首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aberrant mitochondrial function appears to play a central role in dopaminergic neuronal loss in Parkinson''s disease (PD). 1-methyl-4-phenylpyridinium iodide (MPP+), the active metabolite of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is a selective inhibitor of mitochondrial complex I and is widely used in rodent and cell models to elicit neurochemical alterations associated with PD. Recent findings suggest that Glycogen Synthase Kinase-3β (GSK-3β), a critical activator of neuronal apoptosis, is involved in the dopaminergic cell death. In this study, the role of GSK-3β in modulating MPP+-induced mitochondrial dysfunction and neuronal death was examined in vivo, and in two neuronal cell models namely primary cultured and immortalized neurons. In both cell models, MPTP/MPP+ treatment caused cell death associated with time- and concentration-dependent activation of GSK-3β, evidenced by the increased level of the active form of the kinase, i.e. GSK-3β phosphorylated at tyrosine 216 residue. Using immunocytochemistry and subcellular fractionation techniques, we showed that GSK-3β partially localized within mitochondria in both neuronal cell models. Moreover, MPP+ treatment induced a significant decrease of the specific phospho-Tyr216-GSK-3β labeling in mitochondria concomitantly with an increase into the cytosol. Using two distinct fluorescent probes, we showed that MPP+ induced cell death through the depolarization of mitochondrial membrane potential. Inhibition of GSK-3β activity using well-characterized inhibitors, LiCl and kenpaullone, and RNA interference, prevented MPP+-induced cell death by blocking mitochondrial membrane potential changes and subsequent caspase-9 and -3 activation. These results indicate that GSK-3β is a critical mediator of MPTP/MPP+-induced neurotoxicity through its ability to regulate mitochondrial functions. Inhibition of GSK-3β activity might provide protection against mitochondrial stress-induced cell death.  相似文献   

2.
While TRAIL is a promising anticancer agent due to its ability to selectively induce apoptosis in neoplastic cells, many tumors, including pancreatic ductal adenocarcinoma (PDA), display intrinsic resistance, highlighting the need for TRAIL-sensitizing agents. Here we report that TRAIL-induced apoptosis in PDA cell lines is enhanced by pharmacological inhibition of glycogen synthase kinase-3 (GSK-3) or by shRNA-mediated depletion of either GSK-3α or GSK-3β. In contrast, depletion of GSK-3β, but not GSK-3α, sensitized PDA cell lines to TNFα-induced cell death. Further experiments demonstrated that TNFα-stimulated IκBα phosphorylation and degradation as well as p65 nuclear translocation were normal in GSK-3β-deficient MEFs. Nonetheless, inhibition of GSK-3β function in MEFs or PDA cell lines impaired the expression of the NF-κB target genes Bcl-xL and cIAP2, but not IκBα. Significantly, the expression of Bcl-xL and cIAP2 could be reestablished by expression of GSK-3β targeted to the nucleus but not GSK-3β targeted to the cytoplasm, suggesting that GSK-3β regulates NF-κB function within the nucleus. Consistent with this notion, chromatin immunoprecipitation demonstrated that GSK-3 inhibition resulted in either decreased p65 binding to the promoter of BIR3, which encodes cIAP2, or increased p50 binding as well as recruitment of SIRT1 and HDAC3 to the promoter of BCL2L1, which encodes Bcl-xL. Importantly, depletion of Bcl-xL but not cIAP2, mimicked the sensitizing effect of GSK-3 inhibition on TRAIL-induced apoptosis, whereas Bcl-xL overexpression ameliorated the sensitization by GSK-3 inhibition. These results not only suggest that GSK-3β overexpression and nuclear localization contribute to TNFα and TRAIL resistance via anti-apoptotic NF-κB genes such as Bcl-xL, but also provide a rationale for further exploration of GSK-3 inhibitors combined with TRAIL for the treatment of PDA.  相似文献   

3.
The endoplasmic reticulum (ER) is not only a home for folding and posttranslational modifications of secretory proteins but also a reservoir for intracellular Ca2+. Perturbation of ER homeostasis contributes to the pathogenesis of various neurodegenerative diseases, such as Alzheimer''s and Parkinson diseases. One key regulator that underlies cell survival and Ca2+ homeostasis during ER stress responses is inositol-requiring enzyme 1α (IRE1α). Despite extensive studies on this ER membrane-associated protein, little is known about the molecular mechanisms by which excessive ER stress triggers cell death and Ca2+ dysregulation via the IRE1α-dependent signaling pathway. In this study, we show that inactivation of IRE1α by RNA interference increases cytosolic Ca2+ concentration in SH-SY5Y cells, leading to cell death. This dysregulation is caused by an accelerated ER-to-cytosolic efflux of Ca2+ through the InsP3 receptor (InsP3R). The Ca2+ efflux in IRE1α-deficient cells correlates with dissociation of the Ca2+-binding InsP3R inhibitor CIB1 and increased complex formation of CIB1 with the pro-apoptotic kinase ASK1, which otherwise remains inactivated in the IRE1α–TRAF2–ASK1 complex. The increased cytosolic concentration of Ca2+ induces mitochondrial production of reactive oxygen species (ROS), in particular superoxide, resulting in severe mitochondrial abnormalities, such as fragmentation and depolarization of membrane potential. These Ca2+ dysregulation-induced mitochondrial abnormalities and cell death in IRE1α-deficient cells can be blocked by depleting ROS or inhibiting Ca2+ influx into the mitochondria. These results demonstrate the importance of IRE1α in Ca2+ homeostasis and cell survival during ER stress and reveal a previously unknown Ca2+-mediated cell death signaling between the IRE1α–InsP3R pathway in the ER and the redox-dependent apoptotic pathway in the mitochondrion.  相似文献   

4.
β-Lapachone activates multiple cell death mechanisms including apoptosis, autophagy and necrotic cell death in cancer cells. In this study, we investigated β-lapachone-induced cell death and the underlying mechanisms in human hepatocellular carcinoma SK-Hep1 cells. β-Lapachone markedly induced cell death without caspase activation. β-Lapachone increased PI uptake and HMGB-1 release to extracellular space, which are markers of necrotic cell death. Necrostatin-1 (a RIP1 kinase inhibitor) markedly inhibited β-lapachone-induced cell death and HMGB-1 release. In addition, β-lapachone activated poly (ADP-ribosyl) polymerase-1(PARP-1) and promoted AIF release, and DPQ (a PARP-1 specific inhibitor) or AIF siRNA blocked β-lapachone-induced cell death. Furthermore, necrostatin-1 blocked PARP-1 activation and cytosolic AIF translocation. We also found that β-lapachone-induced reactive oxygen species (ROS) production has an important role in the activation of the RIP1-PARP1-AIF pathway. Finally, β-lapachone-induced cell death was inhibited by dicoumarol (a NQO-1 inhibitor), and NQO1 expression was correlated with sensitivity to β-lapachone. Taken together, our results demonstrate that β-lapachone induces programmed necrosis through the NQO1-dependent ROS-mediated RIP1-PARP1-AIF pathway.  相似文献   

5.
Loss of mitochondrial membrane potential (ΔΨm) is known to be closely linked to cell death by various insults. However, whether acceleration of the ΔΨm recovery process prevents cell necrosis remains unclear. Here we examined the hypothesis that facilitated recovery of ΔΨm contributes to cytoprotection afforded by activation of the mitochondrial ATP-sensitive K+ (mKATP) channel or inactivation of glycogen synthase kinase-3β (GSK-3β). ΔΨm of H9c2 cells was determined by tetramethylrhodamine ethyl ester (TMRE) before or after 1-h exposure to antimycin A (AA), an inducer of reactive oxygen species (ROS) production at complex III. Opening of the mitochondrial permeability transition pore (mPTP) was determined by mitochondrial loading of calcein. AA reduced ΔΨm to 15±1% of the baseline and induced calcein leak from mitochondria. ΔΨm was recovered to 51±3% of the baseline and calcein-loadable mitochondria was 6±1% of the control at 1 h after washout of AA. mKATP channel openers improved the ΔΨm recovery and mitochondrial calcein to 73±2% and 30±7%, respectively, without change in ΔΨm during AA treatment. Activation of the mKATP channel induced inhibitory phosphorylation of GSK-3β and suppressed ROS production, LDH release and apoptosis after AA washout. Knockdown of GSK-3β and pharmacological inhibition of GSK-3β mimicked the effects of mKATP channel activation. ROS scavengers administered at the time of AA removal also improved recovery of ΔΨm. These results indicate that inactivation of GSK-3β directly or indirectly by mKATP channel activation facilitates recovery of ΔΨm by suppressing ROS production and mPTP opening, leading to cytoprotection from oxidant stress-induced cell death.  相似文献   

6.
Pancreatic β-cell apoptosis is a key feature of diabetes mellitus and the mitochondrial pathway of apoptosis is a major mediator of β-cell death. We presently evaluated the role of the myeloid cell leukemia sequence 1 (Mcl-1), an antiapoptotic protein of the Bcl-2 family, in β-cells following exposure to well-defined β-cell death effectors, for example, pro-inflammatory cytokines, palmitate and chemical endoplasmic reticulum (ER) stressors. All cytotoxic stresses rapidly and preferentially decreased Mcl-1 protein expression as compared with the late effect observed on the other antiapoptotic proteins, Bcl-2 and Bcl-xL. This was due to ER stress-mediated inhibition of translation through eIF2α phosphorylation for palmitate and ER stressors and through the combined action of translation inhibition and JNK activation for cytokines. Knocking down Mcl-1 using small interference RNAs increased apoptosis and caspase-3 cleavage induced by cytokines, palmitate or thapsigargin, whereas Mcl-1 overexpression partly prevented Bax translocation to the mitochondria, cytochrome c release, caspase-3 cleavage and apoptosis induced by the β-cell death effectors. Altogether, our data suggest that Mcl-1 downregulation is a crucial event leading to β-cell apoptosis and provide new insights into the mechanisms linking ER stress and the mitochondrial intrinsic pathway of apoptosis. Mcl-1 is therefore an attractive target for the design of new strategies in the treatment of diabetes.  相似文献   

7.
Ischemia-induced cell death is a major cause of disability or death after stroke. Identifying the key intrinsic protective mechanisms induced by ischemia is critical for the development of effective stroke treatment. Here, we reported that 14-3-3γ was a selective ischemia-inducible survival factor in cerebral cortical neurons reducing cell death by downregulating Bax depend direct 14-3-3γ/p-β-catenin Ser37 interactions in the nucleus. 14-3-3γ, but not other 14-3-3 isoforms, was upregulated in primary cerebral cortical neurons upon oxygen–glucose deprivation (OGD) as measured by quantitative PCR, western blot and fluorescent immunostaining. The selective induction of 14-3-3γ in cortical neurons by OGD was verified by the in vivo ischemic stroke model. Knocking down 14-3-3γ alone or inhibiting 14-3-3/client interactions was sufficient to induce cell death in normal cultured neurons and exacerbate OGD-induced neuronal death. Ectopic overexpression of 14-3-3γ significantly reduced OGD-induced cell death in cultured neurons. Co-immunoprecipitation and fluorescence resonance energy transfer demonstrated that endogenous 14-3-3γ bound directly to more p-β-catenin Ser37 but not p-Bad, p-Ask-1, p-p53 and Bax. During OGD, p-β-catenin Ser37 but not p-β-catenin Ser45 was increased prominently, which correlated with Bax elevation in cortical neurons. OGD promoted the entry of 14-3-3γ into the nuclei, in correlation with the increase of nuclear p-β-catenin Ser37 in neurons. Overexpression of 14-3-3γ significantly reduced Bax expression, whereas knockdown of 14-3-3γ increased Bax in cortical neurons. Abolishing β-catenin phosphorylation at Ser37 (S37A) significantly reduced Bax and cell death in neurons upon OGD. Finally, 14-3-3γ overexpression completely suppressed β-catenin-enhanced Bax and cell death in neurons upon OGD. Based on these data, we propose that the 14-3-3γ/p-β-catenin Ser37/Bax axis determines cell survival or death of neurons during ischemia, providing novel therapeutic targets for ischemic stroke as well as other related neurological diseases.  相似文献   

8.
Objectives20‐hydroxyeicosatetraenoic acid (20‐HETE) is a metabolite of arachidonic acid catalysed by cytochrome P450 enzymes and plays an important role in cell death and proliferation. We hypothesized that 20‐HETE synthesis inhibition may have protective effects in traumatic brain injury (TBI) and investigated possible underlying molecular mechanisms.Materials and methodsNeurologic deficits, and lesion volume, reactive oxygen species (ROS) levels and cell death as assessed using immunofluorescence staining, transmission electron microscopy and Western blotting were used to determine post‐TBI effects of HET0016, an inhibitor of 20‐HETE synthesis, and their underlying mechanisms.ResultsThe level of 20‐HETE was found to be increased significantly after TBI in mice. 20‐HETE synthesis inhibition reduced neuronal apoptosis, ROS production and damage to mitochondrial structures after TBI. Mechanistically, HET0016 decreased the Drp1 level and increased the expression of Mfn1 and Mfn2 after TBI, indicating a reversal of the abnormal post‐TBI mitochondrial dynamics. HET0016 also promoted the restoration of SIRT1 and PGC‐1α in vivo, and a SIRT1 activator (SRT1720) reversed the downregulation of SIRT1 and PGC‐1α and the abnormal mitochondrial dynamics induced by 20‐HETE in vitro. Furthermore, plasma 20‐HETE levels were found to be higher in TBI patients with unfavourable neurological outcomes and were correlated with the GOS score.ConclusionsThe inhibition of 20‐HETE synthesis represents a novel strategy to mitigate TBI‐induced mitochondrial dysfunction and neuronal apoptosis by regulating the SIRT1/PGC‐1α pathway.  相似文献   

9.
Gliomas are resistant to radiation therapy, as well as to TNFα induced killing. Radiation-induced TNFα triggers Nuclear factor κB (NFκB)-mediated radioresistance. As inhibition of NFκB activation sensitizes glioma cells to TNFα-induced apoptosis, we investigated whether TNFα modulates the responsiveness of glioma cells to ionizing radiation-mimetic Neocarzinostatin (NCS). TNFα enhanced the ability of NCS to induce glioma cell apoptosis. NCS-mediated death involved caspase-9 activation, reduction of mitochondrial copy number and lactate production. Death was concurrent with NFκB, Akt and Erk activation. Abrogation of Akt and NFκB activation further potentiated the death inducing ability of NCS in TNFα cotreated cells. NCS-induced p53 expression was accompanied by increase in TP53-induced glycolysis and apoptosis regulator (TIGAR) levels and ATM phosphorylation. siRNA-mediated knockdown of TIGAR abrogated NCS-induced apoptosis. While DN-IκB abrogated NCS-induced TIGAR both in the presence and absence of TNFα, TIGAR had no effect on NFκB activation. Transfection with TIGAR mutant (i) decreased apoptosis and γH2AX foci formation (ii) decreased p53 (iii) elevated ROS and (iv) increased Akt/Erk activation in cells cotreated with NCS and TNFα. Heightened TIGAR expression was observed in GBM tumors. While NCS induced ATM phosphorylation in a NFκB independent manner, ATM inhibition abrogated TIGAR and NFκB activation. Metabolic gene profiling indicated that TNFα affects NCS-mediated regulation of several genes associated with glycolysis. The existence of ATM-NFκB axis that regulate metabolic modeler TIGAR to overcome prosurvival response in NCS and TNFα cotreated cells, suggests mechanisms through which inflammation could affect resistance and adaptation to radiomimetics despite concurrent induction of death.  相似文献   

10.
Alzheimer''s disease (AD) is a chronic neurodegenerative disease characterized by progressive neuronal loss and cognitive decline. Oligomeric amyloid β (oAβ) is involved in the pathogenesis of AD by affecting synaptic plasticity and inhibiting long-term potentiation. Although several lines of evidence suggests that microglia, the resident immune cells in the central nervous system (CNS), are neurotoxic in the development of AD, the mechanism whether or how oAβ induces microglial neurotoxicity remains unknown. Here, we show that oAβ promotes the processing of pro-interleukin (IL)-1β into mature IL-1β in microglia, which then enhances microglial neurotoxicity. The processing is induced by an increase in activity of caspase-1 and NOD-like receptor family, pyrin domain containing 3 (NLRP3) via mitochondrial reactive oxygen species (ROS) and partially via NADPH oxidase-induced ROS. The caspase-1 inhibitor Z-YVAD-FMK inhibits the processing of IL-1β, and attenuates microglial neurotoxicity. Our results indicate that microglia can be activated by oAβ to induce neuroinflammation through processing of IL-1β, a pro-inflammatory cytokine, in AD.  相似文献   

11.
Mitochondrial biogenesis is an orchestrated process that presides to the regulation of the organelles homeostasis within a cell. We show that γ-rays, at doses commonly used in the radiation therapy for cancer treatment, induce an increase in mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence, in the presence of a functional p53. Although the main effector of the response to γ-rays is the p53-p21 axis, we demonstrated that mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a murine double minute 2 (MDM2)-mediated hypoxia-inducible factor 1α (HIF1α) degradation, leading to the release of peroxisome-proliferator activated receptor gamma co-activator 1β inhibition by HIF1α, thus promoting mitochondrial biogenesis. Mimicking hypoxia by HIF1α stabilization, in fact, blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally, we also show in vivo that post-radiotherapy mitochondrial DNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of cell senescence.  相似文献   

12.
Insulinomas (pancreatic islet β cell tumors) are the most common type of functioning pancreatic neuroendocrine tumors that occur sporadically or as a part of the MEN1 syndrome that is caused by germ line mutations in MEN1. Tissue-specific tumor predisposition from germ line mutations in ubiquitously expressed genes such as MEN1 could occur because of functional consequences on tissue-specific factors. We previously reported the proapoptotic β cell differentiation factor HLXB9 as a downstream target of menin (encoded by MEN1). Here we show that GSK-3β inactivates the proapoptotic activity of HLXB9 by phosphorylating HLXB9 at Ser-78/Ser-80 (pHLXB9). Although HLXB9 is found in the nucleus and cytoplasm, pHLXB9 is predominantly nuclear. Both pHLXB9 and active GSK-3β are elevated in β cells with menin knockdown, in MEN1-associated β cell tumors (insulinomas), and also in human sporadic insulinomas. Pharmacologic inhibition of GSK-3β blocked cell proliferation in three different rodent insulinoma cell lines by arresting the cells in G2/M phase and caused apoptosis. Taken together, these data suggest that the combination of GSK-3β and pHLXB9 forms a therapeutically targetable mechanism of insulinoma pathogenesis. Our results reveal that GSK-3β and pHLXB9 can serve as novel targets for insulinoma treatment and have implications for understanding the pathways associated with β cell proliferation.  相似文献   

13.
Accumulation evidence shows that β-amyloid (Aβ) is a neurotoxic and accumulation of Aβ is responsible for the pathology of Alzheimer''s disease (AD). However, it is currently not fully understood what makes Aβ toxic and accumulated. Previous studies demonstrate that Aβ is a suitable substrate for glycation, producing one form of the advanced glycation endproducts (AGEs). We speculated that Aβ-AGE formation may exacerbate the neurotoxicity. To explore whether the Aβ-AGE is more toxic than the authentic Aβ and to understand the molecular mechanisms, we synthesized glycated Aβ by incubating Aβ with methylglyoxal (MG) in vitro and identified the formation of glycated Aβ by fluorescence spectrophotometer. Then, we treated the primary hippocampal neurons cultured 8 days in vitro with Aβ-AGE or Aβ for 24 h. We observed that glycation exacerbated neurotoxicity of Aβ with upregulation of receptor for AGE (RAGE) and activation of glycogen synthase kinase-3 (GSK-3), whereas simultaneous application of RAGE antibody or GSK-3 inhibitor reversed the neuronal damages aggravated by glycated Aβ. Thereafter, we found that Aβ is also glycated with an age-dependent elevation of AGEs in Tg2576 mice, whereas inhibition of Aβ-AGE formation by subcutaneously infusion of aminoguanidine for 3 months significantly rescued the early cognitive deficit in mice. Our data reveal for the first time that the glycated Aβ is more toxic. We propose that the glycated Aβ with the altered secondary structure may be a more suitable ligand than Aβ for RAGE and subsequent activation of GSK-3 that can lead to cascade pathologies of AD, therefore glycated Aβ may be a new therapeutic target for AD.  相似文献   

14.
Overactivation of ionotropic glutamate receptors in oligodendrocytes induces cytosolic Ca2+ overload and excitotoxic death, a process that contributes to demyelination and multiple sclerosis. Excitotoxic insults cause well-characterized mitochondrial alterations and endoplasmic reticulum (ER) dysfunction, which is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) to excitotoxicity in oligodendrocytes in vitro. First, we observed that oligodendrocytes express all previously characterized RyRs and IP3Rs. Blockade of Ca2+-induced Ca2+ release by TMB-8 following α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor-mediated insults attenuated both oligodendrocyte death and cytosolic Ca2+ overload. In turn, RyR inhibition by ryanodine reduced as well the Ca2+ overload whereas IP3R inhibition was ineffective. Furthermore, AMPA-triggered mitochondrial membrane depolarization, oxidative stress and activation of caspase-3, which in all instances was diminished by RyR inhibition. In addition, we observed that AMPA induced an ER stress response as revealed by α subunit of the eukaryotic initiation factor 2α phosphorylation, overexpression of GRP chaperones and RyR-dependent cleavage of caspase-12. Finally, attenuating ER stress with salubrinal protected oligodendrocytes from AMPA excitotoxicity. Together, these results show that Ca2+ release through RyRs contributes to cytosolic Ca2+ overload, mitochondrial dysfunction, ER stress and cell death following AMPA receptor-mediated excitotoxicity in oligodendrocytes.  相似文献   

15.
Brain ischemia often results in neuronal necrosis, which may spread death to neighboring cells. However, the molecular events of neuronal necrosis and the mechanisms of this spreading death are poorly understood due to the limited genetic tools available for deciphering complicated responses in mammalian brains. Here, we engineered a Drosophila model of necrosis in a sub-population of neurons by expressing a leaky cation channel in the Drosophila eye. Expression of this channel caused necrosis in defined neurons as well as extensive spreading of cell death. Jun N-terminal kinase (JNK)-mediated, caspase-independent apoptosis was the primary mechanism of cell death in neurons, while caspase-dependent apoptosis was primarily involved in non-neuronal cell death. Furthermore, the JNK activation in surrounding neurons was triggered by reactive oxygen species (ROS) and Eiger (Drosophila tumor necrosis factor α (TNFα)) released from necrotic neurons. Because the Eiger/ROS/JNK signaling was also required for cell death induced by hypoxia and oxidative stress, our fly model of spreading death may be similar to brain ischemia in mammals. We performed large-scale genetic screens to search for novel genes functioning in necrosis and/or spreading death, from which we identified several classes of genes. Among them, Rho-associated kinase (ROCK) had been reported as a promising drug target for stroke treatment with undefined mechanisms. Our data indicate that ROCK and the related trafficking pathway genes regulate neuronal necrosis. We propose the suppression of the function of the trafficking system, ROS and cytokines, such as TNFα, as translational applications targeting necrosis and spreading death.  相似文献   

16.
17.
Mycophenolic acid (MPA) is one of many effective immunosuppressive drugs. However, MPA can induce cellular toxicity and impair cellular function in β-cells. To explore the effects of MPA and the relation between MPA and Trx-1, we used various methods, including an Illumina microarray, to identify the genes regulated during pancreatic β-cell death following MPA treatment. INS-1E cells (a pancreatic β-cell line) and isolated rat islets were treated with MPA for 12, 24, or 36 h, and subsequent microarray analysis showed that (Trx1) gene expression was significantly reduced by MPA. Further, Trx1 overexpression increased the cell viability, decreased the activations of c-jun N-terminal kinase (JNK) and caspase-3 by MPA, and attenuated ROS upregulation by MPA. Furthermore, siRNA knockdown of Trx1 increased MPA-induced cell death and the activations of p-JNK and caspase-3, and MPA significantly provoked the apoptosis of insulin-secreting cells via Trx1 downregulation. Our findings suggest that the prevention of Trx1 downregulation in response to MPA is critical for successful islet transplantation.  相似文献   

18.
With the existing knowledge of ATM''s role in therapeutic resistance, the present study aimed at identifying the molecular mechanisms that influence ATM to oscillate between chemoresistance and chemosensitivity. We observed that the redox status of tumors functions as a major determinant of ATM-dependent ‘resistance-to-apoptosis'' molecular switch. At a low reactive oxygen species (ROS) condition during genotoxic insult, the ATM/sumoylated-IKKγ interaction induced NFκB activation that resisted JNK-mediated apoptosis, whereas increasing cellular ROS restored ATM/JNK apoptotic signaling. A search for the upstream missing link revealed that high ROS induces oxidation and ubiquitin-mediated degradation of PIASγ, thereby disrupting PIASγ-IKKγ cross talk, a pre-requisite for IKKγ sumoylation and subsequent NFκB activation. Interruption in the PIASγ-mediated resistance pathway channels ATM signaling toward ATM/JNK pro-death circuitry. These in vitro results also translated to sensitive and resistant tumor allograft mouse models in which low ROS-induced resistance was over-ruled in PIASγ knockout tumors, while its overexpression inhibited high ROS-dependent apoptotic cues. Cumulatively, our findings identified an unappreciated yet critical combinatorial function of cellular ROS and PIASγ in regulating ATM-mediated chemosensitization of resistant tumors. Thus, therapeutic strategies employing ROS upregulation to inhibit PIASγ during genotoxic therapy may, in future, help to eliminate the problems of NFκB-mediated tumor drug resistance.  相似文献   

19.
Aerobic glycolysis or the Warburg effect contributes to cancer cell proliferation; however, how this glucose metabolism pathway is precisely regulated remains elusive. Here we show that receptor-interacting protein 1 (RIP1), a cell death and survival signaling factor, regulates mitochondrial oxidative phosphorylation and aerobic glycolysis. Loss of RIP1 in lung cancer cells suppressed peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression, impairing mitochondrial oxidative phosphorylation and accelerating glycolysis, resulting in spontaneous DNA damage and p53-mediated cell proliferation inhibition. Thus, although aerobic glycolysis within a certain range favors cancer cell proliferation, excessive glycolysis causes cytostasis. Our data suggest that maintenance of glycolysis by RIP1 is pivotal to cancer cell energy homeostasis and DNA integrity and may be exploited for use in anticancer therapy.  相似文献   

20.
Glycogen synthase kinase-3β (GSK-3β), which is a member of the serine/threonine kinase family, has been shown to be crucial for cellular survival, differentiation, and metabolism. Here, we present evidence that GSK-3β is associated with the karyopherin β2 (Kap β2) (102-kDa), which functions as a substrate for transportation into the nucleus. A potential PY-NLS motif (109IVRLRYFFY117) was observed, which is similar with the consensus PY NLS motif (R/K/H)X2–5PY in the GSK-3β catalytic domain. Using a pull down approach, we observed that GSK-3β physically interacts with Kap β2 both in vivo and in vitro. Secondly, GSK-3β and Kap β2 were shown to be co-localized by confocal microscopy. The localization of GSK-3β to the nuclear region was disrupted by putative Kap β2 binding site mutation. Furthermore, in transient transfection assays, the Kap β2 binding site mutant induced a substantial reduction in the in vivo serine/threonine phosphorylation of GSK-3β, where- as the GSK-3β wild type did not. Thus, our observations indicated that Kap β2 imports GSK-3β through its putative PY NLS motif from the cytoplasm to the nucleus and increases its kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号