首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mammals possess two anatomically and functionally distinct olfactory systems. The olfactory epithelium (OE) detects volatile odorants, while the vomeronasal organ (VNO) detects pheromones that elicit innate reproductive and social behavior within a species. In rodent VNO, three multigene families that encode the putative pheromone receptors, V1Rs, V2Rs and V3Rs, have been expressed. We have identified the V1R homologue genes from goat genomic DNA (gV1R genes). Deduced amino acid sequences of gV1R genes show 40-50% and 20-25% identity to those of rat and mouse V1R and V3R genes, respectively, suggesting that the newly isolated goat receptor genes are members of the V1R gene family. One gene (gV1R1 gene) has an open reading frame that encodes a polypeptide of 309 amino acids. It is expressed not only in VNO but also in OE. In situ hybridization analysis revealed that gV1R1 -expressing cells were localized in neuropithelial layers of VNO and OE. These results suggest that the goat may detect pheromone molecules through two distinct olfactory organs.  相似文献   

3.
The vomeronasal organ (VNO) of the mouse has two neuronal compartments expressing distinct families of pheromone receptors, the V1Rs and the V2Rs. We report here that two families of major histocompatibility complex (MHC) class Ib molecules, the M10 and the M1 families, show restricted expression in V2R-expressing neurons. Our data suggest that neurons expressing a given V2R specifically co-express one or a few members of the M10 family. Biochemical and immunocytochemical analysis demonstrates that in VNO sensory dendrites M10s belong to large multi-molecular complexes that include pheromone receptors and beta2-microglobulin (beta2m). In cultured cells, M10s appear to function as escort molecules in transport of V2Rs to the cell surface. Accordingly, beta2m-deficient mice exhibit mislocalization of V2Rs in the VNO and a specific defect in male-male aggressive behavior. The functional characterization of M10 highlights an unexpected role for MHC molecules in pheromone detection by mammalian VNO neurons.  相似文献   

4.
Combinatorial co-expression of pheromone receptors, V2Rs   总被引:1,自引:1,他引:0  
  相似文献   

5.
Wagner S  Gresser AL  Torello AT  Dulac C 《Neuron》2006,50(5):697-709
Pheromone detection by the vomeronasal organ (VNO) is thought to rely on activation of specific receptors from the V1R and V2R gene families, but the central representation of pheromone receptor activation remains poorly understood. We generated transgenic mouse lines in which projections from multiple populations of VNO neurons, each expressing a distinct V1R, are differentially labeled with fluorescent proteins. This approach revealed that inputs from neurons expressing closely related V1Rs intermingle within shared, spatially conserved domains of the accessory olfactory bulb (AOB). Mitral cell-glomerular connectivity was examined by injecting intracellular dyes into AOB mitral cells and monitoring dendritic contacts with genetically labeled glomeruli. We show that individual mitral cells extend dendrites to glomeruli associated with different, but likely closely related, V1Rs. This organization differs from the labeled line of OR signaling in the main olfactory system and suggests that integration of information may already occur at the level of the AOB.  相似文献   

6.
In mammals, the vomeronasal organ (VNO) contains chemosensory receptor cells that bind to pheromones and induce a variety of social and reproductive behaviors. It has been traditionally assumed that the human VNO (Jacobson's organ) is a vestigial structure, although recent studies have shown minor evidence for a structurally intact and possibly functional VNO. The presence and function of the human VNO remains controversial, however, as pheromones and VNO receptors have not been well characterized. In this study we screened a human Bacterial Artificial Chromosome (BAC) library with multiple primer sets designed from human cDNA sequences homologous to mouse VNO receptor genes. Utilizing these BAC sequences in addition to mouse VNO receptor sequences, we screened the High Throughput Genome Sequence (HTGS) database to find additional human putative VNO receptor genes. We report the identification of 56 BACs carrying 34 distinct putative VNO receptor gene sequences, all of which appear to be pseudogenes. Sequence analysis indicates substantial homology to mouse V1R and V2R VNO receptor families. Furthermore, chromosomal localization via FISH analysis and RH mapping reveal that the majority of the BACs are localized to telomeric and centromeric chromosomal localizations and may have arisen through duplication events. These data yield insight into the present state of pheromonal olfaction in humans and into the evolutionary history of human VNO receptors.  相似文献   

7.

Background

Teleost fishes do not have a vomeronasal organ (VNO), and their vomeronasal receptors (V1Rs, V2Rs) are expressed in the main olfactory epithelium (MOE), as are odorant receptors (ORs) and trace amine-associated receptors (TAARs). In this study, to obtain insights into the functional distinction among the four chemosensory receptor families in teleost fishes, their evolutionary patterns were examined in zebrafish, medaka, stickleback, fugu, and spotted green pufferfish.

Methodology/Principal Findings

Phylogenetic analysis revealed that many lineage-specific gene gains and losses occurred in the teleost fish TAARs, whereas only a few gene gains and losses have taken place in the teleost fish vomeronasal receptors. In addition, synonymous and nonsynonymous nucleotide substitution rate ratios (KA/KS) in TAARs tended to be higher than those in ORs and V2Rs.

Conclusions/Significance

Frequent gene gains/losses and high KA/KS in teleost TAARs suggest that receptors in this family are used for detecting some species-specific chemicals such as pheromones. Conversely, conserved repertoires of V1R and V2R families in teleost fishes may imply that receptors in these families perceive common odorants for teleosts, such as amino acids. Teleost ORs showed intermediate evolutionary pattern between TAARs and vomeronasal receptors. Many teleost ORs seem to be used for common odorants, but some ORs may have evolved to recognize lineage-specific odors.  相似文献   

8.
To date, over 100 vomeronasal receptor type 1 (V1R) genes have been identified in rodents. V1R is specifically expressed in the rodent vomeronasal organ (VNO) and is thought to be responsible for pheromone reception. Recently, 21 putatively functional V1R genes were identified in the genome database of the amphibian Xenopus tropicalis. Amphibians are the first vertebrates to possess a VNO. In order to determine at which point during evolution the vertebrate V1R genes began to function in the vomeronasal system, we analyzed the expression of all putatively functional V1R genes in Xenopus olfactory organs. We found that V1R expression was not detected in the VNO but was specifically detected in the main olfactory epithelium (MOE). We also observed that V1R-expressing cells in the MOE coexpressed Gi2, thus suggesting that the V1R-Gi2-mediated signal transduction pathway, which is considered to play an important role in pheromone reception in the rodent VNO, exists in the amphibian MOE. These results suggest that V1R-mediated signal transduction pathway functions in Xenopus main olfactory system.  相似文献   

9.
The vomeronasal organ (VNO) detects pheromones via 2 large families of receptors: vomeronasal receptor 1, associated with the protein Giα2, and vomeronasal receptor 2, associated with Goα. We investigated the distribution of Goα in the developing and adult VNO and adult olfactory bulb of a marsupial, the tammar wallaby. Some cells expressed Goα as early as day 5 postpartum, but by day 30, Goα expressing cells were distributed throughout the receptor epithelium of the VNO. In the adult tammar, Goα appeared to be expressed in sensory neurons whose nuclei were mostly basally located in the vomeronasal receptor epithelium. Goα expressing vomeronasal receptor cells led to all areas of the accessory olfactory bulb (AOB). The lack of regionally restricted projection of the vomeronasal receptor cell type 2 in the tammar was similar to the uniform type, with the crucial difference that the uniform type only shows expression of Giα2 and no expression of Goα. The observed Goα staining pattern suggests that the tammar may have a third accessory olfactory type that could be intermediate to the segregated and uniform types already described.  相似文献   

10.
In most animal species, the vomeronasal organ ensures the individual recognition of conspecifics, a prerequisite for a successful reproduction. The vomeronasal organ expresses several receptors for pheromone detection. Mouse vomeronasal type-2 receptors (V2Rs) are restricted to the basal neurons of this organ and organized in four families. Family-A, B and D (family ABD) V2Rs are expressed monogenically (one receptor per neuron) and coexpress with either Vmn2r1 or Vmn2r2, two members of family-C V2Rs. Thus, basal neurons are characterized by specific combinations of two V2Rs. To investigate this issue, we raised antibodies against all family-C V2Rs and analyzed their expression pattern. We found that six out of seven family-C V2Rs (Vmn2r2-7) largely coexpressed and that none of the anti-Vmn2r2-7 antibodies significantly stained Vmn2r1 positive neurons. Thus, basal neurons are divided into two complementary subsets. The first subset (Vmn2r1-positive) preferentially coexpresses a distinct group of family-ABD V2Rs, whereas the second subset (Vmn2r2-7-positive) coexpresses the remaining group of V2Rs. Phylogenetic reconstruction and the analysis of genetic loci in various species reveal that receptors expressed by this second neuronal subset are recent branches of the V2R tree exclusively present in mouse and rat. Conversely, V2Rs expressed in Vmn2r1 positive neurons, are phylogenetically ancient and found in most vertebrates including rodents. Noticeably, the more recent neuronal subset expresses a type of Major Histocompatibility Complex genes only found in murine species. These results indicate that the expansion of the V2R repertoire in a murine ancestor occurred with the establishment of a new population of vomeronasal neurons in which coexists the polygenic expression of a recent group of family-C V2Rs (Vmn2r2-7) and the monogenic expression of a recent group of family-ABD V2Rs. This evolutionary innovation could provide a molecular rationale for the exquisite ability in individual recognition and mate choice of murine species.  相似文献   

11.
The vomeronasal organ (VNO) is a chemosensory organ specialized in the detection of pheromones in higher vertebrates. In mouse and rat, two gene superfamilies, V1r and V2r vomeronasal receptor genes, are expressed in sensory neurons whose cell bodies are located in, respectively, the apical and basal layers of the VNO epithelium. Here, we report that neurons of the basal layer express another multigene family, termed H2-Mv, representing nonclassical class I genes of the major histocompatibility complex. The nine H2-Mv genes are expressed differentially in subsets of neurons. More than one H2-Mv gene can be expressed in an individual neuron. In situ hybridization with probes for H2-Mv and V2r genes reveals complex and nonrandom combinations of coexpression. While neural expression of Mhc class I molecules is increasingly being appreciated, the H2-Mv family is distinguished by variegated expression across seemingly similar neurons and coexpression with a distinct multigene family encoding neural receptors. Our findings suggest that basal vomeronasal sensory neurons may consist of multiple lineages or compartments, defined by particular combinations of V2r and H2-Mv gene expression.  相似文献   

12.
In rodents, many behavioural responses are triggered by pheromones. These molecules are believed to bind and activate two families of G-protein coupled receptors, namely V1Rs and V2Rs, which are specifically expressed in the chemosensory neurons of the vomeronasal organ. V2Rs are homologous with Group 3 of G-protein-coupled receptors, which includes metabotropic glutamate receptors, calcium-sensing receptors, fish olfactory receptors, and taste receptors for sweet molecules and amino acids. The large extracellular region of these receptors is folded as a dimer and, in this form, binds agonists that in many cases are amino acids. It has recently been reported that V2Rs must be physically associated with specific major histocompatibility complex class Ib molecules (MHC) for their expression in both mouse vomeronasal neurons and heterologous cell lines. Here, we show that in contrast to the other V2Rs, V2R2, an atypical member of this receptor family, can be successfully and abundantly expressed by insect cells without the requirement of escort molecules like MHC. Moreover, the extracellular binding domain of V2R2, secreted as a soluble product, forms dimers via cysteine-mediated sulphur bridges. Overall, the data presented in this paper confirm that V2R2 diverges from the other members of the V2R family and suggest a different role for this receptor in pheromonal communication.  相似文献   

13.
Pheromones are detected by the vomeronasal organ using members of two receptor superfamilies: the V1Rs and V2Rs. New studies show that MHC class I molecules are co-expressed in particular combinations with specific V2Rs in the vomeronasal organ. The role of these MHC molecules is unknown, but they may be of considerable biological significance.  相似文献   

14.
The vomeronasal organ (VNO) is responsible in terrestrial vertebrates for the sensory perception of some pheromones, chemicals that elicit characteristic behaviors among individuals of the same species. Two multigene families (V1R, V2R) that encode proteins with seven putative transmembrane domains that are expressed selectively in different neuron subsets of the VNO have been described in rodents. Pheromone-induced behaviors and a functional VNO have been described in a number of mammals, but this sensory organ seems absent in adult catarrhines and apes, including humans. Until now, only pseudogenes have been isolated in humans, except one putative V1R (hV1RL1) sequence expressed in the main olfactory epithelium. We sought to isolate V1R-like genes in a New World monkey species, the marmoset Callithrix jacchus, that possesses an intact VNO and for which pheromone-induced behavior has been well documented. Using library screening approaches, we have identified five different sequences that exhibit characteristic features of V1R sequences, but that are non-functional pseudogenes. In an attempt to sort out functional V1R genes, we next cloned by polymerase chain reaction (PCR) the primate orthologues of hV1RL1. This approach was successful for gorilla, chimpanzee and orangutan, but not for the other species, including marmoset, probably because these species are too divergent from humans. Chimpanzee and orangutan V1RL1 genes are pseudogenes, whereas the gorilla counterpart is potentially functional. These observations raise the possibility that the V1R family has evolved in such a manner in mammals that every species that relies on a VNO-mediated sensory function possesses its own set of functional vomeronasal genes.  相似文献   

15.
Peter Karlson and Martin Lüscher used the term pheromone for the first time in 19591 to describe chemicals used for intra-species communication. Pheromones are volatile or non-volatile short-lived molecules2 secreted and/or contained in biological fluids3,4, such as urine, a liquid known to be a main source of pheromones3. Pheromonal communication is implicated in a variety of key animal modalities such as kin interactions5,6, hierarchical organisations3 and sexual interactions7,8 and are consequently directly correlated with the survival of a given species9,10,11. In mice, the ability to detect pheromones is principally mediated by the vomeronasal organ (VNO)10,12, a paired structure located at the base of the nasal cavity, and enclosed in a cartilaginous capsule. Each VNO has a tubular shape with a lumen13,14 allowing the contact with the external chemical world. The sensory neuroepithelium is principally composed of vomeronasal bipolar sensory neurons (VSNs)15. Each VSN extends a single dendrite to the lumen ending in a large dendritic knob bearing up to 100 microvilli implicated in chemical detection16. Numerous subpopulations of VSNs are present. They are differentiated by the chemoreceptor they express and thus possibly by the ligand(s) they recognize17,18. Two main vomeronasal receptor families, V1Rs and V2Rs19,20,21,22, are composed respectively by 24023 and 12024 members and are expressed in separate layers of the neuroepithelium. Olfactory receptors (ORs)25 and formyl peptide receptors (FPRs)26,27 are also expressed in VSNs.Whether or not these neuronal subpopulations use the same downstream signalling pathway for sensing pheromones is unknown. Despite a major role played by a calcium-permeable channel (TRPC2) present in the microvilli of mature neurons28 TRPC2 independent transduction channels have been suggested6,29. Due to the high number of neuronal subpopulations and the peculiar morphology of the organ, pharmacological and physiological investigations of the signalling elements present in the VNO are complex.Here, we present an acute tissue slice preparation of the mouse VNO for performing calcium imaging investigations. This physiological approach allows observations, in the natural environment of a living tissue, of general or individual subpopulations of VSNs previously loaded with Fura-2AM, a calcium dye. This method is also convenient for studying any GFP-tagged pheromone receptor and is adaptable for the use of other fluorescent calcium probes. As an example, we use here a VG mouse line30, in which the translation of the pheromone V1rb2 receptor is linked to the expression of GFP by a polycistronic strategy.  相似文献   

16.
The vomeronasal organ (VNO) is a chemosensory subsystem found in the nose of most mammals. It is principally tasked with detecting pheromones and other chemical signals that initiate innate behavioural responses. The VNO expresses subfamilies of vomeronasal receptors (VRs) in a cell-specific manner: each sensory neuron expresses just one or two receptors and silences all the other receptor genes. VR genes vary greatly in number within mammalian genomes, from no functional genes in some primates to many hundreds in rodents. They bind semiochemicals, some of which are also encoded in gene families that are coexpanded in species with correspondingly large VR repertoires. Protein and peptide cues that activate the VNO tend to be expressed in exocrine tissues in sexually dimorphic, and sometimes individually variable, patterns. Few chemical ligand–VR–behaviour relationships have been fully elucidated to date, largely due to technical difficulties in working with large, homologous gene families with high sequence identity. However, analysis of mouse lines with mutations in genes involved in ligand–VR signal transduction has revealed that the VNO mediates a range of social behaviours, including male–male and maternal aggression, sexual attraction, lordosis, and selective pregnancy termination, as well as interspecific responses such as avoidance and defensive behaviours. The unusual logic of VR expression now offers an opportunity to map the specific neural circuits that drive these behaviours.  相似文献   

17.
18.
Individual recognition is an important component of behaviors, such as mate choice and maternal bonding that are vital for reproductive success. This article highlights recent developments in our understanding of the chemosensory cues and the neural pathways involved in individuality discrimination in rodents. There appear to be several types of chemosensory signal of individuality that are influenced by the highly polymorphic families of major histocompatibility complex (MHC) proteins or major urinary proteins (MUPs). Both have the capability of binding small molecules and may influence the individual profile of these chemosignals in biological fluids such as urine, skin secretions, or saliva. Moreover, these proteins, or peptides associated with them, can be taken up into the vomeronasal organ (VNO) where they can potentially interact directly with the vomeronasal receptors. This is particularly interesting given the expression of major histocompatibility complex Ib proteins by the V2R class of vomeronasal receptor and the highly selective responses of accessory olfactory bulb (AOB) mitral cells to strain identity. These findings are consistent with the role of the vomeronasal system in mediating individual discrimination that allows mate recognition in the context of the pregnancy block effect. This is hypothesized to involve a selective increase in the inhibitory control of mitral cells in the accessory olfactory bulb at the first level of processing of the vomeronasal stimulus.  相似文献   

19.
The vomeronasal projection conveys information provided by pheromones and detected by neurones in the vomeronasal organ (VNO) to the accessory olfactory bulb (AOB) and thence to other regions of the brain such as the amygdala. The VNO-AOB projection is topographically organised such that axons from apical and basal parts of the VNO terminate in the anterior and posterior AOB respectively. We provide evidence that the Slit family of axon guidance molecules and their Robo receptors contribute to the topographic targeting of basal vomeronasal axons. Robo receptor expression is confined largely to basal VNO axons, while Slits are differentially expressed in the AOB with a higher concentration in the anterior part, which basal axons do not invade. Immunohistochemistry using a Robo-specific antibody reveals a zone-specific targeting of VNO axons in the AOB well before cell bodies of these neurones in the VNO acquire their final zonal position. In vitro assays show that Slit1-Slit3 chemorepel VNO axons, suggesting that basal axons are guided to the posterior AOB due to chemorepulsive activity of Slits in the anterior AOB. These data in combination with recently obtained other data suggest a model for the topographic targeting in the vomeronasal projection where ephrin-As and neuropilins guide apical VNO axons, while Robo/Slit interactions are important components in the targeting of basal VNO axons.  相似文献   

20.
Xenopus V2R (xV2R), a family of G-protein-coupled receptors with seven transmembrane domains, is expressed in the Xenopus vomeronasal organ (VNO). There are six subgroups of xV2R, one of which, xV2RE, is predominantly expressed in the VNO. To understand the function of xV2R during VNO development, we developed a new method to achieve stable siRNA-suppression of the V2RE genes by introducing siRNA expression transgenes into the genomes of unfertilized eggs. We found that some of the derived transgenic tadpoles lacked VNOs and that their olfactory epithelium was fused. With the exception of one tadpole, expression of xV2RE was not detected in morphologically abnormal mutant tadpoles, although the olfactory marker protein and the olfactory receptors were expressed. These results suggest that we successfully produced transgenic tadpoles in which xV2RE expression was stably suppressed by siRNA, and that xV2RE plays a role in the morphogenesis of olfactory organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号