首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Curcumin is considered a pharmacologically safe agent that may be useful in cancer chemoprevention and therapy. Here, we show for the first time that curcumin effectively induces paraptosis in malignant breast cancer cell lines, including MDA-MB-435S, MDA-MB-231, and Hs578T cells, by promoting vacuolation that results from swelling and fusion of mitochondria and/or the endoplasmic reticulum (ER). Inhibition of protein synthesis by cycloheximide blocked curcumin-induced vacuolation and subsequent cell death, indicating that protein synthesis is required for this process. The levels of AIP-1/Alix protein, a known inhibitor protein of paraptosis, were progressively downregulated in curcumin-treated malignant breast cancer cells, and AIP-1/Alix overexpression attenuated curcumin-induced death in these cells. ERK2 and JNK activation were positively associated with curcumin-induced cell death. Mitochondrial superoxide was shown to act as a critical early signal in curcumin-induced paraptosis, whereas proteasomal dysfunction was mainly responsible for the paraptotic changes associated with ER dilation. Notably, curcumin-induced paraptotic events were not observed in normal breast cells, including mammary epithelial cells and MCF-10A cells. Taken together, our findings on curcumin-induced paraptosis may provide novel insights into the mechanisms underlying the selective anti-cancer effects of curcumin against malignant cancer cells.  相似文献   

2.
Chalcones are biologically active class of compounds, known for their anticancer activities. Here we show for the first time that out of the six synthetic derivatives of chalcone tested, 2′-hydroxy-retrochalcone (HRC) was the most effective in inducing extensive cytoplasmic vacuolation mediated death called paraptosis in malignant breast and cervical cancer cells. The cell death by HRC is found to be nonapoptotic in nature due to the absence of DNA fragmentation, PARP cleavage, and phosphatidylserine externalization. It was also found to be nonautophagic as there was an increase in the levels of autophagic markers LC3I, LC3II and p62. Immunofluorescence with the endoplasmic reticulum (ER) marker protein calreticulin showed that the cytoplasmic vacuoles formed were derived from the ER. This ER dilation was due to ER stress as evidenced from the increase in polyubiquitinated proteins, Bip and CHOP. Docking studies revealed that HRC could bind to the Thr1 residue on the active site of the chymotrypsin-like subunit of the proteasome. The inhibition of proteasomal activity was further confirmed by the fluorescence based assay of the chymotrypsin-like subunit of the 26S proteasome. The cell death by HRC was also triggered by the collapse of mitochondrial membrane potential and depletion of ATP. Pretreatment with thiol antioxidants and cycloheximide were able to inhibit this programmed cell death. Thus our data suggest that HRC can effectively kill cancer cells via paraptosis, an alternative death pathway and can be a potential lead molecule for anticancer therapy.  相似文献   

3.
Oplopantriol-A (OPT) is a natural polyyne from Oplopanax horridus. We show here that OPT preferentially kills cancer cells and inhibits tumor growth. We demonstrate that OPT-induced cancer cell death is mediated by excessive endoplasmic reticulum (ER) stress. Decreasing the level of ER stress either by inactivating components of the unfolded protein response (UPR) pathway or by expression of ER chaperone protein glucose-regulated protein 78 (GRP78) decreases OPT-induced cell death. We show that OPT induces the accumulation of ubiquitinated proteins and the stabilization of unstable proteins, suggesting that OPT functions, at least in part, through interfering with the ubiquitin/proteasome pathway. In support of this, inhibition of protein synthesis significantly decreased the accumulation of ubiquitinated proteins, which is correlated with significantly decreased OPT-induced ER stress and cell death. Finally, we show that OPT treatment significantly induced the expression of BH3-only proteins, Noxa and Bim. Knockdown of both Noxa and Bim significantly blocked OPT-induced cell death. Taken together, our results suggest that OPT is a potential new anticancer agent that induces cancer cell death through inducing ER stress and BH3 proteins Noxa and Bim.  相似文献   

4.
In this study, we evaluated the effect of the hsp70 inhibitor VER155008 on survival of anaplastic thyroid carcinoma (ATC) cells. In ATC cells, VER155008 increased the percentages of dead cells and vacuolated cells. VER155008 did not lead to the cleavage of caspase-3 protein regardless of pretreatment with z-VAD-fmk. VER155008 increased LC3-II protein levels but the protein levels were not changed by autophagy inhibitors. VER155008 caused the dilatation of endoplasmic reticulum (ER), and the increased mRNA levels of Bip and CHOP, suggesting paraptosis. VER155008-induced paraptosis was attenuated by pretreatment with cycloheximide. In conclusion, VER155008 induces paraptosis characterized by cytoplasmic vacuolation, independence of caspase, dilatation of ER and induction of ER stress markers in ATC cells. Moreover, VER155008-induced paraptosis requires de novo protein synthesis in ATC cells.  相似文献   

5.
6.
Although endoplasmic reticulum (ER) stress induction by some anticancer drugs can lead to apoptotic death of cancer cells, combination therapy with other chemicals would be much more efficient. It has been reported that proteasome inhibitors could induce cancer cell death through ER-stress. Our study, however, showed a differential mechanism of proteasome inhibitor-I (Pro-I)-induced cell death. Pro-I significantly enhanced apoptotic death of PC3 prostate cancer cells pretreated with tunicamycin (TM) while other signaling inhibitors against p38, mitogen activated kinase (MEK) and phosphatidyl-inositol 3-kinase (PI3K) did not, as evidenced by cell proliferation and cell cycle analyses. NF-κB inhibition by Pro-I, without direct effect on ER-stress, was found to be responsible for the TM-induced chemosensitization of PC3 cells. Moreover, TM-induced/enhancer-binding protein (C/EBP) homologous protein (CHOP) expression was enhanced by Pro-I without change in GRP78 expression. CHOP knockdown by siRNA also showed a significant decrease in Pro-I chemosensitization. All these data suggest that although TM could induce both NF-κB activation and CHOP expression through ER-stress, both NF-κB inhibition and increased CHOP level by Pro-I are required for enhanced chemosensitization of PC3 prostate cancer cells. Thus, our study might contribute to the identification of anticancer targets against prostate cancer cells.  相似文献   

7.
The microenvironment of cancerous cells includes endoplasmic reticulum (ER) stress the resistance to which is required for the survival and growth of tumors. Acute ER stress triggers the induction of a family of ER stress proteins that promotes survival and/or growth of the cancer cells, and also confers resistance to radiation and chemotherapy. Prolonged or severe ER stress, however, may ultimately overwhelm the cellular protective mechanisms, triggering cell death through specific programmed cell death (pcd) pathways. Thus, downregulation of the protective stress proteins may offer a new therapeutic approach to cancer treatment. In this regard, recent reports have demonstrated the roles of the phytochemical curcumin in the inhibition of proteasomal activity and triggering the accumulation of cytosolic Ca2+ by inhibiting the Ca2+-ATPase pump, both of which enhance ER stress. Using a mouse melanoma cell line, we investigated the possibility that curcumin may trigger ER stress leading to programmed cell death. Our studies demonstrate that curcumin triggers ER stress and the activation of specific cell death pathways that feature caspase cleavage and activation, p23 cleavage, and downregulation of the anti-apoptotic Mcl-1 protein.  相似文献   

8.
Standard anti-cancer therapies promote tumor growth suppression mainly via induction of apoptosis. However, in most cases cancer cells acquire the ability to escape apoptotic cell death, thus becoming resistant to current treatments. In this setting, the interest in alternative cell death modes has recently increased. Paraptosis is a new form of programmed cell death displaying endoplasmic reticulum (ER) and/or mitochondria dilation, generally due to proteostasis disruption or redox and ion homeostasis alteration. Recent studies have highlighted that several natural compounds can trigger paraptosis in different tumor cell lines. Here, we review the molecular mechanisms underlying paraptotic cell death, as well as the natural products inducing this kind of cell death program. A better understanding of paraptosis should facilitate the development of new therapeutic strategies for cancer prevention and treatment.  相似文献   

9.
10.
Autophagy plays a crucial role in cancer cell survival and the inhibition of autophagy is attracting attention as an emerging strategy for the treatment of cancer. Chloroquine (CQ) is an anti-malarial drug, and is also known as an inhibitor of autophagy. Recently, it has been found that CQ induces cancer cell death through the inhibition of autophagy; however, the underlying mechanism is not entirely understood. In this study, we identified the role of CQ-induced cancer cell death using Primary Effusion Lymphoma (PEL) cells. We found that a CQ treatment induced caspase-dependent apoptosis in vitro. CQ also suppressed PEL cell growth in a PEL xenograft mouse model. We showed that CQ activated endoplasmic reticulum (ER) stress signal pathways and induced CHOP, which is an inducer of apoptosis. CQ-induced cell death was significantly decreased by salbrinal, an ER stress inhibitor, indicating that CQ-induced apoptosis in PEL cells depended on ER stress. We show here for the first time that the inhibition of autophagy induces ER stress-mediated apoptosis in PEL cells. Thus, the inhibition of autophagy is a novel strategy for cancer chemotherapy.  相似文献   

11.
12.
In the present study, we found that celastrol, a natural compound with well-known apoptosis-inducing effect, could also induce paraptosis-like cytoplasmic vacuolization in cancer cell lines including HeLa cells, A549 cells and PC-3 cells derived from cervix, lung and prostate, respectively. Further study using HeLa cells indicated that the vacuoles induced by celastrol might be derived from dilation of endoplasmic reticulum. And, in celastrol-treated cells, markers of autophagy such as transformation of microtubule-associated protein 1 light chain 3 (LC3)I to LC3II and LC3 punctates formation were identified. Interestingly, autophagy inhibitors could not interrupt but enhance the induction of cytoplasmic vacuolization. Furthermore, MAPK pathways were activated by celastrol and inhibitors of MEK and p38 pathways could prevent the formation of cytoplasmic vacuolization. Celastrol treatment also induced G2/M cell cycle arrest and apoptosis in HeLa cells. In conclusion, celastrol induced a kind of paraptosis accompanied by autophagy and apoptosis in cancer cells. The coincidence of apoptosis and autophagy together with paraptosis might contribute to the unique characteristics of paraptosis in celastrol-treated cells such as the dependence of paraptosis on MAPK pathways and dynamic change of LC3 proteins. Both paraptosis and apoptosis could contribute to the cell death induced by celastrol while autophagy might serve as a kind of survival mechanism. The potency of celastrol to induce paraptosis, apoptosis and autophagy at the same dose might be related to its capability to affect a variety of pathways including proteasome, ER stress and Hsp90.  相似文献   

13.
Dietary conjugated linoleic acids (CLA) are fatty acid isomers with anticancer activities produced naturally in ruminants or from vegetable oil processing. The anticancer effects of CLA differ upon the cancer origin and the CLA isomers. In this study, we carried out to precise the effects of CLA isomers, c9,t11 and t10,c12 CLA, on mechanisms of cell death induction in colon cancer cells. We first showed that only t10,c12 CLA treatment (25 and 50 μM) for 72 h triggered apoptosis in colon cancer cells without affecting viability of normal-derived colon epithelial cells. Exposure of colon cancer cells to t10,c12 CLA activated ER stress characterized by induction of eIF2α phoshorylation, splicing of Xbp1 mRNA and CHOP expression. Furthermore, we evidenced that inhibition of CHOP expression and JNK signaling decreased t10,c12 CLA-mediated cancer cell death. Finally, we showed that CHOP induction by t10,c12 CLA was dependent on ROS production and that the anti-oxidant N-acetyl-cysteine reduced CHOP induction-dependent cell death. These results highlight that t10,c12 CLA exerts its cytotoxic effect through ROS generation and a subsequent ER stress-dependent apoptosis in colon cancer cells.  相似文献   

14.

Background

α-TEA (RRR-α-tocopherol ether-linked acetic acid analog), a derivative of RRR-α-tocopherol (vitamin E) exhibits anticancer actions in vitro and in vivo in variety of cancer types. The objective of this study was to obtain additional insights into the mechanisms involved in α-TEA induced apoptosis in human breast cancer cells.

Methodology/Principal Findings

α-TEA induces endoplasmic reticulum (ER) stress as indicated by increased expression of CCAAT/enhancer binding protein homologous protein (CHOP) as well as by enhanced expression or activation of specific markers of ER stress such as glucose regulated protein (GRP78), phosphorylated alpha subunit of eukaryotic initiation factor 2 (peIF-2α), and spliced XBP-1 mRNA. Knockdown studies using siRNAs to TRAIL, DR5, JNK and CHOP as well as chemical inhibitors of ER stress and caspase-8 showed that: i) α-TEA activation of DR5/caspase-8 induces an ER stress mediated JNK/CHOP/DR5 positive amplification loop; ii) α-TEA downregulation of c-FLIP (L) protein levels is mediated by JNK/CHOP/DR5 loop via a JNK dependent Itch E3 ligase ubiquitination that further serves to enhance the JNK/CHOP/DR5 amplification loop by preventing c-FLIP''s inhibition of caspase-8; and (iii) α-TEA downregulation of Bcl-2 is mediated by the ER stress dependent JNK/CHOP/DR5 signaling.

Conclusion

Taken together, ER stress plays an important role in α-TEA induced apoptosis by enhancing DR5/caspase-8 pro-apoptotic signaling and suppressing anti-apoptotic factors c-FLIP and Bcl-2 via ER stress mediated JNK/CHOP/DR5/caspase-8 signaling.  相似文献   

15.
Brain ischemia induces apoptosis in neuronal cells, but the mechanism is not well understood. When wild-type mice were subjected to bilateral common carotid arteries occlusion (BCCAO) for 15 min, apoptosis-associated morphological changes and appearance of TUNEL-positive cells were observed in the striatum and in the hippocampus at 48 h after occlusion. RT-PCR analysis revealed that mRNAs for ER stress-associated proapoptotic factor CHOP and an ER chaperone BiP are markedly induced at 12 h after BCCAO. Immunohistochemical analysis showed that CHOP protein is induced in nuclei of damaged neurons at 24 h after occlusion. In contrast, ischemia-associated apoptotic loss of neurons was decreased in CHOP(-/-) mice. Primary hippocampal neurons from CHOP(-/-) mice were more resistant to hypoxia-reoxygenation-induced apoptosis than those from wild-type animals. These results indicate that ischemia-induced neuronal cell death is mediated by the ER stress pathway involving CHOP induction.  相似文献   

16.
17.
Curcumin has been shown to induce apoptosis in many cancer cells. However, the molecular mechanism(s) responsible for curcumin-induced apoptosis is not well understood and most probably involves several pathways. In HL-60 cells, curcumin induced apoptosis and endoplasmic reticulum (ER) stress as evidenced by the survival molecules such as phosphorylated protein kinase-like ER-resident kinase, phosphorylated eukaryotic initiation factor-2alpha, glucose-regulated protein-78, and the apoptotic molecules such as caspase-4 and CAAT/enhancer binding protein homologous protein (CHOP). Inhibition of caspase-4 activity by z-LEVD-FMK, blockage of CHOP expression by small interfering RNA, and treatment with salubrinal, an ER inhibitor, significantly reduced curcumin-induced apoptosis. Removing two double bonds in curcumin, which was speculated to form Michael adducts with thiols in secretory proteins, resulted in a loss of the ability of curcumin to induce apoptosis as well as ER stress. Thus, the present study shows that curcumin-induced apoptosis is associated with its ability to cause ER stress.  相似文献   

18.
Increasingly, anti-cancer medications are being reported to induce cell death mechanisms other than apoptosis. Activating alternate death mechanisms introduces the potential to kill cells that have defects in their apoptotic machinery, as is commonly observed in cancer cells, including in hematological malignancies. We, and others, have previously reported that the mTOR inhibitor everolimus has pre-clinical efficacy and induces caspase-independent cell death in acute lymphoblastic leukemia cells. Furthermore, everolimus is currently in clinical trial for acute lymphoblastic leukemia. Here we characterize the death mechanism activated by everolimus in acute lymphoblastic leukemia cells. We find that cell death is caspase-independent and lacks the morphology associated with apoptosis. Although mitochondrial depolarization is an early event, permeabilization of the outer mitochondrial membrane only occurs after cell death has occurred. While morphological and biochemical evidence shows that autophagy is clearly present it is not responsible for the observed cell death. There are a number of features consistent with paraptosis including morphology, caspase-independence, and the requirement for new protein synthesis. However in contrast to some reports of paraptosis, the activation of JNK signaling was not required for everolimus-induced cell death. Overall in acute lymphoblastic leukemia cells everolimus induces a cell death that resembles paraptosis.  相似文献   

19.
Curcumin has a potent anticancer effect and is a promising new therapeutic strategy. We previously demonstrated that curcumin induced non-apoptotic autophagic cell death in malignant glioma cells in vitro and in vivo. This compound inhibited the Akt/mammalian target of rapamycin/p70 ribosomal protein S6 kinase pathway and activated the extracellular signal-regulated kinases 1/2 thereby inducing autophagy. Interestingly, activation of the first pathway inhibited curcumin-induced autophagy and cytotoxicity, whereas inhibition of the latter pathway inhibited curcumin-induced autophagy and induced apoptosis, thus augmenting the cytotoxicity of curcumin. These results imply that these two autophagic pathways have opposite effects on curcumin's cytotoxicity. However, inhibition of nuclear factor kappaB, which is the main target of curcumin for its anticancer effect, was not observed in malignant glioma cells. These results suggest that autophagy but not nuclear factor kappaB plays a central role in curcumin anticancer therapy and warrant further investigation toward application in patients with malignant gliomas. Here, we discuss the therapeutic role of two autophagic pathways influenced by curcumin.  相似文献   

20.
In the present study, we investigated the anticancer activity of Pinus radiata bark extract (PRE) against MCF-7 human breast cancer cells. First, we observed that PRE induces potent cytotoxic effects in MCF-7 cells. The cell death had features of cytoplasmic vacuolation, plasma membrane permeabilization, chromatin condensation, phosphatidylserine externalization, absence of executioner caspase activation, insensitivity to z-VAD-fmk (caspase inhibitor), increased accumulation of autophagic markers, and lysosomal membrane permeabilization (LMP). Both the inhibition of early stage autophagy flux and lysosomal cathepsins did not improve cell viability. The antioxidant, n-acetylcysteine, and the iron chelator, deferoxamine, failed to restore the lysosomal integrity indicating that PRE-induced LMP is independent of oxidative stress. This was corroborated with the absence of enhanced ROS production in PRE-treated cells. Chelation of both intracellular calcium and zinc promotes PRE-induced LMP. Geranylgeranylacetone, an inducer of Hsp70 expression, also had no significant protective effect on PRE-induced LMP. Moreover, we found that PRE induces endoplasmic reticulum (ER) stress and mitochondrial membrane depolarization in MCF-7 cells. The ER stress inhibitor, 4-PBA, did not restore the mitochondrial membrane integrity, whereas cathepsin inhibitors demonstrated significant protective effects. Collectively, our results suggest that PRE induces an autophagic block, LMP, ER stress, and mitochondrial dysfunction in MCF-7 cells. However, further studies are clearly warranted to explore the exact mechanism behind the anticancer activity of PRE in MCF-7 human breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号