首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collective rhythmic dynamics from neurons is vital for cognitive functions such as memory formation but how neurons self-organize to produce such activity is not well understood. Attractor-based computational models have been successfully implemented as a theoretical framework for memory storage in networks of neurons. Additionally, activity-dependent modification of synaptic transmission is thought to be the physiological basis of learning and memory. The goal of this study is to demonstrate that using a pharmacological treatment that has been shown to increase synaptic strength within in vitro networks of hippocampal neurons follows the dynamical postulates theorized by attractor models. We use a grid of extracellular electrodes to study changes in network activity after this perturbation and show that there is a persistent increase in overall spiking and bursting activity after treatment. This increase in activity appears to recruit more “errant” spikes into bursts. Phase plots indicate a conserved activity pattern suggesting that a synaptic potentiation perturbation to the attractor leaves it unchanged. Lastly, we construct a computational model to demonstrate that these synaptic perturbations can account for the dynamical changes seen within the network.  相似文献   

2.
Gao X  Deng P  Xu ZC  Chen J 《PloS one》2011,6(9):e24566
Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI). Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI) induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI.  相似文献   

3.
In this study, the effect of bilobalide, a purified terpene lactone component of the Ginkgo biloba extract (EGb 761), and EGb 761 against ischemic injury and against glutamate-induced excitotoxic neuronal death was compared. In the case of ischemic injury, neuronal loss and the levels of mitochondrial DNA (mtDNA)-encoded cytochrome oxidase (COX) subunit III mRNA in the hippocampal regions of gerbils was measured. A significant increase in neuronal death and a significant decrease in COX III mRNA were observed in the hippocampal CA1 neurons at 7-days of reperfusion after 5 min of transient global forebrain ischemia. Oral administration of EGb 761 at 25, 50 and 100 mg/kg/day and bilobalide at 3 and 6 mg/kg/day for 7 days before ischemia progressively protected hippocampal CA1 neurons against ischemia-induced neuronal death and reductions in COX III mRNA. In rat cerebellar neuronal cultures, addition of bilobalide or EGb 761 protected in a dose-dependent manner against glutamate-induced excitotoxic neuronal death [effective concentration (EC50) = 5 microg/ml (12 microM) forbilobalide and 100 microg/ml for EGb 761]. These results suggest thatboth EGb 761 and bilobalide protect against ischemia-induced neuronal death in vivo and glutamate-induced neuronal death in vitro by synergistic mechanisms involving anti-excitotoxicity, inhibition of free radical generation, scavenging of reactive oxygen species, and regulation of mitochondrial gene expression.  相似文献   

4.
Neurological disabilities following traumatic brain injury (TBI) may be due to excitotoxic neuronal loss. The excitotoxic loss of neurons following TBI occurs largely due to hyperactivation of N-methyl-d-aspartate receptors (NMDARs), leading to toxic levels of intracellular Ca(2+). The axon guidance and outgrowth protein collapsin response mediator protein 2 (CRMP2) has been linked to NMDAR trafficking and may be involved in neuronal survival following excitotoxicity. Lentivirus-mediated CRMP2 knockdown or treatment with a CRMP2 peptide fused to HIV TAT protein (TAT-CBD3) blocked neuronal death following glutamate exposure probably via blunting toxicity from delayed calcium deregulation. Application of TAT-CBD3 attenuated postsynaptic NMDAR-mediated currents in cortical slices. In exploring modulation of NMDARs by TAT-CBD3, we found that TAT-CBD3 induced NR2B internalization in dendritic spines without altering somal NR2B surface expression. Furthermore, TAT-CBD3 reduced NMDA-mediated Ca(2+) influx and currents in cultured neurons. Systemic administration of TAT-CBD3 following a controlled cortical impact model of TBI decreased hippocampal neuronal death. These findings support TAT-CBD3 as a novel neuroprotective agent that may increase neuronal survival following injury by reducing surface expression of dendritic NR2B receptors.  相似文献   

5.
Mutations in the p21-activated kinase 3 gene (pak3) are responsible for nonsyndromic forms of mental retardation. Expression of mutated PAK3 proteins in hippocampal neurons induces abnormal dendritic spine morphology and long term potentiation anomalies, whereas pak3 gene invalidation leads to cognitive impairments. How PAK3 regulates synaptic plasticity is still largely unknown. To better understand how PAK3 affects neuronal synaptic plasticity, we focused on its interaction with the Nck adaptors that play a crucial role in PAK signaling. We report here that PAK3 interacts preferentially with Nck2/Grb4 in brain extracts and in transfected cells. This interaction is independent of PAK3 kinase activity. Selective uncoupling of the Nck2 interactions in acute cortical slices using an interfering peptide leads to a rapid increase in evoked transmission to pyramidal neurons. The P12A mutation in the PAK3 protein strongly decreases the interaction with Nck2 but only slightly with Nck1. In transfected hippocampal cultures, expression of the P12A-mutated protein has no effect on spine morphogenesis or synaptic density. The PAK3-P12A mutant does not affect synaptic transmission, whereas the expression of the wild-type PAK3 protein decreases the amplitude of spontaneous miniature excitatory currents. Altogether, these data show that PAK3 down-regulates synaptic transmission through its interaction with Nck2.  相似文献   

6.
Macroautophagy (hereafter “autophagy”) is a lysosomal degradation pathway that is important for learning and memory, suggesting critical roles for autophagy at the neuronal synapse. Little is known, however, about the molecular details of how autophagy is regulated with synaptic activity. Here, we used live-cell confocal microscopy to define the autophagy pathway in primary hippocampal neurons under various paradigms of synaptic activity. We found that synaptic activity regulates the motility of autophagic vacuoles (AVs) in dendrites. Stimulation of synaptic activity dampens AV motility, whereas silencing synaptic activity induces AV motility. Activity-dependent effects on dendritic AV motility are local and reversible. Importantly, these effects are compartment specific, occurring in dendrites and not in axons. Most strikingly, synaptic activity increases the presence of degradative autolysosomes in dendrites and not in axons. On the basis of our findings, we propose a model whereby synaptic activity locally controls AV dynamics and function within dendrites that may regulate the synaptic proteome.  相似文献   

7.
8.
Synapses are often located at great distances from the cell body and so must be capable of transducing signals into both local and distant responses. Although progress has been made in understanding biochemical cascades involved in neuronal death during development of the nervous system and in various neurodegenerative disorders, it is not known whether such cascades function locally in synaptic compartments. Prostate apoptosis response-4 (Par-4) is a leucine zipper and death domain-containing protein that plays a role in neuronal apoptosis. We now report that Par-4 levels are rapidly increased in cortical synaptosomes and in dendrites of hippocampal neurons in culture and in vivo, following exposure to apoptotic or excitotoxic insults. Par-4 expression is regulated at the translational level within synaptic compartments. Par-4 antisense treatment suppressed mitochondrial dysfunction and caspase activation in synaptosomes and prevented death of cultured hippocampal neurons following exposure to excitotoxic and apoptotic insults. Local translational regulation of death-related proteins in synaptic compartments may play a role in programmed cell death, adaptive remodeling of synapses, and neurodegenerative disorders.  相似文献   

9.
Aberrant glutamate and calcium signalings are neurotoxic to specific neuronal populations. Calcium/calmodulin-dependent kinase II (CaMKII), a multifunctional serine/threonine protein kinase in neurons, is believed to regulate neurotransmission and synaptic plasticity in response to calcium signaling produced by neuronal activity. Importantly, several CaMKII substrates control neuronal structure, excitability, and plasticity. Here, we demonstrate that CaMKII inhibition for >4 h using small molecule and peptide inhibitors induces apoptosis in cultured cortical neurons. The neuronal death produced by prolonged CaMKII inhibition is associated with an increase in TUNEL staining and caspase-3 cleavage and is blocked with the translation inhibitor cycloheximide. Thus, this neurotoxicity is consistent with apoptotic mechanisms, a conclusion that is further supported by dysregulated calcium signaling with CaMKII inhibition. CaMKII inhibitory peptides also enhance the number of action potentials generated by a ramp depolarization, suggesting increased neuronal excitability with a loss of CaMKII activity. Extracellular glutamate concentrations are augmented with prolonged inhibition of CaMKII. Enzymatic buffering of extracellular glutamate and antagonism of the NMDA subtype of glutamate receptors prevent the calcium dysregulation and neurotoxicity associated with prolonged CaMKII inhibition. However, in the absence of CaMKII inhibition, elevated glutamate levels do not induce neurotoxicity, suggesting that a combination of CaMKII inhibition and elevated extracellular glutamate levels results in neuronal death. In sum, the loss of CaMKII observed with multiple pathological states in the central nervous system, including epilepsy, brain trauma, and ischemia, likely exacerbates programmed cell death by sensitizing vulnerable neuronal populations to excitotoxic glutamate signaling and inducing an excitotoxic insult itself.  相似文献   

10.
Global ischemia caused by heart attack, pulmonary failure, near-drowning or traumatic brain injury often damages the higher brain but not the brainstem, leading to a ‘persistent vegetative state’ where the patient is awake but not aware. Approximately 30,000 U.S. patients are held captive in this condition but not a single research study has addressed how the lower brain is preferentially protected in these people. In the higher brain, ischemia elicits a profound anoxic depolarization (AD) causing neuronal dysfunction and vasoconstriction within minutes. Might brainstem nuclei generate less damaging AD and so be more resilient? Here we compared resistance to acute injury induced from simulated ischemia by ‘higher’ hippocampal and striatal neurons versus brainstem neurons in live slices from rat and mouse. Light transmittance (LT) imaging in response to 10 minutes of oxygen/glucose deprivation (OGD) revealed immediate and acutely damaging AD propagating through gray matter of neocortex, hippocampus, striatum, thalamus and cerebellar cortex. In adjacent brainstem nuclei, OGD-evoked AD caused little tissue injury. Whole-cell patch recordings from hippocampal and striatal neurons under OGD revealed sudden membrane potential loss that did not recover. In contrast brainstem neurons from locus ceruleus and mesencephalic nucleus as well as from sensory and motor nuclei only slowly depolarized and then repolarized post-OGD. Two-photon microscopy confirmed non-recoverable swelling and dendritic beading of hippocampal neurons during OGD, while mesencephalic neurons in midbrain appeared uninjured. All of the above responses were mimicked by bath exposure to 100 µM ouabain which inhibits the Na+/K+ pump or to 1–10 nM palytoxin which converts the pump into an open cationic channel.Therefore during ischemia the Na+/K+ pump of higher neurons fails quickly and extensively compared to naturally resilient hypothalamic and brainstem neurons. The selective survival of lower brain regions that maintain vital functions will support the persistent vegetative state.  相似文献   

11.
12.
Mitochondrial dynamics have been extensively studied in the context of classical cell death models involving Bax-mediated cytochrome c release. Excitotoxic neuronal loss is a non-classical death signaling pathway that occurs following overactivation of glutamate receptors independent of Bax activation. Presently, the role of mitochondrial dynamics in the regulation of excitotoxicity remains largely unknown. Here, we report that NMDA-induced excitotoxicity results in defects in mitochondrial morphology as evident by the presence of excessive fragmented mitochondria, cessation of mitochondrial fusion, and cristae dilation. Up-regulation of the mitochondrial inner membrane GTPase, Opa1, is able to restore mitochondrial morphology and protect neurons against excitotoxic injury. Opa1 functions downstream of the calcium-dependent protease, calpain. Inhibition of calpain activity by calpastatin, an endogenous calpain inhibitor, significantly rescued mitochondrial defects and maintained neuronal survival. Opa1 was required for calpastatin-mediated neuroprotection because the enhanced survival found following NMDA-induced toxicity was significantly reduced upon loss of Opa1. Our results define a mechanism whereby breakdown of the mitochondrial network mediated through loss of Opa1 function contributes to neuronal death following excitotoxic neuronal injury. These studies suggest Opa1 as a potential therapeutic target to promote neuronal survival following acute brain damage and neurodegenerative diseases.  相似文献   

13.
Recently, it was found that microglia regulated synaptic remodeling of the developing brain, but their mechanisms have not been well understood. In this study, the action of microglia on neuronal synapse formation was investigated, and the primary target of microglial processes was discovered. When the developing microglia were applied to cultured hippocampal neurons without direct contact, the numbers of dendritic spines and excitatory and inhibitory synapses significantly increased. In order to find out the main factor for synaptic formation, the effects of cytokines released from microglia were examined. When recombinant proteins of cytokines were applied to neuronal culture media, interleukin 10 increased the numbers of dendritic spines in addition to excitatory and inhibitory synapses. Interestingly, without external stimuli, the amount of interleukin 10 released from the intact microglia appeared to be sufficient for the induction of synaptic formation. The neutralizing antibodies of interleukin 10 receptors attenuated the induction of the synaptic formation by microglia. The expression of interleukin 10 receptor was newly found in the hippocampal neurons of early developmental stage. When interleukin 10 receptors on the hippocampal neurons were knocked down with specific shRNA, the induction of synaptic formation by microglia and interleukin 10 disappeared. Pretreatment with lipopolysaccharide inhibited microglia from inducing synaptic formation, and interleukin 1β antagonized the induction of synaptic formation by interleukin 10. In conclusion, the developing microglia regulated synaptic functions and neuronal development through the interactions of the interleukin 10 released from the microglia with interleukin 10 receptors expressed on the hippocampal neurons.  相似文献   

14.
Injury and disease in the CNS increases the amount of tumor necrosis factor alpha (TNFalpha) that neurons are exposed to. This cytokine is central to the inflammatory response that occurs after injury and during prolonged CNS disease, and contributes to the process of neuronal cell death. Previous studies have addressed how long-term apoptotic-signaling pathways that are initiated by TNFalpha might influence these processes, but the effects of inflammation on neurons and synaptic function in the timescale of minutes after exposure are largely unexplored. Our published studies examining the effect of TNFalpha on trafficking of AMPA-type glutamate receptors (AMPARs) in hippocampal neurons demonstrate that glial-derived TNFalpha causes a rapid (<15 minute) increase in the number of neuronal, surface-localized, synaptic AMPARs leading to an increase in synaptic strength. This indicates that TNFalpha-signal transduction acts to facilitate increased surface localization of AMPARs from internal postsynaptic stores. Importantly, an excess of surface localized AMPARs might predispose the neuron to glutamate-mediated excitotoxicity and excessive intracellular calcium concentrations, leading to cell death. This suggests a new mechanism for excitotoxic TNFalpha-induced neuronal death that is initiated minutes after neurons are exposed to the products of the inflammatory response. Here we review the importance of AMPAR trafficking in normal neuronal function and how abnormalities that are mediated by glial-derived cytokines such as TNFalpha can be central in causing neuronal disorders. We have further investigated the effects of TNFalpha on different neuronal cell types and present new data from cortical and hippocampal neurons in culture. Finally, we have expanded our investigation of the temporal profile of the action of this cytokine relevant to neuronal damage. We conclude that TNFalpha-mediated effects on AMPAR trafficking are common in diverse neuronal cell types and very rapid in their onset. The abnormal AMPAR trafficking elicited by TNFalpha might present a novel target to aid the development of new neuroprotective drugs.  相似文献   

15.
16.
Tau is a microtubule‐associated neuronal protein found mainly in axons. However, its presence in dendrites and dendritic spines is particularly relevant due to its involvement in synaptic plasticity and neurodegeneration. Here, we show that Tau plays a novel in vivo role in the morphological and synaptic maturation of newborn hippocampal granule neurons under basal conditions. Furthermore, we reveal that Tau is involved in the selective cell death of immature granule neurons caused by acute stress. Also, Tau deficiency protects newborn neurons from the stress‐induced dendritic atrophy and loss of postsynaptic densities (PSDs). Strikingly, we also demonstrate that Tau regulates the increase in newborn neuron survival triggered by environmental enrichment (EE). Moreover, newborn granule neurons from Tau?/? mice did not show any stimulatory effect of EE on dendritic development or on PSD generation. Thus, our data demonstrate that Tau?/? mice show impairments in the maturation of newborn granule neurons under basal conditions and that they are insensitive to the modulation of adult hippocampal neurogenesis exerted by both stimulatory and detrimental stimuli.  相似文献   

17.
The physiological function of amyloid precursor protein (APP) and its two homologues APP-like protein 1 (APLP1) and 2 (APLP2) is largely unknown. Previous work suggests that lack of APP or APLP2 impairs synaptic plasticity and spatial learning. There is, however, almost no data on the role of APP or APLP at the network level which forms a critical interface between cellular functions and behavior. We have therefore investigated memory-related synaptic and network functions in hippocampal slices from three lines of transgenic mice: APPsα-KI (mice expressing extracellular fragment of APP, corresponding to the secreted APPsα ectodomain), APLP2-KO, and combined APPsα-KI/APLP2-KO (APPsα-DM for “double mutants”). We analyzed two prominent patterns of network activity, gamma oscillations and sharp-wave ripple complexes (SPW-R). Both patterns were generally preserved in all strains. We find, however, a significantly reduced frequency of gamma oscillations in CA3 of APLP2-KO mice in comparison to APPsα-KI and WT mice. Network activity, basic synaptic transmission and short-term plasticity were unaltered in the combined mutants (APPsα-DM) which showed, however, reduced long-term potentiation (LTP). Together, our data indicate that APLP2 and the intracellular domain of APP are not essential for coherent activity patterns in the hippocampus, but have subtle effects on synaptic plasticity and fine-tuning of network oscillations.  相似文献   

18.
19.
Macrophage colony stimulating factor (M-CSF) and its receptor are up-regulated in the brain in Alzheimer's disease (AD), in transgenic mouse models for AD, and experimental models for traumatic and ischemic brain injury. M-CSF induces activation and proliferation of microglial cells and expression of proinflammatory cytokines. We examined the role of M-CSF in excitotoxic neuronal cell death in organotypic hippocampal cultures. NMDA treatment induced neuronal apoptosis and caspase-3 activation in organotypic hippocampal cultures, whereas treatment with M-CSF protected hippocampal neurons from NMDA-induced apoptosis. Caspase-3 activation was inhibited by M-CSF treatment to the same degree as with the caspase inhibitor Z-VAD-FMK. These results suggest that M-CSF has neuroprotective properties through inhibition of caspase-3 that could promote neuronal survival after excitotoxic insult. The role of M-CSF in neurological disease should be reevaluated as a microglial activator with potentially neuroprotective effects.  相似文献   

20.
The Rap family of small GTPases is implicated in the mechanisms of synaptic plasticity, particularly synaptic depression. Here we studied the role of Rap in neuronal morphogenesis and synaptic transmission in cultured neurons. Constitutively active Rap2 expressed in hippocampal pyramidal neurons caused decreased length and complexity of both axonal and dendritic branches. In addition, Rap2 caused loss of dendritic spines and spiny synapses, and an increase in filopodia-like protrusions and shaft synapses. These Rap2 morphological effects were absent in aspiny interneurons. In contrast, constitutively active Rap1 had no significant effect on axon or dendrite morphology. Dominant-negative Rap mutants increased dendrite length, indicating that endogenous Rap restrains dendritic outgrowth. The amplitude and frequency of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-mediated miniature excitatory postsynaptic currents (mEPSCs) decreased in hippocampal neurons transfected with active Rap1 or Rap2, associated with reduced surface and total levels of AMPA receptor subunit GluR2. Finally, increasing synaptic activity with GABA(A) receptor antagonists counteracted Rap2's inhibitory effect on dendrite growth, and masked the effects of Rap1 and Rap2 on AMPA-mediated mEPSCs. Rap1 and Rap2 thus have overlapping but distinct actions that potentially link the inhibition of synaptic transmission with the retraction of axons and dendrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号