 0.001), Sat2 (p < 0.001) and Alu repeats (p = 0.02) when compared with controls. For each of the DNA repetitive elements, individuals with PMR values in the highest quartile were significantly more likely to have CRC compared with those in the lowest quartile (LINE-1 OR = 2.34, 95%CI = 1.48–3.70; p < 0.001, Alu OR = 1.83, 95%CI = 1.17–2.86; p = 0.01, Sat2 OR = 1.72, 95%CI = 1.10–2.71; p = 0.02). When comparing the OR for the PMR of each marker across subgroups of CRC, only the Alu marker showed a significant difference in the 5-fluoruracil treated and nodal involvement subgroups (both p = 0.002). This association between increasing methylation levels of three DNA repetitive elements in WBC DNA and early-onset CRC is novel and may represent a potential epigenetic biomarker for early CRC detection.  相似文献   

9.

Background

Low-penetrance genetic variants have been increasingly recognized to influence the risk of tumor development. Risk variants for colorectal cancer (CRC) have been mapped to chromosome positions 8q23.3, 8q24, 9p24.1, 10p14, 11q23, 14q22.2, 15q13, 16q22.1, 18q21, 19q13.1 and 20p12.3. In particular, the 8q24 single nucleotide polymorphism (SNP), rs6983267, has reproducibly been associated with the risk of developing CRC. As the CRC risk SNPs may also influence disease outcome, thus in this study, we evaluated whether they influence patient survival.

Methodology/Principal Findings

DNA samples from 583 CRC patients enrolled in the prospective, North Carolina Cancer Care Outcomes Research and Surveillance Consortium Study (NC CanCORS) were genotyped for 11 CRC susceptibility SNPs at 6 CRC risk loci. Relationships between genotypes and patient survival were examined using Cox regression analysis. In multivariate analysis, patients homozygous for the CRC risk allele of rs7013278 or rs7014346 (both at 8 q24) were only nominally significant for poorer overall survival compared to patients homozygous for the protective allele (hazard ratio = 2.20 and 1.96, respectively; P<0.05). None of these associations, however, remained statistically significant after correction for multiple testing. The other nine susceptibility SNPs tested were not significantly associated with survival.

Conclusions/Significance

We did not find evidence of association of CRC risk variants with patient survival.  相似文献   

10.
李以格  张丹丹 《遗传》2021,(3):203-214
结直肠癌(colorectal cancer, CRC)是受遗传与环境因素共同影响的复杂疾病,其中遗传因素发挥重要作用。至今,全基因组关联研究(genome-wide association studies, GWAS)已经发现了大量与结直肠癌风险相关的遗传变异。随之而来的后GWAS时代,越来越多的研究侧重于利用多组学数据和功能实验对潜在的致病位点进行解析。分析表明绝大多数风险单核苷酸多态性(single nucleotide polymorphism,SNP)位于非编码区,可能通过影响转录因子结合、表观遗传修饰、染色质可及性、基因组高级结构等,调控靶基因表达。本文对后GWAS时代结直肠癌致病位点的机制研究进行综述,阐述了后GWAS对于理解结直肠癌分子机制的重要意义,并探讨了结直肠癌GWAS的应用和前景,为实现GWAS成果转化提供参考。  相似文献   

11.

Background

Several genome-wide association studies (GWAS) involving European populations have successfully identified risk genetic variants associated with type 2 diabetes mellitus (T2DM). However, the effects conferred by these variants in Han Chinese population have not yet been fully elucidated.

Methods

We analyzed the effects of 24 risk genetic variants with reported associations from European GWAS in 3,040 Han Chinese subjects in Taiwan (including 1,520 T2DM cases and 1,520 controls). The discriminative power of the prediction models with and without genotype scores was compared. We further meta-analyzed the association of these variants with T2DM by pooling all candidate-gene association studies conducted in Han Chinese.

Results

Five risk variants in IGF2BP2 (rs4402960, rs1470579), CDKAL1 (rs10946398), SLC30A8 (rs13266634), and HHEX (rs1111875) genes were nominally associated with T2DM in our samples. The odds ratio was 2.22 (95% confidence interval, 1.81-2.73, P<0.0001) for subjects with the highest genetic score quartile (score>34) as compared with subjects with the lowest quartile (score<29). The incoporation of genotype score into the predictive model increased the C-statistics from 0.627 to 0.657 (P<0.0001). These estimates are very close to those observed in European populations. Gene-environment interaction analysis showed a significant interaction between rs13266634 in SLC30A8 gene and age on T2DM risk (P<0.0001). Further meta-analysis pooling 20 studies in Han Chinese confirmed the association of 10 genetic variants in IGF2BP2, CDKAL1, JAZF1, SCL30A8, HHEX, TCF7L2, EXT2, and FTO genes with T2DM. The effect sizes conferred by these risk variants in Han Chinese were similar to those observed in Europeans but the allele frequencies differ substantially between two populations.

Conclusion

We confirmed the association of 10 variants identified by European GWAS with T2DM in Han Chinese population. The incorporation of genotype scores into the prediction model led to a small but significant improvement in T2DM prediction.  相似文献   

12.
We developed a multiplexed label-free quantification strategy, which integrates an efficient gel-assisted digestion protocol, high-performance liquid chromatography tandem MS analysis, and a bioinformatics alignment method to determine personalized proteomic profiles for membrane proteins in human tissues. This strategy provided accurate (6% error) and reproducible (34% relative S.D.) quantification of three independently purified membrane fractions from the same human colorectal cancer (CRC) tissue. Using CRC as a model, we constructed the personalized membrane protein atlas of paired tumor and adjacent normal tissues from 28 patients with different stages of CRC. Without fractionation, this strategy confidently quantified 856 proteins (≥2 unique peptides) across different patients, including the first and robust detection (Mascot score: 22,074) of the well-documented CRC marker, carcinoembryonic antigen 5 by a discovery-type proteomics approach. Further validation of a panel of proteins, annexin A4, neutrophils defensin A1, and claudin 3, confirmed differential expression levels and high occurrences (48-70%) in 60 CRC patients. The most significant discovery is the overexpression of stomatin-like 2 (STOML2) for early diagnostic and prognostic potential. Increased expression of STOML2 was associated with decreased CRC-related survival; the mean survival period was 34.77 ± 2.03 months in patients with high STOML2 expression, whereas 53.67 ± 3.46 months was obtained for patients with low STOML2 expression. Further analysis by ELISA verified that plasma concentrations of STOML2 in early-stage CRC patients were elevated as compared with those of healthy individuals (p < 0.001), suggesting that STOML2 may be a noninvasive serological biomarker for early CRC diagnosis. The overall sensitivity of STOML2 for CRC detection was 71%, which increased to 87% when combined with CEA measurements. This study demonstrated a sensitive, label-free strategy for differential analysis of tissue membrane proteome, which may provide a roadmap for the subsequent identification of molecular target candidates of multiple cancer types.  相似文献   

13.
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in the United States. Despite increased screening options and state-of-art treatments offered in clinics, racial differences remain in CRC. African Americans (AAs) are disproportionately affected by the disease; the incidence and mortality are higher in AAs than Caucasian Americans (CAs). At the time of diagnosis, AAs more often present with advanced stages and aggressive CRCs, primarily accounting for the racial differences in therapeutic outcomes and mortality. The early incidence of CRC in AAs could be attributed to race-specific gene polymorphisms and lifestyle choices associated with socioeconomic status (SES). Altered melatonin-serotonin signaling, besides the established CRC risk factors (age, diet, obesity, alcoholism, and tobacco use), steered by SES, glucocorticoid, and Vitamin D status in AAs could also account for the early incidence in this racial group. This review focuses on how the lifestyle factors, diet, allelic variants, and altered expression of specific genes could lead to atypical serotonin and melatonin signaling by modulating the synthesis, secretion, and signaling of these pineal hormones in AAs and predisposing them to develop more aggressive CRC earlier than CAs. Crosstalk between gut microbiota and pineal hormones and its impact on CRC pathobiology is addressed from a race-specific perspective. Lastly, the status of melatonin-focused CRC treatments, the need to better understand the perturbed melatonin signaling, and the potential of pineal hormone-directed therapeutic interventions to reduce CRC-associated disparity are discussed.  相似文献   

14.
《Cancer epidemiology》2014,38(1):62-65
Background: Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) associated with breast cancer risk. Some of these loci have unknown functional significance and may mediate the effects of hormonal exposures on breast cancer risk. We examined relationships between breast cancer susceptibility variants and menstrual/reproductive factors using data from two population-based studies. Methods: The first analysis was based on a sample of 1328 women age 20–74 who participated as controls in a case–control study of breast cancer conducted in three U.S. states. We evaluated the associations between age at menarche, age at natural menopause and the reproductive lifespan with 13 previously identified breast cancer variants. Associations were also examined with a genetic score created as the sum of at-risk alleles across the 13 variants. For validation, significant results were evaluated in a second dataset comprised 1353 women age 43–86 recruited as part of a cohort study in Wisconsin. Results: Neither the genetic score nor any of the 13 variants considered individually were associated with age at menarche or reproductive lifespan. Two SNPs were associated with age at natural menopause; every increase in the minor allele (A) of rs17468277 (CASP8) was associated with a 1.12 year decrease in menopause age (p = 0.02). The minor allele (G) of rs10941679 (5p12) was associated with a 1.01 year increase in age at natural menopause (p = 0.01). The results were not replicated in the validation cohort (B = −0.61, p = 0.14 and B = −0.01, p = .0.98, respectively). Conclusions: The evaluated variants and reproductive experiences may work through separate pathways to influence breast cancer risk.  相似文献   

15.
16.

Background

Colorectal cancer (CRC) is considered a complex disease, and thus the majority of the genetic susceptibility is thought to lie in the form of low-penetrance variants following a polygenic model of inheritance. Candidate-gene studies have so far been one of the basic approaches taken to identify these susceptibility variants. The consistent involvement of some signaling routes in carcinogenesis provided support for pathway-based studies as a natural strategy to select genes that could potentially harbour new susceptibility loci.

Methodology/Principal Findings

We selected two main carcinogenesis-related pathways: Wnt and BMP, in order to screen the implicated genes for new risk variants. We then conducted a case-control association study in 933 CRC cases and 969 controls based on coding and regulatory SNPs. We also included rs4444235 and rs9929218, which did not fulfill our selection criteria but belonged to two genes in the BMP pathway and had consistently been linked to CRC in previous studies. Neither allelic, nor genotypic or haplotypic analyses showed any signs of association between the 37 screened variants and CRC risk. Adjustments for sex and age, and stratified analysis between sporadic and control groups did not yield any positive results either.

Conclusions/Significance

Despite the relevance of both pathways in the pathogenesis of the disease, and the fact that this is indeed the first study that considers these pathways as a candidate-gene selection approach, our study does not present any evidence of the presence of low-penetrance variants for the selected markers in any of the considered genes in our cohort.  相似文献   

17.
BackgroundThis study evaluated reproductive factors and obesity in relation to colorectal cancer (CRC) in Asian women.MethodsThe study cohort comprised 28191 women who were recruited between 1994 and 1997. During 18 years of prospective follow-up, 404 and 212 women developed colon cancer (CC) and rectal cancer (RC) respectively. Cox proportional hazards regression was used.ResultsMenstrual factors were not related to the risk of CRC, CC and RC. Gravidity and parity were not associated with CRC or RC, but women who were ever pregnant had a HR of 1.87 (95%CI 1.12–3.14) compared to those never pregnant, and parous women had a HR of 1.79 (95% CI 1.10–2.92) compared to nulliparous women for CC. Use of oral contraceptives and hormone replacement therapy were not associated with CRC, CC or RC.Compared to women with normal BMI, women who were obese had HRs of 1.39 (95%CI 1.12–1.74) and 1.64 (95%CI 1.24–2.16) for CRC and CC respectively. No increased risk was seen for RC. Adjusted for BMI, for colonic cancer, women in the highest quartile for Waist Circumference had a HR of 2.14 (95%CI 1.42–3.25) compared to the lowest quartile, for Waist Hip Ratio, a HR of 1.74 (95%CI 1.30–2.34), and for Waist-Height ratio, a HR of 1.80 (1.26–2.57). None of these measures were significantly associated with RC.ConclusionsObesity is positively associated with CC but not RC, and abdominal obesity exerts an independent effect. Reproductive factors had at best a weak effect on CC and RC.  相似文献   

18.
Colorectal cancer (CRC) is the third most prevalent cancer and fourth leading cause of cancer-related deaths globally. It has been shown that the nsSNP variants play an important role in diseases, however it remained unclear how these variants are associated with the disease. Recently, several CRC risk associated SNPs have been discovered, however rs961253 (Lys25Arg at 20p12.3) located in the proximity of bone morphogenetic protein 2 (Bmp2) and fermitin family homolog 1 Fermt1 genes have been reported to be highly associated with the CRC risk. Here we provide evidence for the first time in silico biological functional and structural implications of non-synonymous (nsSNPs) CRC disease-associated variant Lys25Arg via molecular dynamic (MD) simulation. Protein structural analysis was performed with a particular variant allele (A/C, Lys25Arg) and compared with the predicted native protein structure. Our results showed that this nsSNP will cause changes in the protein structure and as a result is associated with the disease. In addition to the native and mutant 3D structures of CRC associated risk allele protein domain (CRAPD), they were also analyzed using solvent accessibility models for further protein stability confirmation. Taken together, this study confirmed that this variant has functional effect and structural impact on the CRAPD and may play an important role in CRC disease progression; hence it could be a reasonable approach for studying the effect of other deleterious variants in future studies.  相似文献   

19.
Selenium (Se), a dietary trace metal essential for human health, is incorporated into ~25 selenoproteins including selenoprotein S (SelS) and the 15-kDa selenoprotein (Sep15) both of which have functions in the endoplasmic reticulum protein unfolding response. The aim of this study was to investigate whether genetic variants in such selenoprotein genes are associated with altered risk of colorectal cancer (CRC). A Korean population of 827 patients with CRC and 733 healthy controls was genotyped for 7 SNPs in selenoprotein genes and one SNP in the gene encoding manganese superoxide dismutase using Sequenom technology. Multivariate logistic regression analysis showed that after adjustment for lifestyle factors three SNP variants were associated with altered disease risk. There was a mean odds ratio of 2.25 [95% CI 1.13,4.48] in females homozygous TT for rs34713741 in SELS with the T variant being associated with higher risk of rectal cancer, and odds ratios of 2.47 and 2.51, respectively, for rs5845 and rs5859 in SEP15 with the minor A and T alleles being associated with increased risk of male rectal cancer. The data indicate that the minor alleles for rs5845, rs5859 and rs34713741 are associated with increased rectal cancer risk and that the effects of the three SNPs are dependent on gender. The results highlight potential links between Se, the function of two selenoproteins involved in the protein unfolding response and CRC risk. Further studies are required to investigate whether the effects of the variants on CRC risk are also modulated by dietary Se intake.  相似文献   

20.
Chronic inflammation is an important factor in colorectal carcinogenesis. However, evidence on the effect of pro-inflammatory and anti-inflammatory foods and nutrients is scarce. Moreover, there are few studies focusing on diet–gene interactions on inflammation and colorectal cancer (CRC). This study was designed to investigate the association between the novel dietary inflammatory index (DII) and CRC and its potential interaction with polymorphisms in inflammatory genes. Data from the Bellvitge Colorectal Cancer Study, a case–control study (424 cases with incident colorectal cancer and 401 hospital-based controls), were used. The DII score for each participant was obtained by multiplying intakes of dietary components from a validated dietary history questionnaire by literature-based dietary inflammatory weights that reflected the inflammatory potential of components. Data from four important single nucleotide polymorphisms located in genes thought to be important in inflammation-associated CRC: i.e., interleukin (IL)-4, IL-6, IL-8, and peroxisome proliferator-activated receptor-γ (PPARG) were analyzed. A direct association was observed between DII score and CRC risk (ORQ4 vs. Q1 1.65, 95 % CI 1.05–2.60, and P trend 0.011). A stronger association was found with colon cancer risk (ORQ4 vs. Q1 2.24, 95 % CI 1.33–3.77, and P trend 0.002) than rectal cancer risk (ORQ4 vs. Q1 1.12, 95 % CI 0.61–2.06, and P trend 0.37). DII score was inversely correlated with SNP rs2243250 in IL-4 among controls, and an interaction was observed with CRC risk. Neither correlation nor interaction was detected for other inflammatory genes. Overall, high-DII diets are associated with increased risk of CRC, particularly for colon cancer, suggesting that dietary-mediated inflammation plays an important role in colorectal carcinogenesis.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0447-x) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号