首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predicting the consequences of climate change is a major challenge in ecology and wildlife management. While the impact of changes in climatic conditions on distribution ranges has been documented for many organisms, the consequences of changes in resource dynamics for species' overall performance have seldom been investigated. This study addresses this gap by identifying the factors shaping the reproductive synchrony of ungulates. In temporally-variable environments, reproductive phenology of individuals is a key determinant of fitness, with the timing of reproduction affecting their reproductive output and future performance. We used a satellite-based index of resource availability to explore how the level of seasonality and inter-annual variability in resource dynamics affect birth season length of ungulate populations. Contrary to what was previously thought, we found that both the degree of seasonal fluctuation in resource dynamics and inter-annual changes in resource availability influence the degree of birth synchrony within wild ungulate populations. Our results highlight how conclusions from previous interspecific analyses, which did not consider the existence of shared life-history among species, should be treated with caution. They also support the existence of a multi-faceted link between temporal variation in resource availability and breeding synchrony in terrestrial mammals, and increase our understanding of the mechanisms shaping reproductive synchrony in large herbivores, thus enhancing our ability to predict the potential impacts of climate change on biodiversity.  相似文献   

2.
The seasonal timing of lifecycle events is closely linked to individual fitness and hence, maladaptation in phenological traits may impact population dynamics. However, few studies have analysed whether and why climate change will alter selection pressures and hence possibly induce maladaptation in phenology. To fill this gap, we here use a theoretical modelling approach. In our models, the phenologies of consumer and resource are (potentially) environmentally sensitive and depend on two different but correlated environmental variables. Fitness of the consumer depends on the phenological match with the resource. Because we explicitly model the dependence of the phenologies on environmental variables, we can test how differential (heterogeneous) versus equal (homogeneous) rates of change in the environmental variables affect selection on consumer phenology. As expected, under heterogeneous change, phenotypic plasticity is insufficient and thus selection on consumer phenology arises. However, even homogeneous change leads to directional selection on consumer phenology. This is because the consumer reaction norm has historically evolved to be flatter than the resource reaction norm, owing to time lags and imperfect cue reliability. Climate change will therefore lead to increased selection on consumer phenology across a broad range of situations.  相似文献   

3.
Jens Joschinski  Dries Bonte 《Oikos》2021,130(8):1240-1250
Many organisms escape from lethal climatological conditions by entering a resistant resting stage called diapause, which needs to be optimally timed with seasonal change. As climate change exerts selection pressure on phenology, the evolution of mean diapause timing, but also of phenotypic plasticity and bet-hedging strategies is expected. The potential of the latter strategy as a means of coping with environmental unpredictability has received little attention in the climate change literature. Populations should be adapted to spatial variation in local conditions; contemporary patterns of phenological strategies across a geographic range may hence provide information about their evolvability. We thus extracted 458 diapause reaction norms from 60 studies. First, we correlated mean diapause timing with mean winter onset. Then we partitioned the reaction norm variance into a temporal component (phenotypic plasticity) and among-offspring variance (diversified bet-hedging) and correlated this variance composition with variability of winter onset. Mean diapause timing correlated reasonably well with mean winter onset, except for populations at high latitudes, which apparently failed to track early onsets. Variance among offspring was, however, limited and correlated only weakly with environmental variability, indicating little scope for bet-hedging. The apparent lack of phenological bet-hedging strategies may pose a risk in a less predictable climate, but we also highlight the need for more data on alternative strategies.  相似文献   

4.
Plant development and the timing of developmental events (phenology) are tightly coupled with plant fitness. A variety of internal and external factors determine the timing and fitness consequences of these life-history transitions. Microbes interact with plants throughout their life history and impact host phenology. This review summarizes current mechanistic and theoretical knowledge surrounding microbe-driven changes in plant phenology. Overall, there are examples of microbes impacting every phenological transition. While most studies have focused on flowering time, microbial effects remain important for host survival and fitness across all phenological phases. Microbe-mediated changes in nutrient acquisition and phytohormone signaling can release plants from stressful conditions and alter plant stress responses inducing shifts in developmental events. The frequency and direction of phenological effects appear to be partly determined by the lifestyle and the underlying nature of a plant–microbe interaction (i.e., mutualistic or pathogenic), in addition to the taxonomic group of the microbe (fungi vs. bacteria). Finally, we highlight biases, gaps in knowledge, and future directions. This biotic source of plasticity for plant adaptation will serve an important role in sustaining plant biodiversity and managing agriculture under the pressures of climate change.  相似文献   

5.
Climate change impacts are becoming increasingly evident as 1 °C warming above pre-industrial temperatures is approached. One of the signature biological effects is a shift towards earlier-timed reproduction. If individual species lack sufficient adaptive plasticity to alter phenology, they will have reduced fitness in a hotter world. Yet, a long-term study of an oak–caterpillar–songbird–sparrowhawk food web reveals that what could matter as much is if trophic interactions are disrupted. Multiple selective pressures may be triggered by climate change, leading to a tug-of-war between the need to stay in synchrony with the timing of maximum food, and the benefits of minimizing predation.  相似文献   

6.
Most evidence for advances in phenology of in response to recent climate warming in wild vertebrate populations has come from long‐term studies of birds. Few studies have either documented phenological advances or tested their climatic causes and demographic consequences in wild mammal systems. Using a long‐term study of red deer on the Isle of Rum, Scotland, we present evidence of significant temporal trends in six phenological traits: oestrus date and parturition date in females, and antler cast date, antler clean date, rut start date and rut end date in males. These traits advanced by between 5 and 12 days across a 28‐year study period. Local climate measures associated with plant growth in spring and summer (growing degree days) increased significantly over time and explained a significant amount of variation in all six phenological traits, largely accounting for temporal advances observed in some of the traits. However, there was no evidence for temporal changes in key female reproductive performance traits (offspring birth weight and offspring survival) in this population, despite significant relationships between these traits and female phenology. In males, average antler weights increased over time presumably as a result of improved resource availability and physiological condition through spring and summer. There was no evidence for any temporal change in average male annual breeding success, as might be expected if the timing of male rutting behaviour was failing to track advances in the timing of oestrus in females. Our results provide rare evidence linking phenological advances to climate warming in a wild mammal and highlight the potential complexity of relationships between climate warming, phenology and demography in wild vertebrates.  相似文献   

7.
As duration of snow cover decreases owing to climate change, species undergoing seasonal colour moults can become colour mismatched with their background. The immediate adaptive solution to this mismatch is phenotypic plasticity, either in phenology of seasonal colour moults or in behaviours that reduce mismatch or its consequences. We observed nearly 200 snowshoe hares across a wide range of snow conditions and two study sites in Montana, USA, and found minimal plasticity in response to mismatch between coat colour and background. We found that moult phenology varied between study sites, likely due to differences in photoperiod and climate, but was largely fixed within study sites with only minimal plasticity to snow conditions during the spring white-to-brown moult. We also found no evidence that hares modify their behaviour in response to colour mismatch. Hiding and fleeing behaviours and resting spot preference of hares were more affected by variables related to season, site and concealment by vegetation, than by colour mismatch. We conclude that plasticity in moult phenology and behaviours in snowshoe hares is insufficient for adaptation to camouflage mismatch, suggesting that any future adaptation to climate change will require natural selection on moult phenology or behaviour.  相似文献   

8.
Anthropogenic climate change has already altered the timing of major life-history transitions, such as the initiation of reproduction. Both phenotypic plasticity and adaptive evolution can underlie rapid phenological shifts in response to climate change, but their relative contributions are poorly understood. Here, we combine a continuous 38 year field survey with quantitative genetic field experiments to assess adaptation in the context of climate change. We focused on Boechera stricta (Brassicaeae), a mustard native to the US Rocky Mountains. Flowering phenology advanced significantly from 1973 to 2011, and was strongly associated with warmer temperatures and earlier snowmelt dates. Strong directional selection favoured earlier flowering in contemporary environments (2010-2011). Climate change could drive this directional selection, and promote even earlier flowering as temperatures continue to increase. Our quantitative genetic analyses predict a response to selection of 0.2 to 0.5 days acceleration in flowering per generation, which could account for more than 20 per cent of the phenological change observed in the long-term dataset. However, the strength of directional selection and the predicted evolutionary response are likely much greater now than even 30 years ago because of rapidly changing climatic conditions. We predict that adaptation will likely be necessary for long-term in situ persistence in the context of climate change.  相似文献   

9.
Natural resource professionals in the United States recognize that climate-induced changes in phenology can substantially affect resource management. This is reflected in national climate change response plans recently released by major resource agencies. However, managers on-the-ground are often unclear about how to use phenological information to inform their management practices. Until recently, this was at least partially due to the lack of broad-based, standardized phenology data collection across taxa and geographic regions. Such efforts are now underway, albeit in very early stages. Nonetheless, a major hurdle still exists: phenology-linked climate change research has focused more on describing broad ecological changes rather than making direct connections to local to regional management concerns. To help researchers better design relevant research for use in conservation and management decision-making processes, we describe phenology-related research topics that facilitate “actionable” science. Examples include research on evolution and phenotypic plasticity related to vulnerability, the demographic consequences of trophic mismatch, the role of invasive species, and building robust ecological forecast models. Such efforts will increase phenology literacy among on-the-ground resource managers and provide information relevant for short- and long-term decision-making, particularly as related to climate response planning and implementing climate-informed monitoring in the context of adaptive management. In sum, we argue that phenological information is a crucial component of the resource management toolbox that facilitates identification and evaluation of strategies that will reduce the vulnerability of natural systems to climate change. Management-savvy researchers can play an important role in reaching this goal.  相似文献   

10.
Environmental variation often induces shifts in functional traits, yet we know little about whether plasticity will reduce extinction risks under climate change. As climate change proceeds, phenotypic plasticity could enable species with limited dispersal capacity to persist in situ, and migrating populations of other species to establish in new sites at higher elevations or latitudes. Alternatively, climate change could induce maladaptive plasticity, reducing fitness, and potentially stalling adaptation and migration. Here, we quantified plasticity in life history, foliar morphology, and ecophysiology in Boechera stricta (Brassicaceae), a perennial forb native to the Rocky Mountains. In this region, warming winters are reducing snowpack and warming springs are advancing the timing of snow melt. We hypothesized that traits that were historically advantageous in hot and dry, low‐elevation locations will be favored at higher elevation sites due to climate change. To test this hypothesis, we quantified trait variation in natural populations across an elevational gradient. We then estimated plasticity and genetic variation in common gardens at two elevations. Finally, we tested whether climatic manipulations induce plasticity, with the prediction that plants exposed to early snow removal would resemble individuals from lower elevation populations. In natural populations, foliar morphology and ecophysiology varied with elevation in the predicted directions. In the common gardens, trait plasticity was generally concordant with phenotypic clines from the natural populations. Experimental snow removal advanced flowering phenology by 7 days, which is similar in magnitude to flowering time shifts over 2–3 decades of climate change. Therefore, snow manipulations in this system can be used to predict eco‐evolutionary responses to global change. Snow removal also altered foliar morphology, but in unexpected ways. Extensive plasticity could buffer against immediate fitness declines due to changing climates.  相似文献   

11.
Climate-induced phenological shifts can influence population, evolutionary, and ecological dynamics, but our understanding of these phenomena is hampered by a lack of long-term demographic data. We use a multi-decade census of 5 salmonid species representing 14 life histories in a warming Alaskan stream to address the following key questions about climate change and phenology: How consistent are temporal patterns and drivers of phenology for similar species and alternative life histories? Are shifts in phenology associated with changes in phenotypic variation? How do phenological changes influence the availability of resource subsidies? For most salmonid species, life stages, and life histories, freshwater temperature influences migration timing – migration events are occurring earlier in time (mean = 1.7 days earlier per decade over the 3–5 decades), and the number of days over which migration events occur is decreasing (mean = 1.5 days per decade). Temporal trends in migration timing were not correlated with changes in intra-annual phenotypic variation, suggesting that these components of the phenotypic distribution have responded to environmental change independently. Despite commonalities across species and life histories, there was important biocomplexity in the form of disparate shifts in migration timing and variation in the environmental factors influencing migration timing for alternative life history strategies in the same population. Overall, adult populations have been stable during these phenotypic and environmental changes (λ ≈1.0), but the temporal availability of salmon as a resource in freshwater has decreased by nearly 30 days since 1971 due to changes in the median date of migration timing and decreases in intra-annual variation in migration timing. These novel observations advance our understanding of phenological change in response to climate warming, and indicate that climate change has influenced the ecology of salmon populations, which will have important consequences for the numerous species that depend on this resource.  相似文献   

12.
Ungulate populations exhibiting partial migration present a unique opportunity to explore the causes of the general phenomenon of migration. The European roe deer Capreolus capreolus is particularly suited for such studies due to a wide distribution range and a high level of ecological plasticity. In this study we undertook a comparative analysis of roe deer GPS location data from a representative set of European ecosystems available within the EURODEER collaborative project. We aimed at evaluating the ecological factors affecting migration tactic (i.e. occurrence) and pattern (i.e. timing, residence time, number of migratory trips). Migration occurrence varied between and within populations and depended on winter severity and topographic variability. Spring migrations were highly synchronous, while the timing of autumn migrations varied widely between regions, individuals and sexes. Overall, roe deer were faithful to their summer ranges, especially males. In the absence of extreme and predictable winter conditions, roe deer seemed to migrate opportunistically, in response to a tradeoff between the costs of residence in spatially separated ranges and the costs of migratory movements. Animals performed numerous trips between winter and summer ranges which depended on factors influencing the costs of movement such as between‐range distance, slope and habitat openness. Our results support the idea that migration encompasses a behavioural continuum, with one‐trip migration and residence as its end points, while commuting and multi‐trip migration with short residence times in seasonal ranges are intermediate tactics. We believe that a full understanding of the variation in tactics of temporal separation in habitat use will provide important insights on migration and the factors that influence its prevalence.  相似文献   

13.
Phenological shifts, changes in the seasonal timing of life cycle events, are among the best documented responses of species to climate change. However, the consequences of these phenological shifts for population dynamics remain unclear. Population growth could be enhanced if species that advance their phenology benefit from longer growing seasons and gain a pre-emptive advantage in resource competition. However, it might also be reduced if phenological advances increase exposure to stresses, such as herbivores and, in colder climates, harsh abiotic conditions early in the growing season. We exposed subalpine grasslands to ~3 K of warming by transplanting intact turfs from 2000 m to 1400 m elevation in the eastern Swiss Alps, with turfs transplanted within the 2000 m site acting as a control. In the first growing season after transplantation, we recorded species’ flowering phenology at both elevations. We also measured species’ cover change for three consecutive years as a measure of plant performance. We used models to estimate species’ phenological plasticity (the response of flowering time to the change in climate) and analysed its relationship with cover changes following climate change. The phenological plasticity of the 18 species in our study varied widely but was unrelated to their changes in cover. Moreover, early- and late-flowering species did not differ in their cover response to warming, nor in the relationship between cover changes and phenological plasticity. These results were replicated in a similar transplant experiment within the same subalpine community, established one year earlier and using larger turfs. We discuss the various ecological processes that can be affected by phenological shifts, and argue why the population-level consequences of these shifts are likely to be species- and context-specific. Our results highlight the importance of testing assumptions about how warming-induced changes in phenotypic traits, like phenology, impact population dynamics.  相似文献   

14.
Abstract.— Adaptive phenotypic plasticity in chemical defense is thought to play a major role in plant-herbivore interactions. We investigated genetic variation for inducibility of defensive traits in wild radish plants and asked if the evolution of induction is constrained by costs of phenotypic plasticity. In a greenhouse experiment using paternal half-sibling families, we show additive genetic variation for plasticity in glucosinolate concentration. Genetic variation for glucosinolates was not detected in undamaged plants, but was significant following herbivory by a specialist herbivore, Pieris rapae . On average, damaged plants had 55% higher concentrations of glucosinolates compared to controls. In addition, we found significant narrow-sense heritabilities for leaf size, trichome number, flowering phenology, and lifetime fruit production. In a second experiment, we found evidence of genetic variation in induced plant resistance to P. rapae . Although overall there was little evidence for genetic correlations between the defensive and life-history traits we measured, we show that more plastic families had lower fitness than less plastic families in the absence of herbivory (i.e., evidence for genetic costs of plasticity). Thus, there is genetic variation for induction of defense in wild radish, and the evolution of inducibility may be constrained by costs of plasticity.  相似文献   

15.
There has been growing interest in the determinants of the annual timing of biological phenomena, or phenology, in wild populations, but research on vertebrate taxa has primarily focused on the phenology of reproduction. We present here analyses of the phenology of the annual growth of a secondary sexual characteristic, antlers in red deer (Cervus elaphus) males. The long-term individual-based data from a wild population of red deer on the Isle of Rum, Scotland allow us to consider ecological factors influencing variation in the phenology of growth of antlers, and the implications of variation in antler growth phenology with respect to the phenotype of antler grown (antler mass) and annual breeding success. The phenology of antler growth was influenced by local environmental conditions: higher population density delayed both the start date (during spring) and the relative end date (in late summer) of antler growth, and warmer temperatures in the September and April prior to growth advanced start and end dates, respectively. Furthermore, there was variation between individuals in this phenotypic plasticity of start date, although not in that of end date of growth. The phenology of antler growth impacted on the morphology of antlers grown, with individuals who started and ended growth earliest having the heaviest antlers. The timing of antler growth phenology was associated with breeding success in the following mating season, independently of the mass of antlers grown: an earlier start of antler growth was associated with siring a higher number of the calves born the following spring. Our results suggest that the phenology of traits that are not directly correlated with offspring survival may also regularly show correlations with fitness.  相似文献   

16.
To predict long‐term responses to climate change, we need to understand how changes in temperature and precipitation elicit both immediate phenotypic responses and changes in natural selection. We used 22 years of data for the perennial herb Lathyrus vernus to examine how climate influences flowering phenology and phenotypic selection on phenology. Plants flowered earlier in springs with higher temperatures and higher precipitation. Early flowering was associated with a higher fitness in nearly all years, but selection for early flowering was significantly stronger in springs with higher temperatures and lower precipitation. Climate influenced selection through trait distributions, mean fitness and trait?fitness relationships, the latter accounting for most of the among‐year variation in selection. Our results show that climate both induces phenotypic responses and alters natural selection, and that the change in the optimal phenotype might be either weaker, as for spring temperature, or stronger, as for precipitation, than the optimal response.  相似文献   

17.
Births are highly synchronized among females in many mammal populations in temperate areas. Although laying date for a given female is also repeatable within populations of birds, limited evidence suggests low repeatability of parturition date for individual females in mammals, and between-population variability in repeatability has never, to our knowledge, been assessed. We quantified the repeatability of parturition date for individual females in five populations of roe deer, which we found to vary between 0.54 and 0.93. Each year, some females gave birth consistently earlier in the year, whereas others gave birth consistently later. In addition, all females followed the same lifetime trajectory for parturition date, giving birth progressively earlier as they aged. Giving birth early should allow mothers to increase offspring survival, although few females managed to do so. The marked repeatability of parturition date in roe deer females is the highest ever reported for a mammal, suggesting low phenotypic plasticity in this trait.  相似文献   

18.
Adaptive phenotypic plasticity is an important source of intraspecific variation, and for many plastic traits, the costs or factors limiting plasticity seem cryptic. However, there are several different factors that may constrain the evolution of plasticity, but few models have considered costs and limiting factors simultaneously. Here we use a simulation model to investigate how the optimal level of plasticity in a population depends on a fixed maintenance fitness cost for plasticity or an incremental fitness cost for producing a plastic response in combination with environmental unpredictability (environmental fluctuation speed) limiting plasticity. Our model identifies two mechanisms that act, almost separately, to constrain the evolution of plasticity: (i) the fitness cost of plasticity scaled by the nonplastic environmental tolerance, and (ii) the environmental fluctuation speed scaled by the rate of phenotypic change. That is, the evolution of plasticity is constrained by the high cost of plasticity in combination with high tolerance for environmental variation, or fast environmental changes in combination with slow plastic response. Qualitatively similar results are found when maintenance and incremental fitness costs of plasticity are incorporated, although a larger degree of plasticity is selected for with an incremental cost. Our model highlights that it is important to consider direct fitness costs and phenotypic limitations in relation to nonplastic environmental tolerance and environmental fluctuations, respectively, to understand what constrains the evolution of phenotypic plasticity.  相似文献   

19.
A prominent response of temperate aquatic ecosystems to climate warming is changes in phenology – advancements or delays in annually reoccurring events in an organism's life cycle. The exact seasonal timing of warming, in conjunction with species-specific life-history events such as emergence from resting stages, timing of spawning, generation times, or stage-specific prey requirements, may determine the nature of a species' response. We demonstrate that recent climate-induced shifts in the phenology of lake phytoplankton and zooplankton species in a temperate eutrophic lake (Müggelsee, Germany) differed according to differences in their characteristic life cycles. Fast-growing plankton in spring (diatoms, Daphnia ) showed significant and synchronous forward movements by about 1 month, induced by concurrent earlier ice break-up dates (diatoms) and higher spring water temperature ( Daphnia ). No such synchrony was observed for slow-growing summer zooplankton species with longer and more complex life cycles (copepods, larvae of the mussel Dreissena polymorpha ). Although coexisting, the summer plankton responded species specifically to seasonal warming trends, depending on whether the timing of warming matched their individual thermal requirements at decisive developmental stages such as emergence from diapause (copepods), or spawning ( Dreissena ). Others did not change their phenology significantly, but nevertheless, increased in abundances. We show that the detailed seasonal pattern of warming influences the response of phyto- and zooplankton species to climate change, and point to the diverse nature of responses for species exhibiting complex life-history traits.  相似文献   

20.
The sexes often have different phenotypic optima for important life-history traits, and because of a largely shared genome this can lead to a conflict over trait expression. In mammals, the obligate costs of reproduction are higher for females, making reproductive timing and rate especially liable to conflict between the sexes. While studies from wild vertebrates support such sexual conflict, it remains unexplored in humans. We used a pedigreed human population from preindustrial Finland to estimate sexual conflict over age at first and last reproduction, reproductive lifespan and reproductive rate. We found that the phenotypic selection gradients differed between the sexes. We next established significant heritabilities in both sexes for all traits. All traits, except reproductive rate, showed strongly positive intersexual genetic correlations and were strongly genetically correlated with fitness in both sexes. Moreover, the genetic correlations with fitness were almost identical in men and women. For reproductive rate, the intersexual correlation and the correlation with fitness were weaker but again similar between the sexes. Thus, in this population, an apparent sexual conflict at the phenotypic level did not reflect an underlying genetic conflict over the studied reproductive traits. These findings emphasize the need for incorporating genetic perspectives into studies of human life-history evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号