首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Doublecortin (DCX) is a microtubule (MT) binding protein that induces growth arrest at the G2–M phase of cell cycle in glioma and suppresses tumor xenograft in immunocompromised hosts. DCX expression was found in neuronal cells, but lacking in glioma cells. We tested the hypothesis that DCX inhibits glioma U87 cell mitosis and invasion. Our data showed that DCX synthesizing U87 cells underwent mitotic MT spindle catastrophe in a neurabin II dependent pathway. Synthesis of both DCX and neurabin II were required to induce apoptosis in U87 and human embryonic kidney 293T cells. In DCX expressing U87 cells, association of phosphorylated DCX with protein phosphatase-1 (PP1) in the cytosol disrupted the interaction between kinesin-13 and PP1 in the nucleus and yielded spontaneously active kinesin-13. The activated kinesin-13 caused mitotic MT catastrophe in spindle checkpoint. Phosphorylated-DCX induced depolymerization of actin filaments in U87 cells, down-regulated matrix metalloproteinases-2 and -9, and inhibited glioma U87 cell invasion in a neurabin II dependent pathway. Thus, localization of the DCX–neurabin II–PP1 complex in the cytosol of U87 tumor cells inhibited PP1 phosphatase activities leading to anti-glioma effects via (1) mitotic MT spindle catastrophe that blocks mitosis and (2) depolymerization of actin that inhibits glioma cell invasion.  相似文献   

2.
Mutations of tumor suppressor Nf1 gene deregulate Ras-mediated signaling, which confers the predisposition for developing benign or malignant tumors. Inhibition of protein kinase C (PKC) was shown to be in synergy with aberrant Ras for the induction of apoptosis in various types of cancer cells. However, it has not been investigated whether loss of PKC is lethal for Nf1-deficient cells. In this study, using HMG (3-hydroxy-3-methylgutaryl, a PKC inhibitor), we demonstrate that the inhibition of PKC by HMG treatment triggered a persistently mitotic arrest, resulting in the occurrence of mitotic catastrophe in Nf1-deficient ST8814 cells. However, the introduction of the Nf1 effective domain gene into ST8814 cells abolished this mitotic crisis. In addition, HMG injection significantly attenuated the growth of the xenografted ST8814 tumors. Moreover, Chk1 was phosphorylated, accompanied with the persistent increase of cyclin B1 expression in HMG-treated ST8814 cells. The knockdown of Chk1 by the siRNA prevented the Nf1-deficient cells from undergoing HMG-mediated mitotic arrest as well as mitotic catastrophe. Thus, our data suggested that the suppression of PKC activates the Chk1-mediated mitotic exit checkpoint in Nf1-deficient cells, leading to the induction of apoptosis via mitotic catastrophe. Collectively, the study indicates that targeting PKC may be a potential option for developing new strategies to treat Nf1-deficiency-related diseases.  相似文献   

3.
Efficient and error-free DNA repair is critical for safeguarding genome integrity, yet it is also linked to radio- and chemoresistance of malignant tumors. miR-34a, a potent tumor suppressor, influences a large set of p53-regulated genes and contributes to p53-mediated apoptosis. However, the effects of miR-34a on the processes of DNA damage and repair are not entirely understood. We explored tet-inducible miR-34a-expressing human p53 wild-type and R273H p53 mutant GBM cell lines, and found that miR-34a influences the broad spectrum of 53BP1-mediated DNA damage response. It escalates both post-irradiation and endogenous DNA damage, abrogates radiation-induced G2/M arrest and drastically increases the number of irradiated cells undergoing mitotic catastrophe. Furthermore, miR-34a downregulates 53BP1 and inhibits its recruitment to the sites of DNA double-strand breaks. We conclude that whereas miR-34a counteracts DNA repair, it also contributes to the p53-independent elimination of distressed cells, thus preventing the rise of genomic instability in tumor cell populations. These properties of miR-34a can potentially be exploited for DNA damage-effecting therapies of malignancies.  相似文献   

4.
Mitotic catastrophe can be defined as a cell death mode that occurs during or shortly after a prolonged/aberrant mitosis, and can show apoptotic or necrotic features. However, conventional procedures for the detection of apoptosis or necrosis, including biochemical bulk assays and cytofluorometric techniques, cannot discriminate among pre-mitotic, mitotic and post-mitotic death, and hence are inappropriate to monitor mitotic catastrophe. To address this issue, we generated isogenic human colon carcinoma cell lines that differ in ploidy and p53 status, yet express similar amounts of fluorescent biosensors that allow for the visualization of chromatin (histone H2B coupled to green fluorescent protein (GFP)) and centrosomes (centrin coupled to the Discosoma striata red fluorescent protein (DsRed)). By combining high-resolution fluorescence videomicroscopy and automated image analysis, we established protocols and settings for the simultaneous assessment of ploidy, mitosis, centrosome number and cell death (which in our model system occurs mainly by apoptosis). Time-lapse videomicroscopy showed that this approach can be used for the high-throughput detection of mitotic catastrophe induced by three mechanistically distinct anti-mitotic agents (dimethylenastron (DIMEN), nocodazole (NDZ) and paclitaxel (PTX)), and – in this context – revealed an important role of p53 in the control of centrosome number.  相似文献   

5.
Vesicular stomatitis virus (VSV) infects and kills a wide range of cell types; however, the mechanisms involved in VSV‐mediated cell death are not fully understood. Here we show that VSV infection interferes with mitotic progression, resulting in cell death. This effect requires the interaction of VSV matrix (M) protein with the Rae1–Nup98 complex in mitosis, which is associated with a subset of ribonucleoproteins (RNPs). VSV displaced Rae1 from spindle poles, caused spindle abnormalities and triggered substantial cell death during metaphase. These effects were attenuated in cells infected with VSV expressing a mutant M protein that does not bind efficiently to the Rae1–Nup98–RNP complex. In cells that progressed to late mitosis, M protein prevented proper nuclear formation and chromatin decondensation. VSV is an oncolytic (anti‐tumour) agent as it preferentially replicates and kills tumour cells. As tumour cells have a high mitotic index, VSV‐mediated mitotic cell death probably contributes to its oncolytic activity.  相似文献   

6.
Mitotic catastrophe occurs as a result of the uncoupling of the onset of mitosis from the completion of DNA replication, but precisely how the ensuing lethality is regulated or what signals are involved is largely unknown. We demonstrate here the essential role of the ATM/ATR-p53 pathway in mitotic catastrophe from premature mitosis. Chk1 deficiency resulted in a premature onset of mitosis because of abnormal activation of cyclin B-Cdc2 and led to the activation of caspases 3 and 9 triggered by cytoplasmic release of cytochrome c. This deficiency was associated with foci formation by the phosphorylated histone, H2AX (gammaH2AX), specifically at S phase. Ectopic expression of Cdc2AF, a mutant that cannot be phosphorylated at inhibitory sites, also induced premature mitosis and foci formation by gammaH2AX at S phase in both embryonic stem cells and HCT116 cells. Depletion of ATM and ATR protected against cell death from premature mitosis. p53-deficient cells were highly resistant to lethality from premature mitosis as well. Our results therefore suggest that ATM/ATR-p53 is required for mitotic catastrophe that eliminates cells escaping Chk1-dependent mitotic regulation. Loss of this function might be important in mammalian tumorigenesis.  相似文献   

7.

Objectives

Our previous in vitro study showed that 5‐(3, 4, 5‐trimethoxybenzoyl)‐4‐methyl‐2‐(p‐tolyl) imidazol (BZML) is a novel colchicine binding site inhibitor with potent anti‐cancer activity against apoptosis resistance in A549/Taxol cells through mitotic catastrophe (MC). However, the mechanisms underlying apoptosis resistance in A549/Taxol cells remain unknown. To clarify these mechanisms, in the present study, we investigated the molecular mechanisms of apoptosis and autophagy, which are closely associated with MC in BZML‐treated A549 and A549/Taxol cells.

Methods

Xenograft NSCLC models induced by A549 and A549/Taxol cells were used to evaluate the efficacy of BZML in vivo. The activation of the mitochondrial apoptotic pathway was assessed using JC‐1 staining, Annexin V‐FITC/PI double‐staining, a caspase‐9 fluorescence metric assay kit and western blot. The different functional forms of autophagy were distinguished by determining the impact of autophagy inhibition on drug sensitivity.

Results

Our data showed that BZML also exhibited desirable anti‐cancer activity against drug‐resistant NSCLC in vivo. Moreover, BZML caused ROS generation and MMP loss followed by the release of cytochrome c from mitochondria to cytosol in both A549 and A549/Taxol cells. However, the ROS‐mediated apoptotic pathway involving the mitochondria that is induced by BZML was only fully activated in A549 cells but not in A549/Taxol cells. Importantly, we found that autophagy acted as a non‐protective type of autophagy during BZML‐induced apoptosis in A549 cells, whereas it acted as a type of cytoprotective autophagy against BZML‐induced MC in A549/Taxol cells.

Conclusions

Our data suggest that the anti‐apoptosis property of A549/Taxol cells originates from a defect in activation of the mitochondrial apoptotic pathway, and autophagy inhibitors can potentiate BZML‐induced MC to overcome resistance to mitochondrial apoptosis.
  相似文献   

8.
Besides the well‐understood DNA damage response via establishment of G2 checkpoint arrest, novel studies focus on the recovery from arrest by checkpoint override to monitor cell cycle re‐entry. The aim of this study was to investigate the role of Chk1 in the recovery from G2 checkpoint arrest in HCT116 (human colorectal cancer) wt, p53–/– and p21–/– cell lines following H2O2 treatment. Firstly, DNA damage caused G2 checkpoint activation via Chk1. Secondly, overriding G2 checkpoint led to (i) mitotic slippage, cell cycle re‐entry in G1 and subsequent G1 arrest associated with senescence or (ii) premature mitotic entry in the absence of p53/p21WAF1 causing mitotic catastrophe. We revealed subtle differences in the initial Chk1‐involved G2 arrest with respect to p53/p21WAF1: absence of either protein led to late G2 arrest instead of the classic G2 arrest during checkpoint initiation, and this impacted the release back into the cell cycle. Thus, G2 arrest correlated with downstream senescence, but late G2 arrest led to mitotic catastrophe, although both cell cycle re‐entries were linked to upstream Chk1 signalling. Chk1 knockdown deciphered that Chk1 defines long‐term DNA damage responses causing cell cycle re‐entry. We propose that recovery from oxidative DNA damage‐induced G2 arrest requires Chk1. It works as cutting edge and navigates cells to senescence or mitotic catastrophe. The decision, however, seems to depend on p53/p21WAF1. The general relevance of Chk1 as an important determinant of recovery from G2 checkpoint arrest was verified in HT29 colorectal cancer cells.  相似文献   

9.
The occurrence of introns in nuclear precursor RNAs (pre-mRNAs) is widespread in eukaryotes, and the splicing process that removes them is basically the same in yeasts as it is in higher eukaryotes. Splicing takes place in a very large, multi-component complex, the spliceosome, and biochemical studies have been complicated by the large number of splicing factors involved. This review describes how genetic approaches used to study RNA splicing inSaccharomyces cerevisiae have complemented the biochemical studies and led to rapid advances in the field.  相似文献   

10.
Bladder cancer is a common cancer with particularly high recurrence after transurethral resection. Despite improvements in neoadjuvant chemotherapy, the outcome of patients with advanced bladder cancer has changed very little. In this study, the anti‐tumour activities of a novel Polo‐like kinase 1 (PLK1) inhibitor (RO3280) was evaluated in vitro and in vivo in the bladder carcinoma cell lines 5637 and T24. MTT assays, colony‐formation assays, flow cytometry, cell morphological analysis and trypan blue exclusion assays were used to examine the proliferation, cell cycle distribution and apoptosis of bladder carcinoma cells with or without RO3280 treatment. Moreover, real‐time RT‐PCR and Western blotting were used to detect the expressions of genes that are related to these cellular processes. Our results showed that RO3280 inhibited cell growth and cell cycle progression, increased Wee1 expression and cell division cycle protein 2 phosphorylation. In addition, RO3280 induced mitotic catastrophe and apoptosis, increased cleaved PARP (poly ADP‐ribose polymerase) and caspase‐3, and decreased BubR1 expression. The in vivo assay revealed that RO3280 retarded bladder cancer xenograft growth in a nude mouse model. Although further laboratory and pre‐clinical investigations are needed to corroborate these data, our demonstration of bladder cancer growth inhibition and dissemination using a pharmacological inhibitor of PLK1 provides new opportunities for future therapeutic intervention.  相似文献   

11.
NIPP1 is a regulatory subunit of a species of protein phosphatase-1 (PP1) that co-localizes with splicing factors in nuclear speckles. We report that the N-terminal third of NIPP1 largely consists of a Forkhead-associated (FHA) protein interaction domain, a known phosphopeptide interaction module. A yeast two-hybrid screening revealed an interaction between this domain and a human homolog (CDC5L) of the fission yeast protein cdc5, which is required for G(2)/M progression and pre-mRNA splicing. CDC5L and NIPP1 co-localized in nuclear speckles in COS-1 cells. Furthermore, an interaction between CDC5L, NIPP1, and PP1 in rat liver nuclear extracts could be demonstrated by co-immunoprecipitation and/or co-purification experiments. The binding of the FHA domain of NIPP1 to CDC5L was dependent on the phosphorylation of CDC5L, e.g. by cyclin E-Cdk2. When expressed in COS-1 or HeLa cells, the FHA domain of NIPP1 did not affect the number of cells in the G(2)/M transition. However, the FHA domain blocked beta-globin pre-mRNA splicing in nuclear extracts. A mutation in the FHA domain that abolished its interaction with CDC5L also canceled its anti-splicing effects. We suggest that NIPP1 either targets CDC5L or an associated protein for dephosphorylation by PP1 or serves as an anchor for both PP1 and CDC5L.  相似文献   

12.
DNA damaging agents, including those used in the clinic, activate cell cycle checkpoints, which blocks entry into mitosis. Given that checkpoint override results in cell death via mitotic catastrophe, inhibitors of the DNA damage checkpoint are actively being pursued as chemosensitization agents. Here we explored the effects of gemcitabine in combination with Chk1 inhibitors in a panel of pancreatic cancer cell lines and found variable abilities to override the S phase checkpoint. In cells that were able to enter mitosis, the chromatin was extensively fragmented, as assessed by metaphase spreads and Comet assay. Notably, electron microscopy and high-resolution light microscopy showed that the kinetochores and centromeres appeared to be detached from the chromatin mass, in a manner reminiscent of mitosis with unreplicated genomes (MUGs). Cell lines that were unable to override the S phase checkpoint were able to override a G2 arrest induced by the alkylator MMS or the topoisomerase II inhibitors doxorubicin or etoposide. Interestingly, checkpoint override from the topoisomerase II inhibitors generated fragmented kinetochores (MUGs) due to unreplicated centromeres. Our studies show that kinetochore and centromere fragmentation is a defining feature of checkpoint override and suggests that loss of cell viability is due in part to acentric genomes. Furthermore, given the greater efficacy of forcing cells into premature mitosis from topoisomerase II-mediated arrest as compared with gemcitabine-mediated arrest, topoisomerase II inhibitors maybe more suitable when used in combination with checkpoint inhibitors.  相似文献   

13.
We show that the chromatin in mitotic chromosomes can be drastically overcompacted or unfolded by temporary shifts in ion concentrations. By locally 'microspraying' reactants from micron-size pipettes, while simultaneously monitoring the size of and tension in single chromosomes, we are able to quantitatively study the dynamics of these reactions. The tension in a chromosome is monitored through observation and calibration of bending of the glass pipettes used to manipulate the chromosomes. For concentrations > 500 mM of NaCl and > 200 mM of MgCl2, we find that the initially applied tensions of approximately 500 pN relax to zero and that mitotic chromatin temporarily disperses in agreement with previous work (Maniotis et al. [1997] J. Cell. Biochem. 65:114-130). This unfolding occurs in about 1 s, and is reversible once the charge density is returned to physiological levels, if the exposure is not longer than approximately 1 min. Low concentrations of NaCl (< 30 mM) also induces a decrease in tension and increase in size. We observe this swelling to be isotropic in experiments on chromosomes under zero tension, a behavior inconsistent with the existence of a well-defined central chromosome 'scaffold'. By contrast 10 mM of divalent cations (MgCl2 and CaCl2) induces an extremely rapid and reversible increase in tension and a reduction in the size of mitotic chromosomes. Hexaminecobalt trichloride (trivalent cation) has the same effect as MgCl2 and CaCl2, except the magnitude of force increase and size change are much larger. Hexaminecobalt trichloride reduces mitotic chromosomes to 65% of their original volume, indicating that at least 1/3 of their apparent volume is aqueous solution. These results indicate that chromatin inside mitotic chromatids has a large amount of conformational freedom allowing dynamic unfolding and refolding and that charge interactions play a central role in maintaining mitotic chromosome structure.  相似文献   

14.
In Huh-7 hepatoma cells, low dose (LD) doxorubicin treatment induces cell death through mitotic catastrophe accompanying the formation of large cells with multiple micronuclei, whereas high dose (HD) doxorubicin induces apoptosis. In this study, we investigated the role of Cdc2 and Cdk2 kinase in the regulation of the two modes of cell death induced by doxorubicin. During HD doxorubicin-induced apoptosis, the histone H1-associated activities of Cdc2 and Cdk2 both progressively declined in parallel with reductions in cyclin A and cyclin B protein levels. In contrast, during LD doxorubicin-induced cell death through mitotic catastrophe, the Cdc2 and Cdk2 kinases were transiently activated 1 day post-treatment, with similar changes seen in the protein levels of cyclin A, cyclin B, and Cdc2. Treatment with roscovitine, a specific inhibitor of Cdc2 and Cdk2, significantly blocked LD doxorubicin-induced mitotic catastrophe and cell death, but did not affect HD doxorubicin-induced apoptosis in Huh-7, SNU-398, and SNU-449 hepatoma cell lines. Our results demonstrate that differential regulation of Cdc2 and Cdk2 activity by different doses of doxorubicin may contribute to the induction of two distinct modes of cell death in hepatoma cells, either apoptosis or cell death through mitotic catastrophe.  相似文献   

15.
16.
Spindle poisons elicit various cellular responses following metaphase arrest, but how they relate to long-term clonogenicity has remained unclear. We prepared several HeLa lines in which the canonical apoptosis pathway was attenuated, and compared their acute responses to paclitaxel, as well as long-term fate, with the parental line. Three-nanomolar paclitaxel induced brief metaphase arrest (<5 h) often followed by aberrant mitosis, and about 90% of the cells of each line had lost their clonogenicity after 48 h of the treatment. A combination of the same concentration of paclitaxel with the kinesin-5 inhibitor, S-trityl-L-cysteine (STLC), at 1 µM led to much longer arrest (~20 h) and predominance of subsequent line-specific responses: mitochondrial outer membrane permeabilization (MOMP) in the apoptosis-prone line, or mitotic slippage without obvious MOMP in the apoptosis-reluctant lines. In spite of this, combination with STLC did not lead to a marked difference in clonogenicity between the apoptosis-prone and -reluctant lines, and intriguingly resulted in slightly better clonogenicity than that of cells treated with 3 nM paclitaxel alone. This indicates that changes in the short-term response within 3 possible scenarios — acute MOMP, mitotic slippage or aberrant mitosis ― has only a weak impact on clonogenicity. Our results suggest that once cells have committed to slippage or aberrant mitosis they eventually undergo proliferative death irrespective of canonical apoptosis or p53 function. Consistent with this, cells with irregular DNA contents originating from mitotic slippage or aberrant mitosis were mostly eliminated from the population within several rounds of division after the drug treatment.  相似文献   

17.
Hepatocellular carcinoma (HCC) is a common primary cancer associated with high incidences of genetic variations including chromosome instability. Moreover, it has been demonstrated that hepatitis C virus (HCV) is one of the major causes of HCC. However, no previous work has assessed whether HCV proteins are associated with the induction of chromosome instability. Here, we found that liver cell lines constitutively expressing full-length or truncated versions of the HCV genome show a high incidence of chromosome instability. In particular, the overexpression of HCV NS5A protein in cultured liver cells was found to promote chromosome instability and aneuploidy. Further experiments showed that NS5A-induced chromosome instability is associated with aberrant mitotic regulations, such as, an unscheduled delay in mitotic exit and other mitotic impairments (e.g. multi-polar spindles). Thus, our results indicate that HCV NS5A protein may be directly involved in the induction of chromosome instability via mitotic cell cycle dysregulation, and provide novel insights into the molecular mechanisms of HCV-associated hepatocarcinogenesis.  相似文献   

18.
Kinesin-14 motor proteins play a variety of roles during metaphase and anaphase. However, it is not known whether members of this family of motors also participate in the dramatic changes in mitotic spindle organization during the transition from telophase to cytokinesis. We have identified the minus-end-directed motor, KIFC3, as an important contributor to central bridge morphology at this stage. KIFC3’s unique motor-dependent localization at the central bridge allows it to congress microtubules, promoting efficient progress through cytokinesis. Conversely, when KIFC3 function is perturbed, abscission is delayed, and the central bridge is both widened and extended. Examination of KIFC3 on growing microtubules in interphase indicates that it caps microtubules released from the centrosome, both in the region of the centrosome and in the cell periphery. In line with other kinesin-14 family members, KIFC3 may guide free microtubules to their destination at the bridge and/or may slide and crosslink central bridge microtubules in order to stage the cells for abscission.  相似文献   

19.
The error‐free DNA damage tolerance (DDT) pathway is crucial for replication completion and genome integrity. Mechanistically, this process is driven by a switch of templates accompanied by sister chromatid junction (SCJ) formation. Here, we asked if DDT intermediate processing is temporarily regulated, and what impact such regulation may have on genome stability. We find that persistent DDT recombination intermediates are largely resolved before anaphase through a G2/M damage checkpoint‐independent, but Cdk1/Cdc5‐dependent pathway that proceeds via a previously described Mus81‐Mms4‐activating phosphorylation. The Sgs1‐Top3‐ and Mus81‐Mms4‐dependent resolution pathways occupy different temporal windows in relation to replication, with the Mus81‐Mms4 pathway being restricted to late G2/M. Premature activation of the Cdk1/Cdc5/Mus81 pathway, achieved here with phosphomimetic Mms4 variants as well as in S‐phase checkpoint‐deficient genetic backgrounds, induces crossover‐associated chromosome translocations and precocious processing of damage‐bypass SCJ intermediates. Taken together, our results underscore the importance of uncoupling error‐free versus erroneous recombination intermediate processing pathways during replication, and establish a new paradigm for the role of the DNA damage response in regulating genome integrity by controlling crossover timing.  相似文献   

20.
《Molecular cell》2022,82(16):2967-2981.e6
  1. Download : Download high-res image (173KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号