首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Caenorhabditis elegans gonad provides a well-defined model for a stem cell niche and its control of self-renewal and differentiation. The distal tip cell (DTC) forms a mesenchymal niche that controls germline stem cells (GSCs), both to generate the germline tissue during development and to maintain it during adulthood. The DTC uses GLP-1/Notch signaling to regulate GSCs; germ cells respond to Notch signaling with a network of RNA regulators to control the decision between self-renewal and entry into the meiotic cell cycle.  相似文献   

2.
Maintenance of mitotically cycling germline stem cells (GSCs) is vital for continuous production of gametes. In worms and insects, signaling from surrounding somatic cells play an essential role in the maintenance of GSCs by preventing premature differentiation. In addition, germ cell proteins such as the Drosophila Pumilio and Caenorhabditis elegans FBF, both members of the PUF family translational regulators, contribute to GSC maintenance. FBF functions by suppressing GLD-1, which promotes meiotic entry. However, factors that directly promote GSC proliferation, rather than prevent differentiation, are not known. Here we show that PUF-8, another C. elegans member of the PUF family and MEX-3, a KH domain translational regulator, function redundantly to promote GSC mitosis. We find that PUF-8 protein is highly enriched in mitotic germ cells, which is similar to the expression pattern of MEX-3 described earlier. The puf-8(−) mex-3(−) double mutant gonads contain far fewer germ cells than both single mutants and wild-type. While these cells lack mitotic, meiotic and sperm markers, they retain the germ cell-specific P granules, and are capable of gametogenesis if GLP-1, which normally blocks meiotic entry, is removed. Significantly, we find that at least one of these two proteins is essential for germ cell proliferation even in meiotic entry-defective mutants, which otherwise produce germ cell tumors. We conclude PUF-8 and MEX-3 contribute to GSC maintenance by promoting mitotic proliferation rather than by blocking meiotic entry.  相似文献   

3.
4.
Dietary restriction (DR) increases lifespan in species ranging from yeast to primates, maintaining tissues in a youthful state and delaying reproductive senescence. However, little is known about the mechanisms by which this occurs. Here we demonstrate that, concurrent with extending lifespan, DR attenuates the age‐related decline in male germline stem cell (GSC) number in Drosophila. These data support a model whereby DR enhances maintenance of GSCs to extend the reproductive period of animals subjected to adverse nutritional conditions. This represents the first example of DR maintaining an adult stem cell pool and suggests a potential mechanism by which DR might delay aging in the tissues of higher organisms.  相似文献   

5.
6.
热量限制(caloric restriction,CR)在很多物种中能够改善健康和延缓衰老,近年来的许多研究发现,热量限制可以减少多种与年龄相关性疾病的发生,但至今热量限制延缓衰老的机制尚未十分清楚.最近有研究表明,热量限制延缓衰老的机制可能与营养调控、生殖滞育等过程有密切的关系,SIRT1、PGC-1α、AMPK、TOR等信号因子也因其在热量限制和营养调控延缓衰老的机制研究中的重要作用而受到极大的关注.  相似文献   

7.
Studies in invertebrate model organisms have led to a wealth of knowledge concerning the ageing process. But which of these discoveries will apply to ageing in humans? Recently, an assessment of the degree of conservation of ageing pathways between two of the leading invertebrate model organisms, Saccharomyces cerevisiae and Caenorhabditis elegans, was completed. The results (i) quantitatively indicated that pathways were conserved between evolutionarily disparate invertebrate species and (ii) emphasized the importance of the TOR kinase pathway in ageing. With recent findings that deletion of the mTOR substrate S6K1 or exposure of mice to the mTOR inhibitor rapamycin result in lifespan extension, mTOR signalling has become a major focus of ageing research. Here, we address downstream targets of mTOR signalling and their possible links to ageing. We also briefly cover other ageing genes identified by comparing worms and yeast, addressing the likelihood that their mammalian counterparts will affect longevity.  相似文献   

8.
Studies in a variety of model organisms indicate that nutrient signaling is tightly coupled to longevity. In nutrient replete conditions, organisms develop, grow, and age quickly. When nutrients become sparse as with dietary restriction, growth and development decline, stress response pathways become induced and organisms live longer. Considerable effort has been devoted to understanding the molecular events mediating lifespan extension by dietary restriction. One central focus has been on nutrient-responsive signal transduction pathways including insulin/IGF-1, AMP kinase, protein kinase A and the TOR pathway. Here we describe the increasingly prominent links between TOR signaling and aging in invertebrates. Longevity studies in mammals are not published to date. Instead, we highlight studies in mouse models, which indicate that dampening the TOR pathway leads to widespread protection from an array of age-related diseases.  相似文献   

9.
The ability to adjust reproductive output to environmental conditions is important to the fitness of a species. The semelparous, chordate, Oikopleura dioica, is particularly adept in producing a highly variable number of oocytes in its short life cycle. Here we show that this entails an original reproductive strategy in which the entire female germline is contained in a single multinucleate cell, the "coenocyst". After an initial phase of syncytial nuclear proliferation half of the nuclei entered meiosis whereas the other half became highly polyploid. The inner F-actin network, with associated plasma membranes, formed a highly ramified infrastructure in which each meiotic nucleus was contained in a pseudo-compartmentalized pro-oocyte linked to the common cytoplasm via ring canals. At a set developmental time, a subset of the pro-oocytes was selected for synchronous growth and the common coenocyst cytoplasm was equally partitioned by transfer through the ring canals. Examination of related species indicated that the coenocyst arrangement is a conserved feature of Appendicularian oogenesis allowing efficient numerical adjustment of oocyte production. As Appendicularia are the second most abundant class of zooplankton, with a world-wide distribution, the coenocyst is clearly a common and successful reproductive strategy on a global scale.  相似文献   

10.
Oogenesis is one of the first processes to fail during aging. In women, most oocytes cannot successfully complete meiotic divisions already during the fourth decade of life. Studies of the nematode Caenorhabditis elegans have uncovered conserved genetic pathways that control lifespan, but our knowledge regarding reproductive aging in worms and humans is limited. Specifically, little is known about germline internal signals that dictate the oogonial biological clock. Here, we report a thorough characterization of the changes in the worm germline during aging. We found that shortly after ovulation halts, germline proliferation declines, while apoptosis continues, leading to a gradual reduction in germ cell numbers. In late aging stages, we observed that meiotic progression is disturbed and crossover designation and DNA double‐strand break repair decrease. In addition, we detected a decline in the quality of mature oocytes during aging, as reflected by decreasing size and elongation of interhomolog distance, a phenotype also observed in human oocytes. Many of these altered processes were previously attributed to MAPK signaling variations in young worms. In support of this, we observed changes in activation dynamics of MPK‐1 during aging. We therefore tested the hypothesis that MAPK controls oocyte quality in aged worms using both genetic and pharmacological tools. We found that in mutants with high levels of activated MPK‐1, oocyte quality deteriorates more rapidly than in wild‐type worms, whereas reduction of MPK‐1 levels enhances quality. Thus, our data suggest that MAPK signaling controls germline aging and could be used to attenuate the rate of oogenesis quality decline.  相似文献   

11.
In C. elegans, reduced insulin-like signalling induces developmental quiescence, reproductive delay and lifespan extension. We show here that the C. elegans orthologues of LKB1 and AMPK cooperate during conditions of reduced insulin-like signalling to establish cell cycle quiescence in the germline stem cell population, in addition to prolonging lifespan. The inactivation of either protein causes aberrant germline proliferation during diapause-like ;dauer' development, whereas the loss of AMPK uncouples developmental arrest from lifespan extension. Reduced TGF-beta activity also triggers developmental quiescence independent of the insulin-like pathway. Our data suggest that these two signalling pathways converge on the C. elegans PTEN orthologue to coordinate germline proliferation with somatic development during dauer formation, via the regulation of AMPK and its upstream activator LKB1, rather than through the canonical insulin-like signalling cascade. In humans, germline mutations in TGF-beta family members, PTEN or LKB1 result in related tumour-predisposing syndromes. Our findings establish a developmental relationship that may underscore their shared, characteristic aetiology.  相似文献   

12.
13.
Coordination of the cell cycle with developmental events is crucial for generation of tissues during development and their maintenance in adults. Defects in that coordination can shift the balance of cell fates with devastating clinical effects. Yet our understanding of the molecular mechanisms integrating core cell cycle regulators with developmental regulators remains in its infancy. This work focuses on the interplay between cell cycle and developmental regulators in the Caenorhabditis elegans germline. Key developmental regulators control germline stem cells (GSCs) to self-renew or begin differentiation: FBF RNA-binding proteins promote self-renewal, while GLD RNA regulatory proteins promote meiotic entry. We first discovered that many but not all germ cells switch from the mitotic into the meiotic cell cycle after RNAi depletion of CYE-1 (C. elegans cyclin E) or CDK-2 (C. elegans Cdk2) in wild-type adults. Therefore, CYE-1/CDK-2 influences the mitosis/meiosis balance. We next found that GLD-1 is expressed ectopically in GSCs after CYE-1 or CDK-2 depletion and that GLD-1 removal can rescue cye-1/cdk-2 defects. Therefore, GLD-1 is crucial for the CYE-1/CDK-2 mitosis/meiosis control. Indeed, GLD-1 appears to be a direct substrate of CYE-1/CDK-2: GLD-1 is a phosphoprotein; CYE-1/CDK-2 regulates its phosphorylation in vivo; and human cyclin E/Cdk2 phosphorylates GLD-1 in vitro. Transgenic GLD-1(AAA) harbors alanine substitutions at three consensus CDK phosphorylation sites. GLD-1(AAA) is expressed ectopically in GSCs, and GLD-1(AAA) transgenic germlines have a smaller than normal mitotic zone. Together these findings forge a regulatory link between CYE-1/CDK-2 and GLD-1. Finally, we find that CYE-1/CDK-2 works with FBF-1 to maintain GSCs and prevent their meiotic entry, at least in part, by lowering GLD-1 abundance. Therefore, CYE-1/CDK-2 emerges as a critical regulator of stem cell maintenance. We suggest that cyclin E and Cdk-2 may be used broadly to control developmental regulators.  相似文献   

14.
《Zoology (Jena, Germany)》2014,117(3):200-206
It has been shown that in Drosophila the germline stem cells (GSCs), similar to the germline and non-germline stem cells of other species, develop and function in specialized microenvironments formed by somatic cells, referred to as the niches. In the fruit fly ovaries, the female GSCs divide asymmetrically to produce new GSCs and the progenitor cells, the cystoblasts (Cbs). Each Cb then divides to generate the cyst composed of 16 interconnected sibling cells, the cystocytes. After cyst formation, specific molecules are transferred to one of the cystocytes which differentiates into the oocyte, whereas the other 15 cystocytes become the nurse cells. We have studied morphology and ultrastructure of the germaria in the ovarioles (ovaries) of a basal “apterygotous” insect, the firebrat (Thermobia domestica). Our analyses have revealed that in this insect, putative GSCs are present along the anterior apex of the germarium. These cells are separated from each other and from the basement lamina covering the ovariole by characteristic somatic cells, termed the apical somatic cells (ASCs), or their elongated processes. We believe that all the ASCs of a given ovariole constitute a “dispersed” niche in which putative GSCs are anchored. Our analyses have additionally shown that in Thermobia, both the Cbs and young (meiotic) oocytes are always individual and never form syncytial cysts. These findings indicate that in certain basal insects the syncytial phase of oogenesis has been eliminated during evolution. Finally, we show that in the early meiotic oocytes of Thermobia, during the so-called bouquet stage, prominent Balbiani bodies (Bbs) are formed. Analysis of serial micrographs indicates that the Bbs invariably arise next to the segment of the nuclear envelope to which the telomeres of the bouquet chromosomes are attached. We suggest, in the light of these data, that the localization of the Bb together with the polar attachment of the bouquet chromosomes play a crucial role in the early asymmetrization of Thermobia oocytes.  相似文献   

15.
Changes in mitochondrial dynamics (fusion and fission) are known to occur during stem cell differentiation; however, the role of this phenomenon in tissue aging remains unclear. Here, we report that mitochondrial dynamics are shifted toward fission during aging of Drosophila ovarian germline stem cells (GSCs), and this shift contributes to aging‐related GSC loss. We found that as GSCs age, mitochondrial fragmentation and expression of the mitochondrial fission regulator, Dynamin‐related protein (Drp1), are both increased, while mitochondrial membrane potential is reduced. Moreover, preventing mitochondrial fusion in GSCs results in highly fragmented depolarized mitochondria, decreased BMP stemness signaling, impaired fatty acid metabolism, and GSC loss. Conversely, forcing mitochondrial elongation promotes GSC attachment to the niche. Importantly, maintenance of aging GSCs can be enhanced by suppressing Drp1 expression to prevent mitochondrial fission or treating with rapamycin, which is known to promote autophagy via TOR inhibition. Overall, our results show that mitochondrial dynamics are altered during physiological aging, affecting stem cell homeostasis via coordinated changes in stemness signaling, niche contact, and cellular metabolism. Such effects may also be highly relevant to other stem cell types and aging‐induced tissue degeneration.  相似文献   

16.
17.
An important event in the development of the germline is the initiation of meiotic development. In Caenorhabditis elegans, the conserved GLP-1/Notch signaling pathway regulates the proliferative versus meiotic entry decision, at least in part, by spatially inhibiting genes in the gld-1 and gld-2 parallel pathways, which are proposed to either inhibit proliferation and/or promote meiotic development. Mutations that cause constitutive activation of the GLP-1 pathway, or inactivation of both the gld-1 and gld-2 parallel pathways, result in a tumorous germline in which all cells are thought to be proliferative. Here, to analyze proliferation and meiotic entry in wild-type and mutant tumorous germlines, we use anti-REC-8 and anti-HIM-3 specific antibodies as markers, which under our fixation conditions, stain proliferative and meiotic cells, respectively. Using these makers in wild-type animals, we find that the border of the switch from proliferation to meiotic entry is staggered in late-larval and adult germlines. In wild-type adults, the switch occurs between 19 and 26 cell diameters from the distal end, on average. Our analysis of mutants reveals that tumorous germlines that form when GLP-1 is constitutively active are completely proliferative, while tumors due to inactivation of the gld-1 and gld-2 pathways show evidence of meiotic entry. Genetic and time course studies suggest that a third pathway may exist, parallel to the GLD-1 and GLD-2 pathways, that promotes meiotic development.  相似文献   

18.
In many animals, germline progenitors are kept undifferentiated to give rise to germline stem cells (GSCs), enabling continuous production of gametes throughout animal life. In the Drosophila ovary, GSCs arise from a subset of primordial germ cells (PGCs) that stay undifferentiated even after gametogenesis has started. How a certain population of PGCs is protected against differentiation, and the significance of its regulatory mechanisms on GSC establishment remain elusive. Here we show that epidermal growth factor receptor (Egfr) signaling in somatic stromal intermingled cells (ICs), activated by its ligand produced in germ cells, controls the size of the PGC pool at the onset of gametogenesis. Egfr signaling in ICs limits the number of cells that express the heparan sulfate proteoglycan Dally, which is required for the movement and stability of the locally-produced stromal morphogen, Decapentaplegic (Dpp, a BMP2/4 homologue). Dpp is received by PGCs and maintains them in an undifferentiated state. Altering Egfr signaling levels changes the size of the PGC pool and affects the number of GSCs established during development. While excess GSC formation is compensated by the adult stage, insufficient GSC formation can lead to adult ovarioles that completely lack GSCs, suggesting that ensuring an absolute size of the PGC pool is crucial for the GSC system.  相似文献   

19.
Rotifers have been used to study the mechanisms of ageing for more than a century, but the underlying molecular basis of ageing in rotifers is largely unknown. The insulin/insulin-like growth factor (IGF-1) signaling pathway has been found to regulate the lifespan of evolutionarily distinct eukaryotes from yeast to mammals. We therefore assume that the insulin/IGF-1 pathway is a candidate for regulating the rotifer’s lifespan. Accordingly, we examined the action of an inhibitor to PI3-kinase involved in the pathway for the rotifer Brachionus plicatilis O. F. Müller. This kinase was first discovered as age-1 to regulate the longevity of Caenorhabditis elegans. As expected, the inhibitor treatment resulted in the extension of lifespan by 30% compared to the reference group without the treatment, whereas reproductive characters were not apparently changed. These results were consistent with those observed in C. elegans, suggesting that the lifespan of B. plicatilis is likely to be regulated by the signaling pathway involving PI3-kinase.  相似文献   

20.
Reduced supply of the amino acid methionine increases longevity across species through an as yet elusive mechanism. Here, we report that methionine restriction (MetR) extends yeast chronological lifespan in an autophagy-dependent manner. Single deletion of several genes essential for autophagy (ATG5, ATG7 or ATG8) fully abolished the longevity-enhancing capacity of MetR. While pharmacological or genetic inhibition of TOR1 increased lifespan in methionine-prototroph yeast, TOR1 suppression failed to extend the longevity of methionine-restricted yeast cells. Notably, vacuole-acidity was specifically enhanced by MetR, a phenotype that essentially required autophagy. Overexpression of vacuolar ATPase components (Vma1p or Vph2p) suffices to increase chronological lifespan of methionine-prototrophic yeast. In contrast, lifespan extension upon MetR was prevented by inhibition of vacuolar acidity upon disruption of the vacuolar ATPase. In conclusion, autophagy promotes lifespan extension upon MetR and requires the subsequent stimulation of vacuolar acidification, while it is epistatic to the equally autophagy-dependent anti-aging pathway triggered by TOR1 inhibition or deletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号