首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hyperpolarization-activated cyclic nucleotide-modulated (HCN) cation channels are opened by membrane hyperpolarization, while their activation is modulated by the binding of cyclic adenosine monophosphate (cAMP) in the cytoplasm. Here we investigate the molecular basis of cAMP channel modulation by performing molecular dynamics simulations of a segment comprising the C-linker and the cyclic nucleotide binding domain (CNBD) in the presence and absence of cAMP, based on the available crystal structure of HCN2 from mouse. In presence of cAMP, the protein undergoes an oscillation of the quaternary structure on the order of 10 ns, not observed in the apoprotein. In contrast, the absence of ligand causes conformational rearrangements within the CNBDs, driving these domains to a more flexible state, similar to that described in CNBDs of other proteins. This increased flexibility causes a rather disordered movement of the CNBDs, resulting in an inhibitory effect on the channel. We propose that the cAMP-triggered large-scale oscillation plays an important role for the channel's function, being coupled to a motion of the C-linker which, in turn, modulates the gating of the channel.  相似文献   

2.
Cyclic nucleotide-sensitive ion channels are molecular pores that open in response to cAMP or cGMP, which are universal second messengers. Binding of a cyclic nucleotide to the carboxyterminal cyclic nucleotide binding domain (CNBD) of these channels is thought to cause a conformational change that promotes channel opening. The C-linker domain, which connects the channel pore to this CNBD, plays an important role in coupling ligand binding to channel opening. Current structural insight into this mechanism mainly derives from X-ray crystal structures of the C-linker/CNBD from hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels. However, these structures reveal little to no conformational changes upon comparison of the ligand-bound and unbound form. In this study, we take advantage of a recently identified prokaryote ion channel, SthK, which has functional properties that strongly resemble cyclic nucleotide-gated (CNG) channels and is activated by cAMP, but not by cGMP. We determined X-ray crystal structures of the C-linker/CNBD of SthK in the presence of cAMP or cGMP. We observe that the structure in complex with cGMP, which is an antagonist, is similar to previously determined HCN channel structures. In contrast, the structure in complex with cAMP, which is an agonist, is in a more open conformation. We observe that the CNBD makes an outward swinging movement, which is accompanied by an opening of the C-linker. This conformation mirrors the open gate structures of the Kv1.2 channel or MthK channel, which suggests that the cAMP-bound C-linker/CNBD from SthK represents an activated conformation. These results provide a structural framework for better understanding cyclic nucleotide modulation of ion channels, including HCN and CNG channels.  相似文献   

3.
Here we describe the initial functional characterization of a cyclic nucleotide regulated ion channel from the bacterium Mesorhizobium loti and present two structures of its cyclic nucleotide binding domain, with and without cAMP. The domains are organized as dimers with the interface formed by the linker regions that connect the nucleotide binding pocket to the pore domain. Together, structural and functional data suggest the domains form two dimers on the cytoplasmic face of the channel. We propose a model for gating in which ligand binding alters the structural relationship within a dimer, directly affecting the position of the adjacent transmembrane helices.  相似文献   

4.
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are voltage-gated tetrameric cation channels that generate electrical rhythmicity in neurons and cardiomyocytes. Activation can be enhanced by the binding of adenosine-3′,5′-cyclic monophosphate (cAMP) to an intracellular cyclic nucleotide binding domain. Based on previously determined rate constants for a complex Markovian model describing the gating of homotetrameric HCN2 channels, we analyzed probability fluxes within this model, including unidirectional probability fluxes and the probability flux along transition paths. The time-dependent probability fluxes quantify the contributions of all 13 transitions of the model to channel activation. The binding of the first, third and fourth ligand evoked robust channel opening whereas the binding of the second ligand obstructed channel opening similar to the empty channel. Analysis of the net probability fluxes in terms of the transition path theory revealed pronounced hysteresis for channel activation and deactivation. These results provide quantitative insight into the complex interaction of the four structurally equal subunits, leading to non-equality in their function.  相似文献   

5.
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels regulate the spontaneous firing activity and electrical excitability of many cardiac and neuronal cells. The modulation of HCN channel opening by the direct binding of cAMP underlies many physiological processes such as the autonomic regulation of the heart rate. Here we use a combination of X-ray crystallography and electrophysiology to study the allosteric mechanism for cAMP modulation of HCN channels. SpIH is an invertebrate HCN channel that is activated fully by cAMP, but only partially by cGMP. We exploited the partial agonist action of cGMP on SpIH to reveal the molecular mechanism for cGMP specificity of many cyclic nucleotide-regulated enzymes. Our results also elaborate a mechanism for the allosteric conformational change in the cyclic nucleotide-binding domain and a mechanism for partial agonist action. These mechanisms will likely extend to other cyclic nucleotide-regulated channels and enzymes as well.  相似文献   

6.
Cyclic nucleotide binding domain (CNBD) is a ubiquitous domain of effector proteins involved in signalling cascades of prokaryota and eukaryota. CNBD activation by cyclic nucleotide monophosphate (cNMP) is studied well in the case of several proteins. However, this knowledge is hardly applicable to cNMP-modulated cation channels. Despite the availability of CNBD crystal structures of bacterial cyclic nucleotide-gated (CNG) and mammalian hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels in presence and absence of the cNMP, the full understanding of CNBD conformational changes during activation is lacking. Here, we describe a novel CNBD dimerization interface found in crystal structures of bacterial CNG channel MlotiK1 and mammalian cAMP-activated guanine nucleotide-exchange factor Epac2. Molecular dynamics simulations show that the found interface is stable on the studied timescale of 100?ns, in contrast to the dimerization interface, reported previously. Comparisons with cN-bound structures of CNBD show that the dimerization is incompatible with cAMP binding. Thus, the cAMP-dependent monomerization of CNBD may be an alternative mechanism of the cAMP sensing. Based on these findings, we propose a model of the bacterial CNG channel modulation by cAMP.  相似文献   

7.
One major goal of ion channel research is to delineate the molecular events from the detection of the stimuli to the movement of channel gates. For ligand-gated channels, it is challenging to separate ligand binding from channel gating. Here we studied the cyclic adenosine monophosphate (cAMP)-dependent gating in hyperpolarization-activated cAMP-regulated (HCN) channel by simultaneously recording channel opening and ligand binding, using the patch-clamp fluorometry technique with a unique fluorescent cAMP analog that fluoresces strongly in the hydrophobic binding pocket and exerts regulatory effects on HCN channels similar to those imposed by cAMP. Corresponding to voltage-dependent channel activation, we observed a robust, close-to-threefold increase in ligand binding, which was more pronounced at subsaturating ligand concentrations than higher concentrations. This observation supported the cyclic allosteric models and indicated that protein allostery can be implemented through differentiating ligand binding affinities between resting and active states. The kinetics of ligand binding largely matched channel activation. However, during channel deactivation, ligand unbinding was slower than channel closing, suggesting a delayed response to membrane potential by the ligand binding machinery. Our results provide what we believe to be new insights into the cAMP-dependent gating in HCN channel and the interpretation of protein allostery for general ligand-gated channels and receptors.  相似文献   

8.
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetrameric proteins that evoke electrical rhythmicity in specialized neurons and cardiomyocytes. The channels are activated by hyperpolarizing voltage but are also receptors for the intracellular ligand adenosine-3′,5′-cyclic monophosphate (cAMP) that enhances activation but is unable to activate the channels alone. Using fcAMP, a fluorescent derivative of cAMP, we analyzed the effect of ligand binding on HCN2 channels not preactivated by voltage. We identified a conformational flip of the channel as an intermediate state following the ligand binding and quantified it kinetically. Globally fitting the time courses of ligand binding and unbinding revealed modest cooperativity among the subunits in the conformational flip. The intensity of this cooperativity, however, was only moderate compared to channels preactivated by hyperpolarizing voltage. These data provide kinetic information about conformational changes proceeding in nonactivated HCN2 channels when cAMP binds. Moreover, our approach bears potential for analyzing the function of any other membrane receptor if a potent fluorescent ligand is available.  相似文献   

9.
A search of prokaryotic genomes uncovered a gene from Mesorhizobium loti homologous to eukaryotic K(+) channels of the S4 superfamily that also carry a cyclic nucleotide binding domain at the COOH terminus. The gene was cloned from genomic DNA, and the protein, denoted MloK1, was overexpressed in Escherichia coli and purified. Gel filtration analysis revealed a heterogeneous distribution of protein sizes which, upon inclusion of cyclic nucleotide, coalesces into a homogeneous population, eluting at the size expected for a homotetramer. As followed by a radioactive (86)Rb(+) flux assay, the putative channel protein catalyzes ionic flux with a selectivity expected for a K(+) channel. Ion transport is stimulated by cAMP and cGMP at submicromolar concentrations. Since this bacterial homologue does not have the "C-linker" sequence found in all eukaryotic S4-type cyclic nucleotide-modulated ion channels, these results show that this four-helix structure is not a general requirement for transducing the cyclic nucleotide-binding signal to channel opening.  相似文献   

10.
The hyperpolarization-activated cyclic nucleotide-modulated cation (HCN) channels are regulated by both membrane voltage and the binding of cyclic nucleotides to a cytoplasmic, C-terminal cyclic nucleotide-binding domain (CNBD). Here we have addressed the mechanism of this dual regulation for HCN2 channels, which activate with slow kinetics that are strongly accelerated by cAMP, and HCN1 channels, which activate with rapid kinetics that are weakly enhanced by cAMP. Surprisingly, we find that the rate of opening of HCN2 approaches a maximal value with extreme hyperpolarization, indicating the presence of a voltage-independent kinetic step in the opening process that becomes rate limiting at very negative potentials. cAMP binding enhances the rate of this voltage-independent opening step. In contrast, the rate of opening of HCN1 is much greater than that of HCN2 and does not saturate with increasing hyperpolarization over the voltage range examined. Domain-swapping chimeras between HCN1 and HCN2 reveal that the S4-S6 transmembrane region largely determines the limiting rate in opening kinetics at negative voltages. Measurements of HCN2 tail current kinetics also reveal a voltage-independent closing step that becomes rate limiting at positive voltages; the rate of this closing step is decreased by cAMP. These results are consistent with a cyclic allosteric model in which a closed-open transition that is inherently voltage independent is subject to dual allosteric regulation by voltage sensor movement and cAMP binding. This mechanism accounts for several properties of HCN channel gating and has potentially important physiological implications.  相似文献   

11.
The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μm. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels.  相似文献   

12.
A sea urchin sperm flagellar hyperpolarization-activated, cyclic nucleotide-gated (HCN) channel is known (SpHCN1) that is modulated by cAMP. Here, we describe a second flagellar HCN channel (SpHCN2) cloned from the same sea urchin species. SpHCN2 is 638 amino acids compared to 767 for SpHCN1. SpHCN2 has all the domains of an HCN channel, including six transmembrane segments (S1-S6), the ion pore, and the cyclic nucleotide-binding domain. The two full-length proteins are 33% identical and 51% similar. The six transmembrane segments vary from 46-79% identity. S4, which is the voltage sensor, is 79% identical between the two proteins. The ion selectivity filter sequence is GYG in the ion pore of SpHCN1 and GFG in SpHCN2. By sequence, SpHCN2 is 73.5kDa, but it migrates on SDS-PAGE at 64kDa. Western immunoblots show localization to flagella, which is confirmed by immunofluorescence. A neighbor-joining tree shows that SpHCN2 is basal to all known HCN channels. SpHCN2 might be the simplest pacemaker channel yet discovered.  相似文献   

13.
Zhou L  Olivier NB  Yao H  Young EC  Siegelbaum SA 《Neuron》2004,44(5):823-834
Cyclic nucleotides directly enhance the opening of the tetrameric CNG and HCN channels, although the mechanism remains unclear. We examined why HCN and certain CNG subunits form functional homomeric channels, whereas other CNG subunits only function in heteromeric channels. The "defect" in the CNGA4 subunit that prevents its homomeric expression was localized to its C-linker, which connects the transmembrane domain to the binding domain and contains a tripeptide that decreases the efficacy of ligand gating. Remarkably, replacement of the homologous HCN tripeptide with the CNGA4 sequence transformed cAMP into an inverse agonist that inhibits HCN channel opening. Using analytical ultracentrifugation, we identified the structural basis for this gating switch: whereas cAMP normally enhances the assembly of HCN C-terminal domains into a tetrameric gating ring, inclusion of the CNGA4 tripeptide reversed this action so that cAMP now causes gating ring disassembly. Thus, ligand gating depends on the dynamic oligomerization of C-terminal binding domains.  相似文献   

14.
In the visual and olfactory systems, cyclic nucleotide-gated (CNG) ion channels convert stimulus-induced changes in the internal concentrations of cGMP and cAMP into changes in membrane potential. Although it is known that significant activation of these channels requires the binding of three or more molecules of ligand, the detailed molecular mechanism remains obscure. We have probed the structural changes that occur during channel activation by using sulfhydryl-reactive methanethiosulfonate (MTS) reagents and N-ethylmaleimide (NEM). When expressed in Xenopus oocytes, the alpha-subunit of the bovine retinal channel forms homomultimeric channels that are activated by cGMP with a K1/2 of approximately 100 microM. Cyclic AMP, on the other hand, is a very poor activator; a saturating concentration elicits only 1% of the maximum current produced by cGMP. Treatment of excised patches with MTS-ethyltrimethylamine (MTSET) or NEM dramatically potentiated the channel's response to both cyclic nucleotides. After MTSET treatment, the dose-response relation for cGMP was shifted by over two orders of magnitude to lower concentrations. The effect on channel activation by cAMP was even more striking. After modification, the channels were fully activated by cAMP with a K1/2 of approximately 60 microM. This potentiation was abolished by conversion of Cys481 to a nonreactive alanine residue. Potentiation occurred more rapidly in the presence of saturating cGMP, indicating that this region of the channel is more accessible when the channel is open. Cys481 is located in a linker region between the transmembrane and cGMP-binding domains of the channel. These results suggest that this region of the channel undergoes significant movement during the activation process and is critical for coupling ligand binding to pore opening. Potentiation, however, is not mediated by the recently reported interaction between the amino- and carboxy-terminal regions of the alpha-subunit. Deletion of the entire amino-terminal domain had little effect on potentiation by MTSET.  相似文献   

15.
We designed a technique that directly determines binding of cyclic nucleotides to the prokaryotic cyclic nucleotide modulated ion channel MloK1. The ability to purify large quantities of MloK1 facilitated equilibrium binding assays, which avoided the inherent problem of relatively low affinity binding which hindered the use of eukaryotic channels. We found that MloK1 specifically binds cAMP and cGMP with affinity values in the range of those observed for activity assays for eukaryotic channels. Notably, the concentration of ligand that elicited 50% of maximum response in (86)Rb flux assays (K1/2), also referred to as ligand sensitivity, was smaller than the corresponding value obtained from binding assays (Kd) potentially indicating significant channel activity in partially liganded states. To gain further insight into the mechanism of binding and activation of these channels, we mutated several amino acids in the ligand-binding pocket of MloK1, known from electrophysiological studies of homologous eukaryotic channels to affect ligand selectivity and binding efficacy. The S308V MloK1 mutant (a mutation which decreases cGMP selectivity in eukaryotic channels) decreased both the observed cGMP binding affinity and the sensitivity to cGMP relative to the wild-type (WT) channel, leaving those for cAMP unchanged. Conversely, the A352D MloK1 mutant (a mutation which increases cGMP selectivity in eukaryotic channels) increased both the affinity and the sensitivity for cGMP relative to the WT channel, again leaving those for cAMP unchanged. Mutations at R307 in MloK1, the most conserved residue in the binding pocket of cyclic nucleotide-binding proteins, were not tolerated as these mutants do not form functional channels. Furthermore, for each mutation, changes in binding affinities were mirrored by equivalent changes in ligand sensitivity. These data, together with the evidence that partially liganded channels open significantly, suggested strong coupling between cyclic nucleotide binding and MloK1 channel opening.  相似文献   

16.
17.
The gating ring of cyclic nucleotide-modulated channels is proposed to be either a two-fold symmetric dimer of dimers or a four-fold symmetric tetramer based on high-resolution structure data of soluble cyclic nucleotide-binding domains and functional data on intact channels. We addressed this controversy by obtaining structural data on an intact, full-length, cyclic nucleotide-modulated potassium channel, MloK1, from Mesorhizobium loti, which also features a putative voltage-sensor. We present here the 3D single-particle structure by transmission electron microscopy and the projection map of membrane-reconstituted 2D crystals of MloK1 in the presence of cAMP. Our data show a four-fold symmetric arrangement of the CNBDs, separated by discrete gaps. A homology model for full-length MloK1 suggests a vertical orientation for the CNBDs. The 2D crystal packing in the membrane-embedded state is compatible with the S1-S4 domains in the vertical "up" state.  相似文献   

18.
Opening of hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels is controlled by membrane hyperpolarization and binding of cyclic nucleotides to the tetrameric cyclic nucleotide-binding domain (CNBD), attached to the C-linker (CL) disk. Confocal patch-clamp fluorometry revealed pronounced cooperativity of ligand binding among protomers. However, by which pathways allosteric signal transmission occurs remained elusive. Here, we investigate how changes in the structural dynamics of the CL-CNBD of mouse HCN2 upon cAMP binding relate to inter- and intrasubunit signal transmission. Applying a rigidity-theory-based approach, we identify two intersubunit and one intrasubunit pathways that differ in allosteric coupling strength between cAMP-binding sites or toward the CL. These predictions agree with results from electrophysiological and patch-clamp fluorometry experiments. Our results map out distinct routes within the CL-CNBD that modulate different cAMP-binding responses in HCN2 channels. They signify that functionally relevant submodules may exist within and across structurally discernable subunits in HCN channels.  相似文献   

19.
Ion channels gated by cyclic nucleotides have crucial roles in neuronal excitability and signal transduction of sensory neurons. Here, we studied ligand binding of a cyclic nucleotide-activated K(+) channel from Mesorhizobium loti and its isolated cyclic nucleotide-binding domain. The channel and the binding domain alone bind cyclic AMP with similar affinity in a non-cooperative manner. The cAMP sensitivities of binding and activation coincide. Thus, each subunit in the tetrameric channel acts independently of the others. The binding and gating properties of the bacterial channel are distinctively different from those of eukaryotic cyclic nucleotide-gated channels.  相似文献   

20.
Scott SP  Shea PW  Dryer SE 《Biochemistry》2007,46(33):9417-9431
Hyperpolarization activated cyclic nucleotide modulated (HCN) ion channel currents are activated by hyperpolarization and modulated in response to changes in cytosolic adenosine 3',5'-cyclic monophosphate (cAMP) concentrations. A cDNA chimera combining the rat HCN2 cyclic nucleotide binding domain and the DNA binding domain of the cAMP receptor protein (CRP) from E. coli and the histidine tag (HCN2/CRP) was expressed and purified. The construct is capable of forming only non-ligand dependent dimers because the C-linker region of the channel is not present in this construct. The construct binds 8-[[2-[(fluoresceinylthioureido) amino] ethyl] thio] adenosine-3',5'-cyclic monophosphate (8-fluo cAMP) with a Kd of 0.299 microM as determined with a monomer binding model. The Ki values of 20 ligands related to cAMP were measured in order to determine the properties necessary for a ligand to bind to the HCN2 binding domain. This is the first report of cAMP and gunaosine 3',5'-cyclic monophosphate (cGMP) affinities to the HCN2 binding domain being equivalent, even though they modulate the channel with a 10-fold difference in K0.5. Furthermore, the array of ligands measured allows the preference rank order for each purine ring position to be determined: position 1, H > NH2 > O; position 2, NH2 > Cl > H > O; position 6, NH2 > Cl > H > O; and position 8, NH2 > Cl > H > O. Finally, the ability of HCN2/CRP to bind cyclic nucleotide pyrimidine rings at concentrations approximately 1.33 times greater than cAMP suggests that ribofuranose is key for binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号