首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The human nuclear single-stranded (ss) DNA- binding protein, replication protein A (RPA), is a heterotrimer consisting of three subunits: p70, p32 and p14. The protein–DNA interaction is mediated by several DNA-binding domains (DBDs): two major (A and B, also known as p70A and p70B) and several minor (C and D, also known as p70C and p32D, and, presumably, by p70N). Here, using crosslinking experiments, we investigated an interaction of RPA deletion mutants containing a subset of the DBDs with partial DNA duplexes containing 5′-protruding ssDNA tails of 10, 20 and 30 nt. The crosslinks were generated using either a ‘zero-length’ photoreactive group (4-thio-2′-deoxyuridine-5′-monophosphate) embedded in the 3′ end of the DNA primer, or a group connected to the 3′ end by a lengthy linker (5-{N-[N-(4-azido-2,5-difluoro-3- chloropyridine-6-yl)-3-aminopropionyl]-trans-3-aminopropenyl-1}-2′-deoxyuridine-5′-monophosphate). In the absence of two major DBDs, p70A and p70B, the RPA trimerization core (p70C·p32D·p14) was capable of correctly recognizing the primer– template junction and adopting an orientation similar to that in native RPA. Both p70C and p32D contributed to this recognition. However, the domain contribution differed depending on the size of the ssDNA. In contrast with the trimerization core, the RPA dimerization core (p32D·p14) was incapable of detectably recognizing the DNA- junction structures, suggesting an orchestrating role for p70C in this process.  相似文献   

2.
3.
Replication Protein A is a single-stranded (ss) DNA-binding protein that is highly conserved in eukaryotes and plays essential roles in many aspects of nucleic acid metabolism, including replication, recombination, DNA repair and telomere maintenance. It is a heterotrimeric complex consisting of three subunits: RPA1, RPA2 and RPA3. It possesses four DNA-binding domains (DBD), DBD-A, DBD-B and DBD-C in RPA1 and DBD-D in RPA2, and it binds ssDNA via a multistep pathway. Unlike the RPA1 and RPA2 subunits, no ssDNA-RPA3 interaction has as yet been observed although RPA3 contains a structural motif found in the other DBDs. We show here using 4-thiothymine residues as photoaffinity probe that RPA3 interacts directly with ssDNA on the 3′-side on a 31 nt ssDNA.The replication protein A (RPA) is a single-stranded (ss) DNA-binding protein that is highly conserved in eukaryotes (1–3). RPA is one of the key players in various essential processes of DNA metabolism including replication, recombination, DNA repair and telomere maintenance (1,2,4–9). The functions of this protein are based on its DNA-binding activity and specific protein–protein interactions. Its ssDNA binding properties depend on DNA length and nucleotide sequence (6,10–13). RPA is a heterotrimeric protein, composed of 70-, 32- and 14-kDa subunits, commonly referred to as RPA1, RPA2 and RPA3, respectively. There are four DNA-binding domains (DBD) located in RPA1 (DBD A, DBD B, DBD C and DBD F), one located in RPA2 (DBD D) and one belongs to RPA3 (DBD E). RPA interacts with ssDNA via four DBD: DBD A, DBD B, DBD C and DBD D (14).It is now accepted (11) that RPA binds to ssDNA in a sequential pathway with a defined polarity (15–17). RPA binds ssDNA with three different binding modes. First, binding initially involves an unstable recognition site of 8–10 nt with the high-affinity DBD A and DBD B domains on the 5′-side of the occluded ssDNA; it is designated ‘compact conformation’ or 8–10 nt binding mode. Second, this step is followed by the weaker binding of DBD C, on the 3′-side, leading to an intermediate or ‘elongated contracted’ (13–22 nt) binding mode (18–19). Finally binding of DBD D on the 3′-side forms a stable ‘elongated extended’ complex characterized by a 30 nt long occluded binding site (30 nt binding mode). Although RPA3 contains an Oligonucleotide-Binding (OB)-fold motif found in the other DBDs, there is presently no biochemical evidence that this subunit directly contacts DNA. Thus positioning of the RPA3 subunit relative to the other domains is still speculative (11,20). It has been clearly demonstrated that RPA3 is crucial for RPA function (1,2): RPA3 is involved in heterotrimer formation and is responsible for the polarity of binding to DNA (11,21,22). The scope of the data indicates that either RPA3 participates only in protein–protein interactions or that putative interaction of RPA3 with ssDNA is unstable and too transient to be detected by standard biochemical experiments. This latter possibility is likely if such interaction is provided by the 3′-side of the ssDNA, since it has been suggested that this region might be transiently accessible to the RPA DBD domains (23,24).In the past few years, thionucleobases have been extensively used as intrinsic photolabels to probe the structure in solution of folded molecules and to identify transient contacts within nucleic acids and/or between nucleic acids and proteins, in nucleoprotein assemblies (25). Thio residues such as 4-thiothymine and 6-thioguanine absorb light at wavelengths longer than 320 nm, and thus can be selectively photo-activated. Owing to the high photo-reactivity of their triplet state, they exhibit high photo-cross-linking ability towards nucleic acid bases as well as towards amino acid residues. Here we used a combination of approaches including gel retardation assays, chemical cross-linking and cross-linking with photoreactive ssDNA probes containing 4-thiothymine, introduced at a defined site in the sequence of the ssDNA, to study interactions present in human RPA (hRPA): ssDNA complexes. These studies coupled with the identification of cross-linked targets using specific antibodies revealed that in the elongated extended hRPA:ssDNA complex RPA3 closely contacts the 3′-end positioned nucleotide and yields a covalent adduct with zero-length photolabel.  相似文献   

4.
5.
The telomere repeat units of Candida species are substantially longer and more complex than those in other organisms, raising interesting questions concerning the recognition mechanisms of telomere-binding proteins. Herein we characterized the properties of Candida parapsilosis Cdc13A and Cdc13B, two paralogs that are responsible for binding and protecting the telomere G-strand tails. We found that Cdc13A and Cdc13B can each form complexes with itself and a heterodimeric complex with each other. However, only the heterodimer exhibits high-affinity and sequence-specific binding to the telomere G-tail. EMSA and crosslinking analysis revealed a combinatorial mechanism of DNA recognition, which entails the A and B subunit making contacts to the 3′ and 5′ region of the repeat unit. While both the DBD and OB4 domain of Cdc13A can bind to the equivalent domain in Cdc13B, only the OB4 complex behaves as a stable heterodimer. The unstable Cdc13ABDBD complex binds G-strand with greatly reduced affinity but the same sequence specificity. Thus the OB4 domains evidently contribute to binding by promoting dimerization of the DBDs. Our investigation reveals a rare example of combinatorial recognition of single-stranded DNA and offers insights into the co-evolution of telomere DNA and cognate binding proteins.  相似文献   

6.
Telomeres are protein–DNA elements that are located at the ends of linear eukaryotic chromosomes. In concert with various telomere-binding proteins, they play an essential role in genome stability. We determined the structure of the DNA-binding domain of NgTRF1, a double-stranded telomere-binding protein of tobacco, using multidimensional NMR spectroscopy and X-ray crystallography. The DNA-binding domain of NgTRF1 contained the Myb-like domain and C-terminal Myb-extension that is characteristic of plant double-stranded telomere-binding proteins. It encompassed amino acids 561–681 (NgTRF1561–681), and was composed of 4 α-helices. We also determined the structure of NgTRF1561–681 bound to plant telomeric DNA. We identified several amino acid residues that interacted directly with DNA, and confirmed their role in the binding of NgTRF1 to telomere using site-directed mutagenesis. Based on a structural comparison of the DNA-binding domains of NgTRF1 and human TRF1 (hTRF1), NgTRF1 has both common and unique DNA-binding properties. Interaction of Myb-like domain with telomeric sequences is almost identical in NgTRF1561–681 with the DNA-binding domain of hTRF1. The interaction of Arg-638 with the telomeric DNA, which is unique in NgTRF1561–681, may provide the structural explanation for the specificity of NgTRF1 to the plant telomere sequences, (TTTAGGG)n.  相似文献   

7.
8.
The SLX1–SLX4 structure-specific endonuclease complex is involved in processing diverse DNA damage intermediates, including resolution of Holliday junctions, collapse of stalled replication forks and removal of DNA flaps. The nuclease subunit SLX1 is inactive on its own, but become activated upon binding to SLX4 via its conserved C-terminal domain (CCD). Yet, how the SLX1–SLX4 complex recognizes specific DNA structure and chooses cleavage sites remains unknown. Here we show, through a combination of structural, biochemical and computational analyses, that the SAP domain of SLX4 is critical for efficient and accurate processing of 5′-flap DNA. It binds the minor groove of DNA about one turn away from the flap junction, and the 5′-flap is implicated in binding the core domain of SLX1. This binding mode accounts for specific recognition of 5′-flap DNA and specification of cleavage site by the SLX1–SLX4 complex.  相似文献   

9.
The DNA-binding DNA polymerase (gp43) of phage T4 is also an RNA-binding protein that represses translation of its own mRNA. Previous studies implicated two segments of the untranslated 5′-leader of the mRNA in repressor binding, an RNA hairpin structure and the adjacent RNA to the 3′ side, which contains the Shine–Dalgarno sequence. Here, we show by in vitro gp43–RNA binding assays that both translated and untranslated segments of the mRNA contribute to the high affinity of gp43 to its mRNA target (translational operator), but that a Shine–Dalgarno sequence is not required for specificity. Nucleotide sequence specificity appears to reside solely in the operator’s hairpin structure, which lies outside the putative ribosome-binding site of the mRNA. In the operator region external to the hairpin, RNA length rather than sequence is the important determinant of the high binding affinity to the protein. Two aspects of the RNA hairpin determine specificity, restricted arrangement of purine relative to pyrimidine residues and an invariant 5′-AC-3′ in the unpaired (loop) segment of the RNA structure. We propose a generalized structure for the hairpin that encompasses these features and discuss possible relationships between RNA binding determinants of gp43 and DNA binding by this replication enzyme.  相似文献   

10.
11.
Mammalian polynucleotide kinase (mPNK) is a critical DNA repair enzyme whose 5′-kinase and 3′-phoshatase activities function with poorly understood but striking specificity to restore 5′-phosphate/3′-hydroxyl termini at sites of DNA damage. Here we integrated site-directed mutagenesis and small-angle X-ray scattering (SAXS) combined with advanced computational approaches to characterize the conformational variability and DNA-binding properties of mPNK. The flexible attachment of the FHA domain to the catalytic segment, elucidated by SAXS, enables the interactions of mPNK with diverse DNA substrates and protein partners required for effective orchestration of DNA end repair. Point mutations surrounding the kinase active site identified two substrate recognition surfaces positioned to contact distinct regions on either side of the phosphorylated 5′-hydroxyl. DNA substrates bind across the kinase active site cleft to position the double-stranded portion upstream of the 5′-hydroxyl on one side, and the 3′-overhang on the opposite side. The bipartite DNA-binding surface of the mPNK kinase domain explains its preference for recessed 5′-termini, structures that would be encountered in the course of DNA strand break repair.  相似文献   

12.
We report small-angle X-ray scattering (SAXS) and sedimentation velocity (SV) studies on the enzyme–DNA complexes of rat DNA polymerase β (Pol β) and African swine fever virus DNA polymerase X (ASFV Pol X) with one-nucleotide gapped DNA. The results indicated formation of a 2 : 1 Pol β–DNA complex, whereas only 1 : 1 Pol X–DNA complex was observed. Three-dimensional structural models for the 2 : 1 Pol β–DNA and 1 : 1 Pol X–DNA complexes were generated from the SAXS experimental data to correlate with the functions of the DNA polymerases. The former indicates interactions of the 8 kDa 5′-dRP lyase domain of the second Pol β molecule with the active site of the 1 : 1 Pol β–DNA complex, while the latter demonstrates how ASFV Pol X binds DNA in the absence of DNA-binding motif(s). As ASFV Pol X has no 5′-dRP lyase domain, it is reasonable not to form a 2 : 1 complex. Based on the enhanced activities of the 2 : 1 complex and the observation that the 8 kDa domain is not in an optimal configuration for the 5′-dRP lyase reaction in the crystal structures of the closed ternary enzyme–DNA–dNTP complexes, we propose that the asymmetric 2 : 1 Pol β–DNA complex enhances the function of Pol β.  相似文献   

13.
14.
15.
16.
Binding of proteins to particular DNA sites across the genome is a primary determinant of specificity in genome maintenance and gene regulation. DNA-binding specificity is encoded at multiple levels, from the detailed biophysical interactions between proteins and DNA, to the assembly of multi-protein complexes. At each level, variation in the mechanisms used to achieve specificity has led to difficulties in constructing and applying simple models of DNA binding. We review the complexities in protein–DNA binding found at multiple levels and discuss how they confound the idea of simple recognition codes. We discuss the impact of new high-throughput technologies for the characterization of protein–DNA binding, and how these technologies are uncovering new complexities in protein–DNA recognition. Finally, we review the concept of multi-protein recognition codes in which new DNA-binding specificities are achieved by the assembly of multi-protein complexes.  相似文献   

17.
18.
HinP1I, a type II restriction endonuclease, recognizes and cleaves a palindromic tetranucleotide sequence (G↓CGC) in double-stranded DNA, producing 2 nt 5′ overhanging ends. Here, we report the structure of HinP1I crystallized as one protein monomer in the crystallographic asymmetric unit. HinP1I displays an elongated shape, with a conserved catalytic core domain containing an active-site motif of SDX18QXK and a putative DNA-binding domain. Without significant sequence homology, HinP1I displays striking structural similarity to MspI, an endonuclease that cleaves a similar palindromic DNA sequence (C↓CGG) and binds to that sequence crystallographically as a monomer. Almost all the structural elements of MspI can be matched in HinP1I, including both the DNA recognition and catalytic elements. Examining the protein–protein interactions in the crystal lattice, HinP1I could be dimerized through two helices located on the opposite side of the protein to the active site, generating a molecule with two active sites and two DNA-binding surfaces opposite one another on the outer surfaces of the dimer. A possible functional link between this unusual dimerization mode and the tetrameric restriction enzymes is discussed.  相似文献   

19.
Telomeric DNA terminates with a single-stranded 3′ G-overhang that in vertebrates and fission yeast is bound by POT1 (Protection Of Telomeres). However, no in vitro telomeric DNA binding is associated with Arabidopsis POT1 paralogs. To further investigate POT1–DNA interaction in plants, we cloned POT1 genes from 11 plant species representing major branches of plant kingdom. Telomeric DNA binding was associated with POT1 proteins from the green alga Ostreococcus lucimarinus and two flowering plants, maize and Asparagus. Site-directed mutagenesis revealed that several residues critical for telomeric DNA recognition in vertebrates are functionally conserved in plant POT1 proteins. However, the plant proteins varied in their minimal DNA-binding sites and nucleotide recognition properties. Green alga POT1 exhibited a strong preference for the canonical plant telomere repeat sequence TTTAGGG with no detectable binding to hexanucleotide telomere repeat TTAGGG found in vertebrates and some plants, including Asparagus. In contrast, POT1 proteins from maize and Asparagus bound TTAGGG repeats with only slightly reduced affinity relative to the TTTAGGG sequence. We conclude that the nucleic acid binding site in plant POT1 proteins is evolving rapidly, and that the recent acquisition of TTAGGG telomere repeats in Asparagus appears to have co-evolved with changes in POT1 DNA sequence recognition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号