首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Placental infections are major causes of maternal and fetal disease. This review introduces a new paradigm for placental infections based on current knowledge of placental defenses and how this barrier can be breached. Transmission of pathogens from mother to fetus can occur at two sites of direct contact between maternal cells and specialized fetal cells (trophoblasts) in the human placenta: firstly, maternal immune and endothelial cells juxtaposed to extravillous trophoblasts in the uterine implantation site and secondly, maternal blood surrounding the syncytiotrophoblast (SYN). Recent findings suggest that the primary vulnerability is in the implantation site. We explore evidence that the placental SYN evolved as a defense against pathogens, and that inflammation-mediated spontaneous abortion may benefit mother and pathogen.  相似文献   

2.
Both exogenous and endogenous factors during pregnancy may impact placental vascular development and cause different malformations of placental vessels. In humans, consequences of abnormal vascular development have been associated with different pregnancy-related pathologies ranging from miscarriage to intrauterine growth restriction or preeclampsia. Pregnancy-associated exposure to bacterial or viral infections or pharmacologic or toxic agents may also influence vascular development of the placenta and lead to preterm labor and delivery. Several steps of vascular adaptation on both the fetal and maternal side are necessary and include such events as uterine vasodilation, remodeling by extravillous trophoblast, as well as vasculogenesis and angiogenesis within the placenta. Ubiquitous as well as pregnancy-specific angiogenic factors are involved. Morphologic and stereologic approaches, as well as experiments in established laboratory animals, cannot be applied to large domestic animals or humans without hesitation. Thus, further studies into the different aspects of this process will require an appropriate in vitro model of placental vascular development. Reflecting the core of placental vascular development, the in vitro model should facilitate the interactions between trophoblast and stromal cells with endothelial progenitor cells. The effects of viral or bacterial infection as well as pharmacologic or toxic agents may be studied more closely in the process. This report reviews major aspects of vascular development in the placenta and describes the establishment of a three-dimensional in vitro model of human placental vascular development.  相似文献   

3.
Pregnancy is a unique immunological condition in which an “immune-diplomatic” dialogue between trophoblasts and maternal immune cells is established to protect the fetus from rejection, to create a privileged environment in the uterus and to simultaneously be alert to any infectious challenge. The maternal-placental-fetal interface (MPFI) performs an essential role in this immunological defense. In this review, we will address the MPFI as an active immuno-mechanical barrier that protects against viral infections. We will describe the main viral infections affecting the placenta and trophoblasts and present their structure, mechanisms of immunocompetence and defensive responses to viral infections in pregnancy. In particular, we will analyze infection routes in the placenta and trophoblasts and the maternal-fetal outcomes in both. Finally, we will focus on the cellular targets of the antiviral microRNAs from the C19MC cluster, and their effects at both the intra- and extracellular level.  相似文献   

4.
Maternal-fetal transmission of group B coxsackieviruses (CVB) during pregnancy has been associated with a number of diverse pathological outcomes, including hydrops fetalis, fetal myocarditis, meningoencephalitis, neurodevelopmental delays, congenital skin lesions, miscarriage, and/or stillbirth. Throughout pregnancy, the placenta forms a critical antimicrobial protective barrier at the maternal-fetal interface. Despite the severity of diseases accompanying fetal CVB infections, little is known regarding the strategies used by CVB to gain entry into placental trophoblasts. Here we used both a trophoblast cell line and primary human trophoblasts to demonstrate the mechanism by which CVB gains entry into polarized placental trophoblasts. Our studies revealed that the kinetics of CVB entry into placental trophoblasts are similar to those previously described for polarized intestinal epithelial cells. Likewise, CVB entry into placental trophoblasts requires decay-accelerating factor (DAF) binding and involves relocalization of the virus from the apical surface to intercellular tight junctions. In contrast, we have identified a divergent mechanism for CVB entry into polarized trophoblasts that is clathrin, caveolin-1, and dynamin II independent but requires intact lipid rafts. In addition, we found that members of the Src family of tyrosine kinases were required for CVB entry. Our studies highlight the complexity of viral entry into human placental trophoblasts and may serve as a model for mechanisms used by diverse pathogens to penetrate the placental barrier.  相似文献   

5.
单核细胞增生李斯特氏菌(Listeria monocytogenes,LM)是一种可引起李斯特菌病的食源性致病菌。由于妊娠相关免疫缺陷和LM对非吞噬细胞独特的细胞内感染能力,孕妇是LM的主要目标人群。LM可穿过胎盘屏障,对胎儿造成重大伤害,包括早产、流产甚至死产。胎盘特异性毒力因子的作用对LM感染期间穿过胎盘屏障并感染胎儿尤为重要。文中介绍了国内外近年在孕妇中发生LM感染的事件,详细讨论了LM垂直传播以及在胎盘定殖机制方面的研究进展,着重讨论并分析了LM与感染胎盘相关毒力因子的最新发现,以期为今后防控LM的胎盘感染并保障食品安全提供参考。  相似文献   

6.
The placenta is a unique and highly complex organ that develops only during pregnancy and is essential for growth and survival of the developing fetus. The placenta provides the vital exchange of gases and wastes, the necessary nutrients for fetal development, acts as immune barrier that protects against maternal rejection, and produces numerous hormones and growth factors that promote fetal maturity to regulate pregnancy until parturition. Abnormal placental development is a major underlying cause of pregnancy-associated disorders that often result in preterm birth. Defects in placental stem cell propagation, growth, and differentiation are the major factors that affect embryonic and fetal well-being and dramatically increase the risk of pregnancy complications. Understanding the processes that regulate placentation is important in determining the underlying factors behind abnormal placental development. The ability to manipulate genes in a placenta-specific manner provides a unique tool to analyze development and eliminates potentially confounding results that can occur with traditional gene knockouts. Trophoblast stem cells and mouse embryos are not overly amenable to traditional gene transfer techniques. Most viral vectors, however, have a low infection rate and often lead to mosaic transgenesis. Although the traditional method of embryo transfer is intrauterine surgical implantation, the methodology reported here, combining lentiviral blastocyst infection and nonsurgical embryo transfer, leads to highly efficient and placental-specific gene transfer. Numerous advantages of our optimized procedures include increased investigator safety, a reduction in animal stress, rapid and noninvasive embryo transfer, and higher a rate of pregnancy and live birth.  相似文献   

7.
《Autophagy》2013,9(12):2173-2174
Mechanisms to protect against viral infections are crucial during pregnancy as maternal-fetal transmission can have serious pathological outcomes, including fetal infection and its sequelae, such as growth restriction, birth defects, and/or fetal death. The trophoblast forms the interface between the feto-placental unit and the maternal blood, and is therefore a critical physical and immunological barrier to restrict the spread of pathogens into the fetal microenvironment. Recently, we found that primary human placental trophoblast (PHT) cells are highly resistant to infection by diverse viruses. In this study, we also found that conditioned medium from PHT cell cultures transferred viral resistance to nonplacental recipient cells, suggesting that a component secreted by trophoblasts and present within the conditioned medium is responsible for this antiviral effect. We found that specific miRNAs from a unique primate- and placental-specific locus—the C19MC (chromosome 19 miRNA cluster)—are packaged within exosomes produced by PHT cells and confer viral resistance in nonplacental recipient cells. In addition to conveying viral resistance, we found that PHT-derived exosomes and select miRNA members of the C19MC family strongly induce autophagy, which is involved in recipient cell viral resistance. Our findings establish an exciting and novel mechanism by which placental trophoblasts exploit exosome-dependent transfer of placental-specific miRNAs to influence autophagic induction and antiviral immunity at the maternal–fetal interface.  相似文献   

8.
Recent studies in rodents suggest that maternal immune activation (MIA) by viral infection is associated with schizophrenia and autism in offspring. Although maternal IL-6 is though t to be a possible mediator relating MIA induced these neuropsychiatric disorders, the mechanism remains to be elucidated. Previously, we reported that the maternal leukemia inhibitory factor (LIF)–placental ACTH–fetal LIF signaling relay pathway (maternal–fetal LIF signal relay) promotes neurogenesis of fetal cerebrum in rats. Here we report that the maternal–fetal LIF signal relay in mice is suppressed by injection of polyriboinosinic-polyribocytidylic acid into dams, which induces MIA at 12.5 days post-coitum. Maternal IL-6 levels and gene expression of placental suppressor of cytokine signaling 3 (Socs3) increased according to the severity of MIA and gene expression of placental Socs3 correlated with maternal IL-6 levels. Furthermore, we show that MIA causes reduction of LIF level in the fetal cerebrospinal fluid, resulting in the decreased neurogenesis in the cerebrum. These findings suggest that maternal IL-6 interferes the maternal–fetal LIF signal relay by inducing SOCS3 in the placenta and leads to decreased neurogenesis.  相似文献   

9.
Vaccinia fetalis, the vertical transfer of vaccinia virus from mother to fetus, is a relatively rare but often fatal complication of primary vaccinia virus vaccination during pregnancy. To date there has been no attempt to develop an animal model to study the pathogenesis of this acute viral infection in vivo. Here we report that infection of gestating BALB/c mice by either intravenous or intraperitoneal routes with the Western Reserve strain of vaccinia virus results in the rapid colonization of the placenta and vertical transfer of virus to the developing fetus. Systemic maternal infections during gestation lead to the death of all offspring prior to or very shortly after birth. Using in situ hybridization for vaccinia virus mRNA to identify infected cells, we show that the virus initially colonizes cells lining maternal lacunae within the trophospongium layer of the placenta. The study of this model will significantly enhance our understanding of the pathogenesis of fetal vaccinia virus infections and aid in the development of effective treatments designed to reduce the risk of vaccinia virus-associated complications during pregnancy.  相似文献   

10.
The molecular mechanisms and pathologic significance of placental viral infections are poorly understood. We investigated factors that regulate placental infection by adenovirus, which is the most common viral pathogen identified in fetal samples from abnormal pregnancies (i.e., fetal growth restriction, oligohydramnios, and nonimmune fetal hydrops). We also determined the pathologic significance of placental adenovirus infection. Northern hybridization, flow cytometry, and immunostaining revealed that placental expression of the coxsackievirus and adenovirus receptor (CAR) varied with gestational age and trophoblast phenotype. The CAR was continuously expressed in invasive or extravillous trophoblast cells but not in villous trophoblast cells. We postulate that the villous syncytiotrophoblast, which does not express CAR and is resistant to adenovirus infection, limits the transplacental transmission of viral pathogens, including adenovirus. Conversely, extravillous trophoblast cells underwent apoptosis when infected by adenovirus in the presence of decidual lymphocytes (which simulated the maternal immune response to viral infection). Thus, adenovirus infection and/or the maternal immune response to adenovirus infection induced the death of placental cell types that expressed CAR. Consequently, we speculate that adenovirus infection of extra-villous trophoblast cells may negatively impact the process of placental invasion and predispose the mother and fetus to adverse reproductive outcomes that result from placental dysfunction.  相似文献   

11.
《Epigenetics》2013,8(6):816-822
“Fetal programming” is a term used to describe how early-life experience influences fetal development and later disease risk. In humans, prenatal stress-induced fetal programming is associated with increased risk of preterm birth, and a heightened risk of metabolic and neurological diseases later in life. A critical determinant of this is the regulation of fetal exposure to glucocorticoids by the placenta. Glucocorticoids are the mediators through which maternal stress influences fetal development. Excessive fetal glucocorticoid exposure during pregnancy results in low birth weight and abnormalities in a number of tissues. The amount of fetal exposure to maternal glucocorticoids depends on the expression of HSD11B2, an enzyme predominantly produced by the syncytiotrophoblast in the placenta. This protects the fetus by converting active glucocorticoids into inactive forms. In this review we examine recent findings regarding placental HSD11B2 that suggest that its epigenetic regulation may mechanistically link maternal stress and long-term health consequences in affected offspring.  相似文献   

12.
The chorioallantoic placenta is an organ of gaseous exchange that exhibits a high degree of structural diversity. One factor determining oxygen transfer across the placenta, the diffusion distance, is in part dependent on the number of cell layers separating maternal from fetal blood. This interhaemal barrier occurs in three principal variants. The focus of this review is on determining how the barrier evolved in placental mammals. The analysis was based on current knowledge of placental structure, as far as possible using ultrastructural data, and on current views about the evolution of placental mammals, derived from molecular phylogenetics. We show that epitheliochorial placentation, the least invasive type, is a derived state and discuss factors that may have determined its evolution with reference to conflict theory, as applied to the allocation of resources between mother and fetus. It is not yet possible to determine which of the two more invasive types of placentation occurred in the last common ancestor of crown placentals. Depending on tree topology and taxon sampling, the result achieved is either endotheliochorial, haemochorial or unresolved. Finally we discuss other factors important to placental gas exchange and point to physiological variables that might become amenable to phylogenetic analysis.  相似文献   

13.
“Fetal programming” is a term used to describe how early-life experience influences fetal development and later disease risk. In humans, prenatal stress-induced fetal programming is associated with increased risk of preterm birth, and a heightened risk of metabolic and neurological diseases later in life. A critical determinant of this is the regulation of fetal exposure to glucocorticoids by the placenta. Glucocorticoids are the mediators through which maternal stress influences fetal development. Excessive fetal glucocorticoid exposure during pregnancy results in low birth weight and abnormalities in a number of tissues. The amount of fetal exposure to maternal glucocorticoids depends on the expression of HSD11B2, an enzyme predominantly produced by the syncytiotrophoblast in the placenta. This protects the fetus by converting active glucocorticoids into inactive forms. In this review we examine recent findings regarding placental HSD11B2 that suggest that its epigenetic regulation may mechanistically link maternal stress and long-term health consequences in affected offspring.  相似文献   

14.
During pregnancy, the placenta regulates the transfer of oxygen, nutrients, and residual products between the maternal and fetal bloodstreams and is a key determinant of fetal exposure to xenobiotics from the mother. To study the disposition of substances through the placenta, various experimental models are used, especially the perfused placenta, placental villi explants, and cell lineage models. In this context, nanotechnology, an area of study that is on the rise, enables the creation of particles on nanometric scales capable of releasing drugs aimed at specific tissues. An important reason for furthering the studies on transplacental transfer is to explore the potential of nanoparticles (NPs), in new delivery strategies for drugs that are specifically aimed at the mother, the placenta, or the fetus and that involve less toxicity. Due to the fact that the placental barrier is essential for the interaction between the maternal and fetal organisms as well as the possibility of NPs being used in the treatment of various pathologies, the aim of this review is to present the main experimental models used in studying the maternal–fetal interaction and the action of NPs in the placental environment.  相似文献   

15.
The initial stages of infection of pregnant mice at gestation day 11 with either the T48 strain of Ross River virus or avirulent Semliki Forest virus are similar. With both infections, a hematogenous spread of virus to the placenta occurs. The viruses subsequently replicate to high titer in all placentas and are able to persist in the presence of specific maternal antiviral antibodies. There is a delay of at least 1 to 2 days between the initial detection of virus in the placenta and the onset of fetal infection. With Semliki Forest virus, abortion occurred in all mothers and appeared to be preceded by infection of all fetuses. However, when Semliki Forest virus was given at other stages of pregnancy, abortion was less common, and in all non-aborted pregnancies at least one uninfected fetus was observed. This situation was similar to that with Ross River virus, in which abortion was not observed and fetal infection and death were only seen in a proportion of fetuses. Within each pregnancy, the outcome of the two in utero infections appeared to result from similar mechanisms, with the fate of an individual fetus depending upon the timing of the passive transfer of anti-viral immunoglobulin G from the mother relative to the timing of fetal infection by virus from the placenta. Although the passive maternal immunoglobulin G protected susceptible fetuses against infection, antibody did not mediate in utero recovery of infected fetuses or clear placental infection.  相似文献   

16.
Montoudis A  Simoneau L  Lafond J 《Life sciences》2004,74(14):1751-1762
Fetal development requires an important entry of essential free fatty acids (EFFA) and essential amino acids (EAA) into the fetal circulation. We have reported that a 0.2% enriched-cholesterol diet (ECD) during rabbit gestation significantly reduces fetus weight compared to control diet. It is known that dietary linoleic acid deficiency, an EFFA, during the fetal development induces an important impair to the somatic development. Moreover, intrauterine growth retardation induced a reduction of the flux of leucine, an EAA, from maternal to fetal circulation. Therefore, we hypothesized that the administration of an ECD induces modifications of placental lipid composition concomitant alterations of the transfer of linoleic acid and leucine in fetal circulation. Quantification of placental lipids revealed that in the ECD group a reduction of total-cholesterol (TC) and free-cholesterol (FC) is observed, however an increased in FFA and phospholipids is noticed when compared to the control group. In placenta from the ECD group, the FC/ TC ratio is significantly reduced compared to the control group. In the ECD group, the liver shows an increase of TC, FC and FFA compared to the control group. However, the quantity of triacylglycerol present in the liver from the ECD is significantly reduced compared to the control group. To evaluate the placental transfer of some essential nutrients, intravenous injection of [1-14C]-linoleic acid or L-[4, 5-3H]-leucine to term rabbit (control and ECD group) were done. Two hours later, rabbits were euthanized and we collected placenta, livers and blood from dams and offspring. The concentrations of both radiolabeled molecules (linoleic acid and its esterified form or leucine) were higher in the plasma of ECD offspring than those found in offspring from control diet. Despite such alteration of placental lipid composition, linoleic acid and leucine transfer by the placenta was not compromised but rather increased.  相似文献   

17.
Maternal-infant transmission of human immunodeficiency virus-1 (HIV) is the primary cause of this retrovirus infection in neonates. The mechanisms of vertical transmission of HIV, in particular in utero transmission, remain poorly defined. Trophoblastic cells from the placenta are thought to be a target of HIV infection and/or may be utilized by the virus to be transported across the placental barrier by a process known as transcytosis. The vertical transmission of HIV (via infection or transcytosis) may be either favoured or inhibited by factors related to both the viral phenotype and the cellular environment.  相似文献   

18.
Herpesvirus infection of placenta may be harmful in pregnancy leading to disorders in fetal growth, premature delivery, miscarriage, or major congenital abnormalities. Although a correlation between human herpesvirus 8 (HHV-8) infection and abortion or low birth weight in children has been suggested, and rare cases of in utero or perinatal HHV-8 transmission have been documented, no direct evidence of HHV-8 infection of placenta has yet been reported. The aim of this study was to evaluate the in vitro and in vivo susceptibility of placental cells to HHV-8 infection. Short-term infection assays were performed on placental chorionic villi isolated from term placentae. Qualitative and quantitative HHV-8 detection were performed by PCR and real-time PCR, and HHV-8 proteins were analyzed by immunohistochemistry. Term placenta samples from HHV-8-seropositive women were analyzed for the presence of HHV-8 DNA and antigens. In vitro infected histocultures showed increasing amounts of HHV-8 DNA in tissues and supernatants; cyto- and syncitiotrophoblasts, as well as endothelial cells, expressed latent and lytic viral antigens. Increased apoptotic phenomena were visualized by the terminal deoxynucleotidyl transferase-mediated deoxyuridine nick end-labeling method in infected histocultures. Ex vivo, HHV-8 DNA and a latent viral antigen were detected in placenta samples from HHV-8-seropositive women. These findings demonstrate that HHV-8, like other human herpesviruses, may infect placental cells in vitro and in vivo, thus providing evidence that this phenomenon might influence vertical transmission and pregnancy outcome in HHV-8-infected women.  相似文献   

19.
The adaptive immune system of placental mammals has evolved to tolerate the fetus. Rejection of the fetus by adaptive immune responses is therefore a rare event, with abortion being caused more frequently by inflammation in the placenta. This review will cover recent aspects of immune privilege and the innate immune system at the feto-maternal interface, citing examples of the role played by microbial infections in fetal demise.  相似文献   

20.
Both obesity and gestational diabetes mellitus (GDM) lead to poor maternal and fetal outcomes, including pregnancy complications, fetal growth issues, stillbirth, and developmental programming of adult-onset disease in the offspring. Increased placental oxidative/nitrative stress and reduced placental (trophoblast) mitochondrial respiration occur in association with the altered maternal metabolic milieu of obesity and GDM. The effect is particularly evident when the fetus is male, suggesting a sexually dimorphic influence on the placenta. In addition, obesity and GDM are associated with inflexibility in trophoblast, limiting the ability to switch between usage of glucose, fatty acids, and glutamine as substrates for oxidative phosphorylation, again in a sexually dimorphic manner. Here we review mechanisms underlying placental mitochondrial dysfunction: its relationship to maternal and fetal outcomes and the influence of fetal sex. Prevention of placental oxidative stress and mitochondrial dysfunction may improve pregnancy outcomes. We outline pathways to ameliorate deficient mitochondrial respiration, particularly the benefits and pitfalls of mitochondria-targeted antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号