首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Precipitation from the previous August to the current June over the last 232 years in Liancheng, China, was reconstructed by a transfer function based on the correlation between tree-ring widths and local meteorological data. The explained variance was 45.3 %, and fluctuations on both annual and decadal scales were captured. Wet periods with precipitation above the 232-year mean occurred from 1777 to 1785, 1802 to 1818, 1844 to 1861, 1889 to 1922 and 1939 to 1960. Dry periods (precipitation below the mean) occurred from 1786 to 1801, 1819 to 1843, 1862 to 1888 and 1923 to 1938. The reconstruction compares well with a tree-ring-based precipitation reconstruction at Mt. Xinglong; both of them showed the well-known severe drought in the late 1920s. The rainfall series also shows highly synchronous decreasing trends since the 1940s, suggesting that precipitation related to the East Asian summer monsoon at these two sites has decreased by large spatial and temporal (decadal) scales. Power spectrum analysis of the reconstruction showed remarkable 21.82-, 3.48-, 3.12-, 3.08- and 2.31-year cycles for the past 232 years; the 22-year cycle corresponds to the solar cycle and is expressed widely in tree ring/precipitation reconstructions on the China Loess Plateau. This may suggest a solar influence on the precipitation variations on the Loess Plateau, although the mechanisms are not well understood.  相似文献   

2.
Cores of Pinus tabulaformis from Tianshui were subjected to densitometric analysis to obtain mean earlywood density data. Climate response analysis indicates that May–June maximum temperature is the main factor limiting the mean earlywood density (EWD) of Chinese pine trees in the Shimen Mountains. Based on the EWD chronology, we have reconstructed May–June maximum temperature 1666 to 2008 for Tianshui, north central China. The reconstruction explains 40.1% of the actual temperature variance during the common period 1953–2008. The temperature reconstruction is representative of temperature conditions over a large area to the southeast and northwest of the sampling site. Preliminary analysis of links between large-scale climatic variation and the temperature reconstruction shows that there is a relationship between extremes in spring temperature and anomalous atmospheric circulation in the region. It is thus revealed that the mean earlywood density chronology of Pinus tabulaformis has enough potential to reconstruct the temperature variability further into the past.  相似文献   

3.
In this paper, we present a 392-year-long preliminary temperature reconstruction for western Hungary. The reconstructed series is based on five vine- and grain-related historical phenological series from the town of Kőszeg. We apply dendrochronological methods for both signal assessment of the phenological series and the resultant temperature reconstruction. As a proof of concept, the present reconstruction explains 57% of the temperature variance of May–July Budapest mean temperatures and is well verified with coefficient of efficiency values in excess of 0.45. The developed temperature reconstruction portrays warm conditions during the late seventeenth and early eighteenth centuries with a period of cooling until the coldest reconstructed period centred around 1815, which was followed by a period of warming until the 1860s. The phenological evidence analysed here represent an important data source from which non-biased estimates of past climate can be derived that may provide information at all possible time-scales.  相似文献   

4.
5.
黄土高原植被恢复成效及影响因素   总被引:4,自引:0,他引:4  
李婷  吕一河  任艳姣  李朋飞 《生态学报》2020,40(23):8593-8605
黄土高原是退耕还林还草工程背景下地表格局及植被变化最为显著的地区之一,评估黄土高原的植被恢复成效及影响因素是促进区域植被恢复政策优化的关键环节。基于不同时间尺度植被覆盖度和植被净初级生产力趋势变化,提出了量化区域植被恢复成效的新方法,采用结构方程模型研究社会经济因素对植被恢复成效的影响及其随时间产生的变化,通过地理加权回归探索气候和关键社会经济因子对植被恢复成效的空间非平稳影响。研究结果刻画了2000-2015年黄土高原植被恢复的持续改善过程:截止2015年,黄土高原88.20%的面积植被恢复成效明显,高值区集中于陕北地区及山西省各县区。农村劳动力的下降使得植被恢复所受人口压力减缓,负影响由-0.95变为-0.86;农业生产力的提升是黄土高原植被恢复成效改善的重要社会经济因素。气候及社会经济因子对黄土高原植被恢复成效的影响呈现显著的空间差异:多年平均降水对黄土高原东部29.30%的地区影响最大,且为促进作用,平均温度是北部和西部风沙草地植被恢复成效的主导影响因子(占总面积20.93%);黄土高原中西部47.02%的地区则受社会经济因素的影响更加明显。当前研究揭示了黄土高原的植被恢复效果及关键影响因子,可为区域植被恢复政策的优化提供科学支撑。  相似文献   

6.
The immense and towering Tibetan Plateau acts as a heating source and, thus, deeply shapes the climate of the Eurasian continent and even the whole world. However, due to the scarcity of meteorological observation stations and very limited climatic data, little is quantitatively known about the heating effect of the plateau and its implications. This paper firstly collects climate data (2001–2007) from 109 observation stations and MODIS-based estimated monthly mean temperature data in the plateau and the neighboring Sichuan Basin, and conducts correlation and simple linear regression to reveal the altitudinal pattern of temperature. Then, according to the linear relationships of temperature and altitude for each month, it compares air temperature differences on the same elevation between the main plateau and surrounding mountains and the Sichuan Basin so as to quantify the heating effect and discuss its implication on timberline of the plateau. The results show that: 1) the heating effect of the plateau is significant. The temperature of the main plateau area was higher than that of free air on the same elevation above the neighboring areas; on the elevation of 4500 m (the main plateau), temperature is 1–6°C higher in the main Plateau than over the Sichuan Basin for different months and 5.9–10.7°C higher than in the Qilian Mountains in the northeastern corner of the plateau. 2) Even at altitudes of 5000–6000 m in the main Plateau, there are 4 months with a mean temperature above 0°C. The mean temperature of the warmest month (July) can reach 10°C at about 4600–4700 m. This may help explain why the highest timberline in the northern hemisphere is on the southeastern Tibetan Plateau.  相似文献   

7.
The Loess Plateau of China has the highest soil erosion rate in the world where billion tons of soil is annually washed into Yellow River. In recent decades this region has experienced significant climate change and policy-driven land conversion. However, it has not yet been well investigated how these changes in climate and land use have affected soil organic carbon (SOC) storage on the Loess Plateau. By using the Dynamic Land Ecosystem Model (DLEM), we quantified the effects of climate and land use on SOC storage on the Loess Plateau in the context of multiple environmental factors during the period of 1961–2005. Our results show that SOC storage increased by 0.27 Pg C on the Loess Plateau as a result of multiple environmental factors during the study period. About 55% (0.14 Pg C) of the SOC increase was caused by land conversion from cropland to grassland/forest owing to the government efforts to reduce soil erosion and improve the ecological conditions in the region. Historical climate change reduced SOC by 0.05 Pg C (approximately 19% of the total change) primarily due to a significant climate warming and a slight reduction in precipitation. Our results imply that the implementation of “Grain for Green” policy may effectively enhance regional soil carbon storage and hence starve off further soil erosion on the Loess Plateau.  相似文献   

8.
There has been evidence of warming rate varying largely over space and between seasons. However, little has been done to evaluate the spatial and temporal variability of air temperature in the Tarim Basin, northwest China. In this study, we collected daily air temperature from 19 meteorological stations for the period of 1960–2012, and analyzed annual mean temperature (AMT), the annual minimum (Tmin) and maximum temperature (Tmax), and mean temperatures of all twelve months and four seasons and their anomalies. Trend analyses, standard deviation of the detrended anomaly (SDDA) and correlations were carried out to characterize the spatial and temporal variability of various mean air temperatures. Our data showed that increasing trend was much greater in the Tmin (0.55°C/10a) than in the AMT (0.25°C/10a) and Tmax (0.12°C/10a), and the fluctuation followed the same order. There were large spatial variations in the increasing trends of both AMT (from −0.09 to 0.43 °C/10a) and Tmin (from 0.15 to 1.12°C/10a). Correlation analyses indicated that AMT had a significantly linear relationship with Tmin and the mean temperatures of four seasons. There were also pronounced changes in the monthly air temperature from November to March at decadal time scale. The seasonality (i.e., summer and winter difference) of air temperature was stronger during the period of 1960–1979 than over the recent three decades. Our preliminary analyses indicated that local environmental conditions (such as elevation) might be partly responsible for the spatial variability, and large scale climate phenomena might have influences on the temporal variability of air temperature in the Tarim Basin. In particular, there was a significant correlation between index of El Niño-Southern Oscillation (ENSO) and air temperature of May (P = 0.004), and between the index of Pacific Decadal Oscillation (PDO) and air temperature of July (P = 0.026) over the interannual to decadal time scales.  相似文献   

9.
Characterization of soil water content (SWC) profiles at catchment scale has profound implications for understanding hydrological processes of the terrestrial water cycle, thereby contributing to sustainable water management and ecological restoration in arid and semi-arid regions. This study described the vertical profiles of SWC at the small catchment scale on the hilly and gully Loess Plateau in Northeast China, and evaluated the influences of selected environmental factors (land-use type, topography and landform) on average SWC within 300 cm depth. Soils were sampled from 101 points across a small catchment before and after the rainy season. Cluster analysis showed that soil profiles with high-level SWC in a stable trend (from top to bottom) were most commonly present in the catchment, especially in the gully related to terrace. Woodland soil profiles had low-level SWC with vertical variations in a descending or stable trend. Most abandoned farmland and grassland soil profiles had medium-level SWC with vertical variations in varying trends. No soil profiles had low-level SWC with vertical variations in an ascending trend. Multi-regression analysis showed that average SWC was significantly affected by land-use type in different soil layers (0–20, 20–160, and 160–300 cm), generally in descending order of terrace, abandoned farmland, grassland, and woodland. There was a significant negative correlation between average SWC and gradient along the whole profile (P<0.05). Landform significantly affected SWC in the surface soil layer (0–20 cm) before the rainy season but throughout the whole profile after the rainy season, with lower levels on the ridge than in the gully. Altitude only strongly affected SWC after the rainy season. The results indicated that land-use type, gradient, landform, and altitude should be considered in spatial SWC estimation and sustainable water management in these small catchments on the Loess Plateau as well as in other complex terrains with similar settings.  相似文献   

10.
黄土高原植被建设与土壤干燥化:问题与展望   总被引:3,自引:0,他引:3  
杨磊  张子豪  李宗善 《生态学报》2019,39(20):7382-7388
黄土高原大规模植被建设有效减少了水土流失、改善了区域生态环境,大规模人工植被种植也造成了土壤水分的过度消耗,导致了土壤干燥化,成为当前黄土高原生态恢复的重要制约因素,威胁区域生态系统健康与稳定。系统综述了黄土高原地区人工植被恢复对土壤干燥化的作用机制,植被群落特征与土壤干燥化的耦合关系,多尺度土壤干燥化时空分异规律及其影响因素,明确了当前大规模人工植被恢复过程中土壤水分持续利用面临的问题与挑战。建议今后加强植被动态对水文过程影响的研究,明确多尺度植被格局与土壤干燥化时空分异的耦合关系,系统开展变化环境下不同尺度植被与土壤水分相互作用的模拟研究,探讨基于植被格局优化的土壤水分调控机制,维护黄土高原地区土壤安全,提升区域生态系统服务功能。  相似文献   

11.
通过对黄土高原南北样带大面积(北纬34°05'—40°75'、东经107°14'—111°09')土壤含水量(0—500 cm剖面)测定和相应植被类型调查,研究了黄土高原农田、草地、灌木林地和乔木林地4种土地利用类型土壤含水量的空间变化及它们之间的差异性。结果表明:黄土高原4种土地利用类型的土壤含水量皆呈现南北向地带性变化,自南向北土壤含水量有明显递减趋势,与多年平均降雨量、潜在蒸散量、土壤质地等的分布具有一致性;同一地点不同土地利用类型下土壤水分含量具有显著差异(农地草地灌木和乔木林地),不同植被类型根系分布、蒸散耗水量的不同是造成含水量差异性的原因。植被建设应遵循土壤水分分布规律,研究结果对黄土高原植被恢复建设具有一定参考价值。  相似文献   

12.
Cropland afforestation has been widely found to increase soil organic carbon (SOC) and soil total nitrogen (STN); however, the magnitudes of SOC and STN accumulation and regulating factors are less studied in dry, marginal lands, and therein the interaction between soil carbon and nitrogen is not well understood. We examined the changes in SOC and STN in younger (5–9-year-old) and older (25–30-year-old) black locust (Robinia pseudoacacia L., an N-fixing species) plantations that were established on former cropland along a precipitation gradient (380 to 650 mm) in the semi-arid Loess Plateau of China. The SOC and STN stocks of cropland and plantations increased linearly with precipitation increase, respectively, accompanying an increase in the plantation net primary productivity and the soil clay content along the increasing precipitation gradient. The SOC stock of cropland decreased in younger plantations and increased in older plantations after afforestation, and the amount of the initial loss of SOC during the younger plantations’ establishment increased with precipitation increasing. By contrast, the STN stock of cropland showed no decrease in the initial afforestation while tending to increase with plantation age, and the changes in STN were not related to precipitation. The changes in STN and SOC showed correlated and were precipitation-dependent following afforestation, displaying a higher relative gain of SOC to STN as precipitation decreased. Our results suggest that the afforestation of marginal cropland in Loess Plateau can have a significant effect on the accumulation of SOC and STN, and that precipitation has a significant effect on SOC accumulation but little effect on STN retention. The limitation effect of soil nitrogen on soil carbon accumulation is more limited in the drier area rather than in the wetter sites.  相似文献   

13.
Understanding terrestrial vegetation dynamics is a crucial tool in global change research. The Loess Plateau, an important area for the study of Asian monsoons and early agriculture, poses a controversial question on the potential vegetation and its pattern. Fossil charcoal as direct evidence of wood provides precision in species identification and hence vegetation reconstruction. Charcoals from the Dadiwan and Xishanping sites suggest a great variety of plants between 5200 and 4300?cal. b.p. in the valley area of the western Loess Plateau. The deciduous broad-leaf wood from Quercus, Ulmus, Betula, Corylus and Acer is very frequent and makes up almost half the total abundance ratio of the represented taxa. Meanwhile, some typical subtropical taxa such as Liquidambar formosana, Eucommia ulmoides, Toxicodendron and Bambusoideae, are present at the two study sites. The high abundance of Picea appearing between 5200 and 4300?cal. b.p. suggests the development of Picea forests in the valley of the western Loess Plateau. The assemblages of charcoal indicate that the mixed forest of evergreen deciduous and conifer-deciduous broadleaved trees developed in the valley of the Loess Plateau during the Holocene optimum. Precipitation is the main controlling factor for forest development. The increasing precipitation is the probable reason for the appearance of north-subtropical forests between 5200 and 4300?cal. b.p.  相似文献   

14.
Traditional detrending methods assign equal mean value to all tree-ring series for chronology developments, despite that the mean annual growth changes in different time periods. We find that the strength of a tree-ring model can be improved by giving more weights to tree-ring series that have a stronger climate signal and less weight to series that have a weaker signal. We thus present an ensemble weighting method to mitigate these potential biases and to more accurately extract the climate signals in dendroclimatology studies. This new method has been used to develop the first annual precipitation reconstruction (previous August to current July) at the Songmingyan Mountain and to recalculate the tree-ring chronology from Shenge site in Dulan area in northeastern Tibetan Plateau (TP), a marginal area of Asian summer monsoon. The ensemble weighting method explains 31.7% of instrumental variance for the reconstructions at Songmingyan Mountain and 57.3% of the instrumental variance in the Dulan area, which are higher than those developed using traditional methods. We focus on the newly introduced reconstruction at Songmingyan Mountain, which showsextremely dry (wet) epochs from 1862–1874, 1914–1933 and 1991–1999 (1882–1905). These dry/wet epochs were also found in the marginal areas of summer monsoon and the Indian subcontinent, indicating the linkages between regional hydroclimate changes and the Indian summer monsoon.  相似文献   

15.
Large-scale climate history of the past millennium reconstructed solely from tree-ring data is prone to underestimate the amplitude of low-frequency variability. In this paper, we aimed at solving this problem by utilizing a novel method termed “MDVM”, which was a combination of the ensemble empirical mode decomposition (EEMD) and variance matching techniques. We compiled a set of 211 tree-ring records from the extratropical Northern Hemisphere (30–90°N) in an effort to develop a new reconstruction of the annual mean temperature by the MDVM method. Among these dataset, a number of 126 records were screened out to reconstruct temperature variability longer than decadal scale for the period 850–2000 AD. The MDVM reconstruction depicted significant low-frequency variability in the past millennium with evident Medieval Warm Period (MWP) over the interval 950–1150 AD and pronounced Little Ice Age (LIA) cumulating in 1450–1850 AD. In the context of 1150-year reconstruction, the accelerating warming in 20th century was likely unprecedented, and the coldest decades appeared in the 1640s, 1600s and 1580s, whereas the warmest decades occurred in the 1990s, 1940s and 1930s. Additionally, the MDVM reconstruction covaried broadly with changes in natural radiative forcing, and especially showed distinct footprints of multiple volcanic eruptions in the last millennium. Comparisons of our results with previous reconstructions and model simulations showed the efficiency of the MDVM method on capturing low-frequency variability, particularly much colder signals of the LIA relative to the reference period. Our results demonstrated that the MDVM method has advantages in studying large-scale and low-frequency climate signals using pure tree-ring data.  相似文献   

16.
A dry soil layer (DSL) is a common soil desiccation phenomenon that generally forms at a particular depth in the soil profile because of climatic factors and poor land management, and this phenomenon can influence the water cycle and has been observed on the Loess Plateau of China and other similar regions around the world. Therefore, an investigation of the DSL formation depth (DSLFD), thickness (DSLT) and mean water content (MWDSL) on the Loess Plateau can provide valuable information. This paper synthesized 69 recent publications (1,149 observations of DSLs from 73 sites) that focused on DSLs in this region, and the results indicated that DSLs are significantly affected by climatic and vegetation factors. The mean annual precipitation had a significant positive relationship with DSLFD (p = 0.0003) and MWDSL (p<0.0001) and a negative relationship with DSLT (p = 0.0071). Crops had the lowest DSLT and highest MWDSL values compared with other vegetation types. A significant correlation was observed between the occurrence of DSLs and the years since planting for grasses, shrubs, trees and orchards, and the severity of DSLs increased with increasing planting years and wheat yield. Our results suggest that optimizing land-use management can mitigate DSL formation and development on the Loess Plateau. Understanding the dominant factors affecting DSLs will provide information for use in guidelines for the sustainable development of economies and restoration of natural environments experiencing water deficiencies.  相似文献   

17.
In grazing ecosystems, mature seeds fall directly to the soil to form the soil seed bank (SSB), or are ingested by grazing livestock to become part of the dung seed bank (DSB; i.e., seed circulation). Both the SSB and DSB form the basis for the natural regeneration of vegetation. However, little is known about the relationships between the SSB, DSB, and aboveground vegetation (AGV) community under different stocking rates (SRs). This study investigated the relationships between the SSB, seeds in Tan sheep (Ovis aries) dung, and AGV at different SRs (0, 2.7, 5.3, and 8.7 sheep ha–1) in a semiarid region of the Loess Plateau in China. We found that Tan sheep grazing increased the species richness heterogeneity of grassland vegetation, and negatively influenced the density of AGV. Under natural conditions, 17 species from soil‐borne seeds and 10 species from Tan sheep dung germinated. There was low species similarity between the soil and DSBs and AGV. Sheep SR and the seed banks (soil and dung) were negatively correlated with AGV. Seeds are cycled from herbage to livestock to soil during cold season grazing; the seasonal nature of this seed dispersal is an adaptation to harsh, semiarid environments. Increased seed bank diversity under sheep grazing facilitates grassland regeneration on the Loess Plateau, similarly to other semiarid regions globally.  相似文献   

18.
Precipitation is the only water supply and most important factor affecting vegetation growth on the slopes of semi-arid Loess Plateau of China. Based on precipitation data from 7 synoptic stations in the study area over the period 1957–2012, the trends of precipitation and standardized precipitation index (SPI) were analyzed by using linear regression, Mann−Kendall, and Spearman’s Rho tests at the 5% significance level. The results show that (1) the precipitation fluctuation of monthly precipitation was intense (coefficients of variation> 100%), and the drier years were recorded as 1965 and 1995 at all stations. (2) The significant change trend of different stations varied on different time scales: the Changwu station had a significant decreasing trend in April (−0.488 mm/year) and November (−0.249 mm/year), while Luochuan station was in April (−0.457 mm/year); Changwu station displayed a significant increasing trends in winter (0.220 mm/year) and a significant decreasing trends in spring (−0.770 mm/year). The significant decreasing trends in annual precipitation were detected at the Suide (−2.034 mm/year) and Yan’an (–2.129 mm/year) stations. (3) The SPI−12 series analysis suggests that the drought degree of Yulin and Changwu was the lowest and that of Hengshan was the highest among the 7 synoptic stations.  相似文献   

19.
黄土高原草地净初级生产力时空趋势及其驱动因素   总被引:2,自引:0,他引:2  
草地净初级生产力是生态系统碳循环的关键环节和重要组成部分.本研究使用分段线性回归分析和Pearson相关分析,分析了黄土高原2000-2015年间土地利用类型未改变的草地净初级生产力(NPP)的变化趋势及气候核心因子(年降水量、年强降水量、年有效降水日数、年平均温度、年最高温度、年最低温度)对NPP变化的影响,并借助增...  相似文献   

20.
We deployed >50,000 Helicoverpa armigera eggs in maize fields to assess the rate of parasitism by Trichogramma chilonis across 33 sites during a three-year span (2012–2014) in northern China. Subsequently, we used a partial least squares (PLS) regression approach to assess the relationship of landscape diversity with composition and parasitism potential. The parasitism rate of H. armigera eggs by T. chilonis ranged from 0–25.8%, with a mean value of 5.6%. Landscape diversity greatly enhanced parasitism at all four different spatial scales (0.5, 1.0, 1.5 and 2.0 km radius). Both the proportion of arable area and the total planting area of two major crops (cotton and maize) had a negative correlation to the parasitism rate at each scale, whereas parasitism was positively correlated to the proportion of host crops of H. armigera other than cotton and maize at the 0.5 to 2.0 km radius scales as well as to that of non-crop habitat at the 0.5 and 1.0 km radius scales. The study indicated that maintaining landscape diversity provided an important biocontrol service by limiting H. armigera through the egg parasitoid T. chilonis, whereas rapid agricultural intensification would greatly reduce the presence and parasitism of T. chilonis in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号