首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Clear cell renal cell carcinoma (ccRCC) is the main subtype of renal cell carcinoma with varied prognosis. We aimed to identify and assess the possible prognostic long noncoding RNA (lncRNA) biomarkers. LncRNAs expression data and corresponding clinical information of 619 ccRCC patients were downloaded from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Differentially expressed genes analysis, univariate Cox regression, the least absolute shrinkage and selection operator Cox regression model were utilized to identify hub lncRNAs. Multivariate Cox regression was used to establish the risk model. Statistical analysis was performed using R 3.5.3. The expression value of five lncRNAs and the risk-score levels were significantly associated with a survival prognosis of ccRCC patients (all P < .001). In the TCGA validation cohort, the area under the curve (AUC) for the integrated nomogram was 0.905 and 0.91 for 3-, 5-year prediction separately. The AUC reached up to 0.757 in an independent ICGC cohort. Besides, the calibration plots also illustrated well curve-fitting between observation values and predictive values. Weighted gene co-expression network analysis and subsequent pathway analysis revealed that the PI3K-Akt-mTOR and hypoxia-inducible factor signaling crosstalk might function as the most essential mechanisms related to the five-lncRNAs signature. Our study suggested that lncRNA AC009654.1, AC092490.2, LINC00524, LINC01234, and LINC01885 were significantly associated with ccRCC prognosis. The prognostic model based on this five lncRNA may predict the overall survival of ccRCC.  相似文献   

2.
Background: The present study investigated the independent prognostic value of glycolysis-related long noncoding (lnc)RNAs in clear cell renal cell carcinoma (ccRCC).Methods: A coexpression analysis of glycolysis-related mRNAs–long noncoding RNAs (lncRNAs) in ccRCC from The Cancer Genome Atlas (TCGA) was carried out. Clinical samples were randomly divided into training and validation sets. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were performed to establish a glycolysis risk model with prognostic value for ccRCC, which was validated in the training and validation sets and in the whole cohort by Kaplan–Meier, univariate and multivariate Cox regression, and receiver operating characteristic (ROC) curve analyses. Principal component analysis (PCA) and functional annotation by gene set enrichment analysis (GSEA) were performed to evaluate the risk model.Results: We identified 297 glycolysis-associated lncRNAs in ccRCC; of these, 7 were found to have prognostic value in ccRCC patients by Kaplan–Meier, univariate and multivariate Cox regression, and ROC curve analyses. The results of the GSEA suggested a close association between the 7-lncRNA signature and glycolysis-related biological processes and pathways.Conclusion: The seven identified glycolysis-related lncRNAs constitute an lncRNA signature with prognostic value for ccRCC and provide potential therapeutic targets for the treatment of ccRCC patients.  相似文献   

3.
BackgroundF-box proteins play important roles in cell cycle and tumorigenesis. However, its prognostic value and molecular function in clear cell renal cell carcinoma (ccRCC) remain unclear. In this study, we established a survival model to evaluate the prognosis of patients with ccRCC using the F-box gene signature and investigated the function of FBXL6 in ccRCC.MethodsComprehensive bioinformatics analyses were used to identify differentially expressed F-box and hub genes associated with ccRCC carcinogenesis. Based on the F-box gene signature, we constructed a risk model and nomogram to predict the overall survival (OS) of patients with ccRCC and assist clinicians in decision-making. Finally, we verified the function and underlying molecular mechanisms of FBXL6 in ccRCC using CCK-8 and EdU assays, flow cytometry, and subcutaneous xenografts.ResultsA risk model based on FBXO39, FBXL6, FBXO1, and FBXL16 was developed. In addition, we drew a nomogram based on the risk score and clinical features to assess the prognosis of patients with ccRCC. Subsequently, we identified FBXL6 as an independent prognostic marker that was highly expressed in ccRCC cell lines. In vivo and in vitro assays revealed that the depletion of FBXL6 inhibited cell proliferation and induced apoptosis. We also demonstrated that SP1 regulated the expression of FBXL6.ConclusionsFBXL6 was first identified as a diagnostic and prognostic marker in patients with ccRCC. Loss of FBXL6 attenuates proliferation and induces apoptosis in ccRCC cells. SP1 was also found to regulate the expression of FBXL6.  相似文献   

4.
Current studies suggest that some microRNAs (miRNAs) are associated with prognosis in clear cell renal cell carcinoma (ccRCC). In this paper, we aimed to identify a miRNAs signature to improve prognostic prediction for ccRCC patients. Using ccRCC RNA-Seq data of The Cancer Genome Atlas (TCGA) database, we identified 177 differentially expressed miRNAs between ccRCC and paracancerous tissue. Then all the ccRCC tumor samples were divided into training set and validation set randomly. Three-miRNA signature including miR130b, miR-18a, and miR-223 were constructed by the least absolute shrinkage and selection operator (LASSO) Cox regression model in training set. According to optimal cut-off value of three-miRNA signature risk score, all the patients could be classified into high-risk group and low-risk group significantly. Survival of patients was significantly different between two groups (hazard ratio, 5.58, 95% confidence interval, 3.17-9.80; P < 0.0001), and three-miRNA signature performed favorably prognostic and predictive accuracy. The results were further validated in the validation set and total set. Multivariate Cox regression analyses and subgroup analyses showed that three-miRNA signature was an independent prognostic factor. Two nomograms that integrated three-miRNA signature and three clinicopathological risk factors were constructed to predict overall survival and disease-free survival after surgery for ccRCC patients. Functional enrichment analysis showed the possible roles of three-miRNA signature in some cancer-associated biological processes and pathways. In conclusion, we developed a novel three-miRNA signature that performed reliable prognostic for patient survival with ccRCC, it might facilitate ccRCC patients counseling and individualize management.  相似文献   

5.
Renal clear cell carcinoma (ccRCC) is the most common type of renal cell carcinoma, which has strong immunogenicity. A comprehensive study of the role of immune-related genes (IRGs) in ccRCC is of great significance in finding ccRCC treatment targets and improving patient prognosis. In this study, we comprehensively analyzed the expression of IRGs in ccRCC based on The Cancer Genome Atlas datasets. The mechanism of differentially expressed IRGs in ccRCC was analyzed by bioinformatics. In addition, Cox regression analysis was used to screen prognostic related IRGs from differentially expressed IRGs. We also identified a four IRGs signature consisting of four IRGs (CXCL2, SEMA3G, PDGFD, and UCN) through lasso regression and multivariate Cox regression analysis. Further analysis results showed that the four IRGs signature could effectively predict the prognosis of patients with ccRCC, and its predictive power is independent of other clinical factors. In addition, the correlation analysis of immune cell infiltration showed that this four IRGs signature could effectively reflect the level of immune cell infiltration of ccRCC. We also found that the expression of immune checkpoint genes CTLA-4, LAG3, and PD-1 in the high-risk group was higher than that in the low-risk group. Our research revealed the role of IRGs in ccRCC, and developed a four IRGs signature that could be used to evaluate the prognosis of patients with ccRCC, which will help to develop personalized treatment strategies for patients with ccRCC and improve their prognosis. In addition, these four IRGs may be effective therapeutic targets for ccRCC.  相似文献   

6.
Increasing evidence has verified that small nucleolar RNAs (snoRNAs) play significant roles in tumorigenesis and exhibit prognostic value in clinical practice. In the study, we analysed the expression profile and clinical relevance of snoRNAs from TCGA database including 530 ccRCC (clear cell renal cell carcinoma) and 72 control cases. By using univariate and multivariate Cox analysis, we established a six‐snoRNA signature and divided patients into high‐risk or low‐risk groups. We found patients in high‐risk group had significantly shorter overall survival and recurrence‐free survival than those in low‐risk group in test series, validation series and entire series by Kaplan‐Meier analysis. We also confirmed this signature had a great accuracy and specificity in 64 clinical tissue cases and 50 serum samples. Then, depending on receiver operating characteristic curve analysis we found the six‐snoRNA signature was an superior indicator better than conventional clinical factors (AUC = 0.732). Furthermore, combining the signature with TNM stage or Fuhrman grade were the optimal indicators (AUC = 0.792; AUC = 0.800) and processed the clinical applied value for ccRCC. Finally, we found the SNORA70B and its hose gene USP34 might directly regulate Wnt signalling pathway to promote tumorigenesis in ccRCC. In general, our study established a six‐snoRNA signature as an independent and superior diagnosis and prognosis indicator for ccRCC.  相似文献   

7.
Autophagy-related long non-coding RNAs (lncRNAs) disorders are related to the occurrence and development of breast cancer. The purpose of this study is to explore whether autophagy-related lncRNA can predict the prognosis of breast cancer patients. The autophagy-related lncRNAs prognostic signature was constructed by Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression. We identified five autophagy-related lncRNAs (MAPT-AS1, LINC01871, AL122010.1, AC090912.1, AC061992.1) associated with prognostic value, and they were used to construct an autophagy-related lncRNA prognostic signature (ALPS) model. ALPS model offered an independent prognostic value (HR = 1.664, 1.381-2.006), where this risk score of the model was significantly related to the TNM stage, ER, PR and HER2 status in breast cancer patients. Nomogram could be utilized to predict survival for patients with breast cancer. Principal component analysis and Sankey Diagram results indicated that the distribution of five lncRNAs from the ALPS model tends to be low-risk. Gene set enrichment analysis showed that the high-risk group was enriched in autophagy and cancer-related pathways, and the low-risk group was enriched in regulatory immune-related pathways. These results indicated that the ALPS model composed of five autophagy-related lncRNAs could predict the prognosis of breast cancer patients.  相似文献   

8.
Nowadays, gene expression profiling has been widely used in screening out prognostic biomarkers in numerous kinds of carcinoma. Our studies attempt to construct a clinical nomogram which combines risk gene signature and clinical features for individual recurrent risk assessment and offer personalized managements for clear cell renal cell carcinoma. A total of 580 differentially expressed genes (DEGs) were identified via microarray. Functional analysis revealed that DEGs are of fundamental importance in ccRCC progression and metastasis. In our study, 338 ccRCC patients were retrospectively analysed and a risk gene signature which composed of 5 genes was obtained from a LASSO Cox regression model. Further analysis revealed that identified risk gene signature could usefully distinguish the patients with poor prognosis in training cohort (hazard ratio [HR] = 3.554, 95% confidence interval [CI] 2.261‐7.472, P < .0001, n = 107). Moreover, the prognostic value of this gene‐signature was independent of clinical features (P = .002). The efficacy of risk gene signature was verified in both internal and external cohorts. The area under receiver operating characteristic curve of this signature was 0.770, 0.765 and 0.774 in the training, testing and external validation cohorts, respectively. Finally, a nomogram was developed for clinicians and did well in the calibration plots. This nomogram based on risk gene signature and clinical features might provide a practical way for recurrence prediction and facilitating personalized managements of ccRCC patients after surgery.  相似文献   

9.
Deregulated long noncoding RNAs (lncRNA) have been critically implicated in tumorigenesis and serve as novel diagnostic and prognostic biomarkers. Here we sought to develop a prognostic lncRNA signature in patients with head and neck squamous cell carcinoma (HNSCC). Original RNA-seq data of 499 HNSCC samples were retrieved from The Cancer Genome Atlas database, which was randomly divided into training and testing set. Univariate Cox regression survival analysis, robust likelihood-based survival model and random sampling iterations were applied to identify prognostic lncRNA candidates in the training cohort. A prognostic risk score was developed based on the Cox coefficient of four individual lncRNA imputed as follows: (0.14546 × expression level of RP11-366H4.1) + (0.27106 × expression level of LINC01123) + (0.54316 × expression level of RP11-110I1.14) + (−0.48794 × expression level of CTD-2506J14.1). Kaplan-Meier analysis revealed that patients with high-risk score had significantly reduced overall survival as compared with those with low-risk score when patients in training, testing, and validation cohorts were stratified into high- or low-risk subgroups. Multivariate survival analysis further revealed that this 4-lncRNA signature was a novel and important prognostic factor independent of multiple clinicopathological parameters. Importantly, ROC analyses indicated that predictive accuracy and sensitivity of this 4-lncRNA signature outperformed those previously well-established prognostic factors. Noticeably, prognostic score based on quantification of these 4-lncRNA via qRT-PCR in another independent HNSCC cohort robustly stratified patients into subgroups with high or low survival. Taken together, we developed a robust 4-lncRNA prognostic signature for HNSCC that might provide a novel powerful prognostic biomarker for precision oncology.  相似文献   

10.
11.
Renal cell carcinoma (RCC) metastasis portends a poor prognosis and cannot be reliably predicted. Early determination of the metastatic potential of RCC may help guide proper treatment. We analyzed microRNA (miRNA) expression in clear cell RCC (ccRCC) for the purpose of developing a miRNA expression signature to determine the risk of metastasis and prognosis. We used the microarray technology to profile miRNA expression of 78 benign kidney and ccRCC samples. Using 28 localized and metastatic ccRCC specimens as the training cohort and the univariate logistic regression and risk score methods, we developed a miRNA signature model in which the expression levels of miR-10b, miR-139-5p, miR-130b and miR-199b-5p were used to determine the status of ccRCC metastasis. We validated the signature in an independent 40-sample testing cohort of different stages of primary ccRCCs using the microarray data. Within the testing cohort patients who had at least 5 years follow-up if no metastasis developed, the signature showed a high sensitivity and specificity. The risk status was proven to be associated with the cancer-specific survival. Using the most stably expressed miRNA among benign and tumorous kidney tissue as the internal reference for normalization, we successfully converted his signature to be a quantitative PCR (qPCR)-based assay, which showed the same high sensitivity and specificity. The 4-miRNA is associated with ccRCC metastasis and prognosis. The signature is ready for and will benefit from further large clinical cohort validation and has the potential for clinical application.  相似文献   

12.
The relationship between metabolism reprogramming and neuroblastoma (NB) is largely unknown. In this study, one RNA‐sequence data set (n = 153) was used as discovery cohort and two microarray data sets (n = 498 and n = 223) were used as validation cohorts. Differentially expressed metabolic genes were identified by comparing stage 4s and stage 4 NBs. Twelve metabolic genes were selected by LASSO regression analysis and integrated into the prognostic signature. The metabolic gene signature successfully stratifies NB patients into two risk groups and performs well in predicting survival of NB patients. The prognostic value of the metabolic gene signature is also independent with other clinical risk factors. Nine metabolism‐related long non‐coding RNAs (lncRNAs) were also identified and integrated into the metabolism‐related lncRNA signature. The lncRNA signature also performs well in predicting survival of NB patients. These results suggest that the metabolic signatures have the potential to be used for risk stratification of NB. Gene set enrichment analysis (GSEA) reveals that multiple metabolic processes (including oxidative phosphorylation and tricarboxylic acid cycle, both of which are emerging targets for cancer therapy) are enriched in the high‐risk NB group, and no metabolic process is enriched in the low‐risk NB group. This result indicates that metabolism reprogramming is associated with the progression of NB and targeting certain metabolic pathways might be a promising therapy for NB.  相似文献   

13.
14.

Autophagy is a highly conserved lysosomal degradation process essential in tumorigenesis. However, the involvement of autophagy-related long noncoding RNAs (lncRNAs) in low-grade glioma (LGG) remains unclear. In this study, we established an autophagy-related lncRNA prognostic signature for patients with LGG and assess its underlying functions. We used univariate Cox, least absolute shrinkage and selection operator and multivariate Cox regression models to establish an autophagy-related lncRNA prognostic signature. Kaplan–Meier survival analysis, receiver operating characteristic curve, nomogram, C-index, calibration curve and clinical decision-making curve were used to assess the predictive capability of the identified signature. A signature comprising nine autophagy-related lncRNAs (AL136964.1, ARHGEF26-AS1, PCED1B-AS1, AS104072.1, PRKCQ-AS1, LINC00957, AS125616.1, PSMB8-AS1 and AC087741.1) was identified as a prognostic model. Patients with LGG were divided into the high- and low-risk cohorts based on the median model-based risk score. The survival analysis revealed a 10-year survival rate of 9.3% (95% CI 1.91–45.3%) and 13.48% (95% CI 4.52–40.2%) in high-risk patients in the training and validation sets, respectively, and 48.4% (95% CI 24.7–95.0%) and 48.4% (95% CI 28.04–83.4%) in low-risk patients in the training and validation sets, respectively. This finding suggested a relatively low survival in high-risk patients. In addition, the lncRNA signature was independently prognostic and potentially associated with the progression of LGG. Therefore, the 9-autophagy-related-lncRNA signature may play a crucial role in the diagnosis and treatment of LGG, which may offer new avenues for tumour-targeted therapy.

  相似文献   

15.
Long noncoding RNAs (lncRNAs) have the main role in the tumorigenesis of breast cancer. In the present study, lncRNA expression profiling was collected to identify a lncRNA expression signature from the Gene Expression Omnibus database. An eight-lncRNA signature was established to predict the survival of patients with estrogen receptor (ER)-positive breast cancer receiving endocrine therapy. Patients were separated into a low-risk group and a high-risk group based on this signature. Patients in high-risk group have worse survival compared to those in low-risk group using Kaplan–Meier curve analysis with log-rank test. Receiver operating characteristic analysis suggested good diagnostic efficiency of the eight-lncRNA signature. When adjusting the clinical features, including age, grade, lymph node status, and tumor size, this signature was independently associated with the relapse-free survival. The prognostic value of the lncRNA prognostic model was then validated in validation sets. When validated in a cohort of patients treated with neoadjuvant chemotherapy and endocrine therapy, this signature demonstrated good performance as well. Besides, we have built a nomogram that integrated the conventional clinicopathological features and the eight-lncRNA-based signature. To sum up, our results indicated that the eight-lncRNA prognostic model was a reliable tool to group patients at high and low risk of disease relapse. This signature may have possible implication in prognostic evaluations of patients with ER-positive breast cancer receiving endocrine therapy.  相似文献   

16.
Glioblastoma multiforme (GBM) is a devastating brain tumour without effective treatment. Recent studies have shown that autophagy is a promising therapeutic strategy for GBM. Therefore, it is necessary to identify novel biomarkers associated with autophagy in GBM. In this study, we downloaded autophagy-related genes from Human Autophagy Database (HADb) and Gene Set Enrichment Analysis (GSEA) website. Least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analysis were performed to identify genes for constructing a risk signature. A nomogram was developed by integrating the risk signature with clinicopathological factors. Time-dependent receiver operating characteristic (ROC) curve and calibration plot were used to evaluate the efficiency of the prognostic model. Finally, four autophagy-related genes (DIRAS3, LGALS8, MAPK8 and STAM) were identified and were used for constructing a risk signature, which proved to be an independent risk factor for GBM patients. Furthermore, a nomogram was developed based on the risk signature and clinicopathological factors (IDH1 status, age and history of radiotherapy or chemotherapy). ROC curve and calibration plot suggested the nomogram could accurately predict 1-, 3- and 5-year survival rate of GBM patients. For function analysis, the risk signature was associated with apoptosis, necrosis, immunity, inflammation response and MAPK signalling pathway. In conclusion, the risk signature with 4 autophagy-related genes could serve as an independent prognostic factor for GBM patients. Moreover, we developed a nomogram based on the risk signature and clinical traits which was validated to perform better for predicting 1-, 3- and 5-year survival rate of GBM.  相似文献   

17.
Dysregulation of long noncoding RNAs (lncRNAs) has been found in a large number of human cancers, including colon cancer. Therefore, the implementation of potential lncRNAs biomarkers with prognostic prediction value are very much essential. GSE39582 data set was downloaded from database of Gene Expression Omnibus. Re-annotation analysis of lncRNA expression profiles was performed by NetAffx annotation files. Univariate and multivariate Cox proportional analyses helped select prognostic lncRNAs. Algorithm of random survival forest-variable hunting (RSF-VH) together with stepwise multivariate Cox proportional analysis were performed to establish lncRNA signature. The log-rank test was carried out to analyze and compare the Kaplan-Meier survival curves of patients’ overall survival (OS). Receiver operating characteristic (ROC) analysis was used for comparing the survival prediction regarding its specificity and sensitivity based on lncRNA risk score, followed by calculating the values of area under the curve (AUC). The single-sample GSEA (ssGSEA) analysis was used to describe biological functions associated with this signature. Finally, to determine the robustness of this model, we used the validation sets including GSE17536 and The Cancer Genome Atlas data set. After re-annotation analysis of lncRNAs, a total of 14 lncRNA probes were obtained by univariate and multivariate Cox proportional analysis. Then, the RSF-VH algorithm and stepwise multivariate Cox analysis helped to build a five-lncRNA prognostic signature for colon cancer. The patients in group with high risk showed an obviously shorter survival time compared with patients in group with low risk with AUC of 0.75. In addition, the five-lncRNA signature can be used to independently predict the survival of patients with colon cancer. The ssGSEA analysis revealed that pathways such as extracellular matrix-receptor interaction was activated with an increase in risk score. These findings determined the strong power of prognostic prediction value of this five-lncRNA signature for colon cancer.  相似文献   

18.
BackgroundMany studies have demonstrated that autophagy plays a significant role in regulating tumor growth and progression. However, the effect of autophagy-related genes (ARGs) on the prognosis have rarely been analyzed in head and neck squamous cell carcinoma (HNSCC).MethodsWe obtained differentially expressed ARGs from HNSCC mRNA data in The Cancer Genome Atlas (TCGA) database. And then we performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to explore the autophagy-related biological functions. The overall survival (OS)-related and disease specific survival (DSS)-related ARGs were identified by univariate Cox regression analyses. With these genes, we established OS-related and DSS-related risk signature by LASSO regression method, respectively. We validated the reliability of the risk signature with receiver operating characteristic (ROC) analysis, Kaplan-Meier survival curves, clinical correlation analysis, and nomogram. Then we analyzed relationships between risk signature and immune cell infiltration.ResultsWe established the prognostic signatures based on 14 ARGs for OS and 12 ARGs for DSS. The ROC curves, survival analysis, and nomogram validated the predictive accuracy of the models. Clinic correlation analysis showed that the risk group was closely related to Stage, pathological T stage, pathological N stage and human papilloma virus (HPV) subtype. Cox regression demonstrated that the risk score was an independent predictor for the prognosis of HNSCC patients. Furthermore, patients in low-risk score group exhibited higher immunescore and distinct immune cell infiltration than high-risk score group. And we further analysis revealed that the copy number alterations (CNAs) of ARGs-based signature affected the abundance of tumor-infiltrating immune cells.ConclusionIn this study, we identified novel autophagy-related signature for the prediction of OS and DSS in patients with HNSCC. Meanwhile, our study provides a novel sight to understand the role of autophagy and elucidate the important role of autophagy in tumor immune microenvironment (TIME) of HNSCC.  相似文献   

19.
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, and the 5‐year survival rate was only 7.7%. To improve prognosis, a screening biomarker for early diagnosis of pancreatic cancer is in urgent need. Long non‐coding RNA (lncRNA) expression profiles as potential cancer prognostic biomarkers play critical roles in development of tumorigenesis and metastasis of cancer. However, lncRNA signatures in predicting the survival of a patient with PDAC remain unknown. In the current study, we try to identify potential lncRNA biomarkers and their prognostic values in PDAC. LncRNAs expression profiles and corresponding clinical information for 182 cases with PDAC were acquired from The Cancer Genome Atlas (TCGA). A total of 14 470 lncRNA were identified in the cohort, and 175 PDAC patients had clinical variables. We obtained 108 differential expressed lncRNA via R packages. Univariate and multivariate Cox proportional hazards regression, lasso regression was performed to screen the potential prognostic lncRNA. Five lncRNAs have been recognized to significantly correlate with OS. We established a linear prognostic model of five lncRNA (C9orf139, MIR600HG, RP5‐965G21.4, RP11‐436K8.1, and CTC‐327F10.4) and divided patients into high‐ and low‐risk group according to the prognostic index. The five lncRNAs played independent prognostic biomarkers of OS of PDAC patients and the AUC of the ROC curve for the five lncRNAs signatures prediction 5‐year survival was 0.742. In addition, targeted genes of MIR600HG, C9orf139, and CTC‐327F10.4 were explored and functional enrichment was also conducted. These results suggested that this five‐lncRNAs signature could act as potential prognostic biomarkers in the prediction of PDAC patient's survival.  相似文献   

20.
BackgroundClear cell renal cell carcinoma (ccRCC) is the most predominate pathological subtype of renal cell carcinoma, causing a recurrence or metastasis rate as high as 20% to 40% after operation, for which effective prognostic signature is urgently needed.MethodsThe mRNA and miRNA profiles of ccRCC specimens were collected from the Cancer Genome Atlas. MiRNA-pair risk score (miPRS) for each miRNA pair was generated as a signature and validated by univariate and multivariate Cox proportional hazards regression analysis. Functional enrichment was performed, and immune cells infiltration, as well as tumor mutation burden (TMB), and immunophenoscore (IPS) were evaluated between high and low miPRS groups. Target gene-prediction and differentially expressed gene-analysis were performed based on databases of miRDB, miRTarBase, and TargetScan. Multivariate Cox proportional hazards regression analysis was adopted to establish the prognostic model and Kaplan-Meier survival analysis was performed.FindingsA novel 10 miRNA-pair based signature was established. Area under the time-dependent receiver operating curve proved the performance of the signature in the training, validation, and testing cohorts. Higher TMB, as well as the higher CTLA4-negative PD1-negative IPS, were discovered in high miPRS patients. A prognostic model was built based on miPRS (1 year-, 5 year-, 10 year- ROC-AUC=0.92, 0.84, 0.82, respectively).InterpretationThe model based on miPRS is a novel and valid tool for predicting the prognosis of ccRCC.FundingThis study was supported by research grants from the China National Natural Scientific Foundation (81903972, 82002018, and 82170752) and Shanghai Sailing Program (19YF1406700 and 20YF1406000).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号