首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Influenza virus is the cause of significant morbidity and mortality, posing a serious health threat worldwide. Here, we evaluated the antiviral activities of Cryptoporus volvatus extract on influenza virus infection. Our results demonstrated that the Cryptoporus volvatus extract inhibited different influenza virus strain replication in MDCK cells. Time course analysis indicated that the extract exerted its inhibition at earlier and late stages in the replication cycle of influenza virus. Subsequently, we confirmed that the extract suppressed virus internalization into and released from cells. Moreover, the extract significantly reduced H1N1/09 influenza virus load in lungs and dramatically decreased lung lesions in mice. And most importantly, the extract protected mice from lethal challenge with H1N1/09 influenza virus. Our results suggest that the Cryptoporus volvatus extract could be a potential candidate for the development of a new anti-influenza virus therapy.  相似文献   

2.
Expression of lymphoid enhancer factor 1 (LEF1) is frequently altered in different human cancers. This study aimed to assess LEF1 expression in colon cancer tissues and to explore changed phenotypes, gene expressions, and the possible mechanism after knocked down LEF1 expression in colon cancer cell lines. A total of 106 colon cancer and matched paratumorous normal tissues were used to assess LEF1 expression using immunohistochemistry and qRT-PCR. LEF1 lentivirus was used to knockdown LEF1 expression for the assessment of cell viability, cell cycle distribution, apoptosis, and gene expressions. The nude mouse xenograft assay was performed to detect the effects of LEF1 knockdown in vivo. The data showed that the levels of LEF1 mRNA and protein were significantly increased in human colon cancer tissues compared to the matched paratumorous normal tissues and were associated with infiltration depth, lymph node and distant metastases, advanced TNM (tumor-node-metastasis) stages, and shorter overall survival. Furthermore, LEF1 knockdown reduced tumor cell viability, invasion capacity, MMP2 and MMP-9 expression, but induced apoptosis. Nude mouse xenograft assay showed that LEF1 knockdown suppressed tumor formation and growth in vivo. In addition, the expression of Notch pathway-related proteins RBP-jκ and Hes1 was reduced in LEF1 knockdown cells. Taken together, LEF1 protein was overexpressed in colon cancer tissues and knockdown of LEF1 expression inhibited colon cancer growth in vitro and in vivo. These data suggest that targeting of LEF1 expression should be further evaluated for colon cancer prevention and therapy.  相似文献   

3.
Rotavirus (RV) is the most common cause of severe diarrhea among infants and young children. Currently, there is no specific drug available against rotavirus, largely due to the lack of an ideal target molecule which has hampered drug development. Our previous studies have revealed that cyclosporin A (CsA) might be potentially useful as an anti-RV drug. We therefore used both cellular and mouse models to study the immunological safety and effectiveness of CsA as an anti-RV drug. We found that CsA treatment of HT-29 cells before, during, and after viral infection efficiently inhibited Wa strain RV replication and restored IFN-β expression in a HT-29 cell line model. Exploring the underlying mechanisms showed that CsA promoted Interferon Regulatory Factor-5 (IRF-5) expression (a key positive regulator of the type I IFN signaling pathway), but not IRF-1, IRF-3, or IRF-7. Additionally, CsA inhibited SOCS-1 expression (the key negative regulator of IFN-α/β), but not SOCS-2 or SOCS-3. The antiviral effect of CsA was confirmed in an RV-infected neonatal mouse model by evaluation of antigen clearance and assessment of changes in intestinal tissue pathology. Also, no differences in T cell frequency or proliferation between the CsA- and vehicle-treated groups were observed. Thus, both our in vitro and in vivo findings suggest that CsA, through modulating the expression of key regulators in IFN signaling pathway, promote type I IFN-based intracellular innate immunity in RV host cells. These findings suggest that CsA may be a useful candidate to develop a new anti-RV strategy, although further evaluation and characterization of CsA on RV-induced diarrhea are warranted.  相似文献   

4.
5.
IQGAP1 is a scaffolding protein that can regulate several distinct signaling pathways. The accumulating evidence has demonstrated that IQGAP1 plays an important role in tumorigenesis and tumor progression. However, the function of IQGAP1 in esophageal squamous cell carcinoma (ESCC) has not been thoroughly investigated. In the present study, we showed that IQGAP1 was overexpressed in ESCC tumor tissues, and its overexpression was correlated with the invasion depth of ESCC. Importantly, by using RNA interference (RNAi) technology we successfully silenced IQGAP1 gene in two ESCC cell lines, EC9706 and KYSE150, and for the first time found that suppressing IQGAP1 expression not only obviously reduced the tumor cell growth, migration and invasion in vitro but also markedly inhibited the tumor growth, invasion, lymph node and lung metastasis in xenograft mice. Furthermore, Knockdown of IQGAP1 expression in ESCC cell lines led to a reversion of epithelial to mesenchymal transition (EMT) progress. These results suggest that IQGAP1 plays crucial roles in regulating ESCC occurrence and progression. IQGAP1 silencing may therefore develop into a promising novel anticancer therapy.  相似文献   

6.
Wnt/β-catenin signaling induced by the Norrin/Frizzled-4 pathway has been shown to improve capillary repair following oxygen induced retinopathy (OIR) in the mouse, a model for retinopathy of prematurity. Here we investigated if treatment with the monovalent cation lithium that has been shown to augment Wnt/β-catenin signaling in vitro and in vivo has similar effects. In cultured human microvascular endothelial cells, LiCl as well as SB 216763, another small molecule that activates Wnt/β-catenin signaling, induced proliferation, survival and migration, which are all common parameters for angiogenic properties in vitro. Moreover, treatment with both agents caused an increase in the levels of β-catenin and their translocation to nuclei while quercetin, an inhibitor of Wnt/β-catenin signaling, completely blocked the effects of LiCl on proliferation. In mice with OIR, intraperitonal or intravitreal treatment with LiCl markedly increased the retinal levels of β-catenin, but did not improve capillary repair. In contrast, repair was significantly improved following intravitreal treatment with Norrin. The effects of LiCl on HDMEC in vitro have minor relevance for OIR in vivo, and the influence of the Norrin/Frizzled-4 pathway on capillary repair in OIR is not reproducible upon enhancing Wnt/β-catenin signaling by LiCl treatment strongly indicating the presence of additional and essential mechanisms.  相似文献   

7.
8.
Epilepsy is a chronic brain disorder involving recurring seizures often precipitated by an earlier neuronal insult. The mechanisms that link the transient neuronal insult to the lasting state of epilepsy are unknown. Here we tested the possible role of DNA methylation in mediating long-term induction of epileptiform activity by transient kainic acid exposure using in vitro and in vivo rodent models. We analyzed changes in the gria2 gene, which encodes for the GluA2 subunit of the ionotropic glutamate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptor and is well documented to play a role in epilepsy. We show that kainic acid exposure for two hours to mouse hippocampal slices triggers methylation of a 5’ regulatory region of the gria2 gene. Increase in methylation persists one week after removal of the drug, with concurrent suppression of gria2 mRNA expression levels. The degree of kainic acid-induced hypermethylation of gria2 5’ region varies between individual slices and correlates with the changes in excitability induced by kainic acid. In a rat in vivo model of post kainic acid-induced epilepsy, we show similar hypermethylation of the 5’ region of gria2. Inter-individual variations in gria2 methylation, correlate with the frequency and intensity of seizures among epileptic rats. Luciferase reporter assays support a regulatory role for methylation of gria2 5’ region. Inhibition of DNA methylation by RG108 blocked kainic acid-induced hypermethylation of gria2 5’ region in hippocampal slice cultures and bursting activity. Our results suggest that DNA methylation of such genes as gria2 mediates persistent epileptiform activity and inter-individual differences in the epileptic response to neuronal insult and that pharmacological agents that block DNA methylation inhibit epileptiform activity raising the prospect of DNA methylation inhibitors in epilepsy therapeutics.  相似文献   

9.

Aim

Atherosclerosis is the complex lesion that consists of endothelial inflammation, macrophage foam cell formation, vascular smooth muscle cell (VSMC) migration and proliferation, and extracellular matrix production. Human urocortin 1 (Ucn1), a 40-amino acid peptide member of the corticotrophin-releasing factor/urotensin I family, has potent cardiovascular protective effects. This peptide induces potent and long-lasting hypotension and coronary vasodilation. However, the relationship of Ucn1 with atherosclerosis remains unclear. The present study was performed to clarify the effects of Ucn1 on atherosclerosis.

Methods

We assessed the effects of Ucn1 on the inflammatory response and proliferation of human endothelial cells (ECs), human macrophage foam cell formation, migration and proliferation of human VSMCs, extracellular matrix expression in VSMCs, and the development of atherosclerosis in apolipoprotein E-deficient (Apoe −/−) mice.

Results

Ucn1 significantly suppressed cell proliferation without inducing apoptosis, and lipopolysaccharide-induced up-regulation of monocyte chemoattractant protein-1 and intercellular adhesion molecule-1 in human ECs. Ucn1 significantly reduced oxidized low-density lipoprotein-induced foam cell formation with a significant down-regulation of CD36 and acyl-CoA:cholesterol acyltransferase 1 in human monocyte-derived macrophages. Ucn1 significantly suppressed the migration and proliferation of human VSMCs and increased the activities of matrix metalloproteinase-2 (MMP2) and MMP9 in human VSMCs. Intraperitoneal injection of Ucn1 into Apoe −/− mice for 4 weeks significantly retarded the development of aortic atherosclerotic lesions.

Conclusions

This study provided the first evidence that Ucn1 prevents the development of atherosclerosis by suppressing EC inflammatory response and proliferation, macrophage foam cell formation, and VSMC migration and proliferation. Thus, Ucn1 could serve as a novel therapeutic target for atherosclerotic cardiovascular diseases.  相似文献   

10.
Clostridium sordellii is a spore-forming, obligately anaerobic, Gram-positive bacterium that can cause toxic shock syndrome after gynecological procedures. Although the incidence of C. sordellii infection is low, it is fatal in most cases. Since spore germination is believed to be the first step in the establishment of Bacilli and Clostridia infections, we analyzed the requirements for C. sordellii spore germination in vitro. Our data showed that C. sordellii spores require three structurally different amino acids and bicarbonate for maximum germination. Unlike the case for Bacilli species, d-alanine had no effect on C. sordellii spore germination. C. sordellii spores germinated only in a narrow pH range between 5.7 and 6.5. In contrast, C. sordellii spore germination was significantly less sensitive to temperature changes than that of the Bacilli. The analysis of the kinetics of C. sordellii spore germination showed strong allosteric behavior in the binding of l-phenylalanine and l-alanine but not in that of bicarbonate or l-arginine. By comparing germinant apparent binding affinities to their known in vivo concentrations, we postulated a mechanism for differential C. sordellii spore activation in the female reproductive tract.Clostridium sordellii is an anaerobic, Gram-positive, spore-forming bacterium that is commonly found in soil and in the intestines of animals (4). Many C. sordellii strains are nonpathogenic; however, virulent strains cause lethal infections in several animal species, such as hemorrhagic enteritis in foals, sheep, and cattle (5, 10, 16, 28), omphalitis in foals (43), and wound infection in humans (4, 35).C. sordellii also can cause life-threatening necrotizing infections after gynecological procedures (4). In addition, fatal cases of C. sordellii endometritis following medical abortion with a mifepristone-misoprostol combination have been reported recently (13, 19, 56). The increased use of mifepristone-misoprostol for medical abortion may result in larger numbers of C. sordellii infections (38, 40).Although C. sordellii rarely has been identified in the genital tract, a correlation between gynecological procedures and C. sordellii-mediated toxic shock syndrome is apparent (19). Pregnancy, childbirth, or abortion may predispose some women to acquire C. sordellii in the vaginal tract (19). Under these conditions, C. sordellii infections result in an almost 100% mortality rate.Since there is no national system for tracking and reporting complications associated with gynecological procedures, the identification of the true rates of reproductive tract infections in women is not readily available (8). Therefore, the number of known C. sordellii-associated infections, although low, may be underreported (19, 29). Furthermore, unsafe abortion practices in developing countries cause large mortality rates due to complicating infections (24, 34). In many cases, however, the causative agent of the abortion-associated sepsis have not been characterized (24). Thus, the worldwide morbidity and mortality associated with C. sordellii infections is not currently known.C. sordellii produces several virulence factors. The two major toxins are the lethal toxin (TcsL) and the hemorrhagic toxin (37, 46). The lethal toxin produced by C. sordellii is causally involved in enteritis of domestic animals and in systemic toxicity following infections of humans (46). Furthermore, TcsL is associated with rapid mortality in C. sordellii endometritis rodent models (26). Interestingly, TcsL cytopathic effects are increased at low pH, a characteristic found in the vaginal tract (48). The hemorrhagic toxin is not well characterized, but it has been reported to cause dermal and intestinal necrosis in guinea pigs (6, 52).C. sordellii, like other Bacilli and Clostridia species, has the ability to form metabolically dormant spores that are extremely resistant to environmental stresses, such as heat, radiation, and toxic chemicals (42, 55). Upon encountering a suitable environment, spores germinate into vegetative cells, the form that is responsible for toxin production and disease onset (39, 54).In most cases, the germination process initially is triggered by the detection of low-molecular-weight germinants by a sensitive biosensor (39, 54). This sensor consists of a proteinaceous germination (Ger) receptor encoded, in general, by a tricistronic operon. Spore germination requirements have been studied most extensively for Bacilli and can be initiated by a variety of factors, including amino acids, sugars, and nucleosides (20, 30).Spore germination in the Clostridia generally requires combinations of multiple germinants. The germination of spores of proteolytic Clostridium botulinum types A and B was triggered by a defined three-component mixture comprised of l-alanine (or l-cysteine), l-lactate (or sodium thioglycolate), and sodium bicarbonate (3). In contrast, the optimum germination of spores of nonproteolytic C. botulinum types B, E, and F required binary combinations of l-alanine-l-lactate, l-cysteine-l-lactate, and l-serine-l-lactate (45).Clostridium difficile is a human pathogen that can cause fulminant colitis (11). Interestingly, C. difficile does not encode any known Ger receptors (53). However, it is likely that germination receptors exist, because C. difficile spores must germinate in order to complete their life cycle. While C. difficile germination receptors remain elusive, the spores of C. difficile germinate in rich medium supplemented with bile salts (62). More recently, taurocholate (a bile salt) and glycine (an amino acid) were shown to act as cogerminants for C. difficile spore germination (57, 61).Clostridium bifermentans is a close relative of C. sordellii (14). The minimum requirement for C. bifermentans spore germination was the presence of l-alanine, l-phenylalanine, and l-lactate (59). In addition, an unknown factor present in yeast extract was suggested to enhance germination (59). However, the Ger receptors involved in C. bifermentans spore germination are not known.Even though many Bacilli and Clostridia species use similar metabolites as germinants, the mechanisms of germinant recognition remain to be elucidated. Unfortunately, the multimeric interactions of Ger receptor complexes and the hydrophobic nature of the Ger receptor subunits have hindered our understanding of the mechanism of germinant recognition.To understand the molecular determinants of germinant recognition, we recently applied kinetic methods to study bacterial spore germination (1, 2, 18). Spore germination can be analyzed quantitatively by fitting optical density (OD) decreases to the Michaelis-Menten equation (2). The kinetic parameters obtained allow the determination of the apparent binding affinity (Km) of spores for the different cogerminants and the maximum rate of spore germination (Vmax). In these instances, Km refers to the concentration of substrate required to reach half of the maximal germination rate. These parameters can, in turn, be used to determine the mechanism of germination and potential interactions between germination receptors. Furthermore, by comparing apparent Km values to germinant concentrations in vivo, models for spore-germinant complex distribution can be proposed, and rate-limiting steps for the germination process can be derived. Thus, kinetic analysis can yield information on spore activation even if the identities of the germination receptors are not known.Using this procedure, we were able to determine the mechanism for Bacillus anthracis germination with inosine and l-alanine. In turn, this information was used to design nucleoside analogs that inhibit B. anthracis spore germination in vitro and protect macrophages from anthrax cytotoxicity (2).Since C. sordellii germination receptors have not been identified, we used chemical probes and kinetic methods to investigate the conditions necessary for spore germination. We found that C. sordellii spores germinate better at slightly acidic pH. Furthermore, germination rates varied slightly from 25 to 40°C. We also found that C. sordellii spores have an absolute requirement for a small amino acid, a basic amino acid, an aromatic amino acid, and bicarbonate (NaHCO3) for efficient germination. Kinetic analysis showed allosteric interaction for the putative l-phenylalanine and l-alanine germination receptors. In contrast, l-arginine or bicarbonate recognition followed typical Michaelis-Menten kinetics. The implication of germinant recognition and host environment is discussed.  相似文献   

11.

Background

Crescentin, the recently discovered bacterial intermediate filament protein, organizes into an extended filamentous structure that spans the length of the bacterium Caulobacter crescentus and plays a critical role in defining its curvature. The mechanism by which crescentin mediates cell curvature and whether crescentin filamentous structures are dynamic and/or polar are not fully understood.

Methodology/Principal Findings

Using light microscopy, electron microscopy and quantitative rheology, we investigated the mechanics and dynamics of crescentin structures. Live-cell microscopy reveals that crescentin forms structures in vivo that undergo slow remodeling. The exchange of subunits between these structures and a pool of unassembled subunits is slow during the life cycle of the cell however; in vitro assembly and gelation of C. crescentus crescentin structures are rapid. Moreover, crescentin forms filamentous structures that are elastic, solid-like, and, like other intermediate filaments, can recover a significant portion of their network elasticity after shear. The assembly efficiency of crescentin is largely unaffected by monovalent cations (K+, Na+), but is enhanced by divalent cations (Mg2+, Ca2+), suggesting that the assembly kinetics and micromechanics of crescentin depend on the valence of the ions present in solution.

Conclusions/Significance

These results indicate that crescentin forms filamentous structures that are elastic, labile, and stiff, and that their low dissociation rate from established structures controls the slow remodeling of crescentin in C. crescentus.  相似文献   

12.
Previous studies have shown that the small molecule iron transport inhibitor ferristatin (NSC30611) acts by down-regulating transferrin receptor-1 (TfR1) via receptor degradation. In this investigation, we show that another small molecule, ferristatin II (NSC8679), acts in a similar manner to degrade the receptor through a nystatin-sensitive lipid raft pathway. Structural domains of the receptor necessary for interactions with the clathrin pathway do not appear to be necessary for ferristatin II induced degradation of TfR1. While TfR1 constitutively traffics through clathrin-mediated endocytosis, with or without ligand, the presence of Tf blocked ferristatin II induced degradation of TfR1. This effect of Tf was lost in a ligand binding receptor mutant G647A TfR1, suggesting that Tf binding to its receptor interferes with the drug’s activity. Rats treated with ferristatin II have lower TfR1 in liver. These effects are associated with reduced intestinal 59Fe uptake, lower serum iron and transferrin saturation, but no change in liver non-heme iron stores. The observed hypoferremia promoted by degradation of TfR1 by ferristatin II appears to be due to induced hepcidin gene expression.  相似文献   

13.
Broad applications of single-walled carbon nanotubes (SWCNT) dictate the necessity to better understand their health effects. Poor recognition of non-functionalized SWCNT by phagocytes is prohibitive towards controlling their biological action. We report that SWCNT coating with a phospholipid “eat-me” signal, phosphatidylserine (PS), makes them recognizable in vitro by different phagocytic cells - murine RAW264.7 macrophages, primary monocyte-derived human macrophages, dendritic cells, and rat brain microglia. Macrophage uptake of PS-coated nanotubes was suppressed by the PS-binding protein, Annexin V, and endocytosis inhibitors, and changed the pattern of pro- and anti-inflammatory cytokine secretion. Loading of PS-coated SWCNT with pro-apoptotic cargo (cytochrome c) allowed for the targeted killing of RAW264.7 macrophages. In vivo aspiration of PS-coated SWCNT stimulated their uptake by lung alveolar macrophages in mice. Thus, PS-coating can be utilized for targeted delivery of SWCNT with specified cargoes into professional phagocytes, hence for therapeutic regulation of specific populations of immune-competent cells.  相似文献   

14.
15.
Porous calcium phosphate ceramics are used in orthopedic and craniofacial applications to treat bone loss, or in dental applications to replace missing teeth. The implantation of these materials, however, does not induce stem cell differentiation, so suitable additional materials such as porous calcium phosphate discs are needed to influence physicochemical responses or structural changes. Rabbit adipose-derived stem cells (ADSC) and mouse osteoblastic cells (MC3T3-E1) were evaluated in vitro by the MTT assay, semi-quantitative RT-PCR, and immunoblotting using cells cultured in medium supplemented with extracts from bioceramics, including calcium metaphosphate (CMP), hydroxyapatite (HA) and collagen-grafted HA (HA-col). In vivo evaluation of the bone forming capacity of these bioceramics in rat models using femur defects and intramuscular implants for 12 weeks was performed. Histological analysis showed that newly formed stromal-rich tissues were observed in all the implanted regions and that the implants showed positive immunoreaction against type I collagen and alkaline phosphatase (ALP). The intramuscular implant region, in particular, showed strong positive immunoreactivity for both type I collagen and ALP, which was further confirmed by mRNA expression and immunoblotting results, indicating that each bioceramic material enhanced osteogenesis stimulation. These results support our hypothesis that smart bioceramics can induce osteoconduction and osteoinduction in vivo, although mature bone formation, including lacunae, osteocytes, and mineralization, was not prominent until 12 weeks after implantation.  相似文献   

16.
Myxoma virus (MYXV) is a well-established oncolytic agent against different types of tumors. MYXV is also known for its immunomodulatory properties in down-regulating major histocompatibility complex (MHC) I surface expression (via the M153R gene product, a viral E3-ubiquitin ligase) and suppressing T cell killing of infected target cells. MHC I down-regulation, however, favors NK cell activation. Brain tumors including gliomas are characterized by high MHC I expression with impaired NK activity. We thus hypothesized that MYXV infection of glioma cells will promote NK cell-mediated recognition and killing of gliomas. We infected human gliomas with MYXV and evaluated their susceptibility to NK cell-mediated cytotoxicity. MYXV enhanced NK cell-mediated killing of glioma cells (U87 cells, MYXV vs. Mock: 51.73% vs. 28.63%, P = .0001, t test; U251 cells, MYXV vs. Mock: 40.4% vs. 20.03%, P .0007, t test). Using MYXV M153R targeted knockout (designated vMyx-M153KO) to infect gliomas, we demonstrate that M153R was responsible for reduced expression of MHC I on gliomas and enhanced NK cell-mediated antiglioma activity (U87 cells, MYXV vs. vMyx-M153KO: 51.73% vs. 25.17%, P = .0002, t test; U251 cells, MYXV vs. vMyx-M153KO: 40.4% vs. 19.27, P = .0013, t test). Consequently, NK cell-mediated lysis of established human glioma tumors in CB-17 SCID mice was accelerated with improved mouse survival (log-rank P = .0072). These results demonstrate the potential for combining MYXV with NK cells to effectively kill malignant gliomas.  相似文献   

17.
Leflunomide as an immunosuppressive drug is generally used in the treatment of rheumatoid arthritis. It inhibits DHODH (dihydroorotate dehydrogenase ), which is one of the essential enzymes in the de novo pyrimidine biosynthetic pathway. Here we showed that leflunomide significantly reduced cell proliferation and self-renewal activity. Annexin V-FITC/PI staining assay revealed that leflunomide induced S-phase cell cycle arrest, and promoted cell apoptosis. In vivo xenograft study in SCID mice showed that leflunomide inhibited tumor growth and development. We also observed that DHODH was commonly expressed in neuroblastoma. When treated with leflunomide, the neuroblastoma cell lines BE(2)-C, SK-N-DZ, and SK-N-F1 showed dramatic inhibition of DHODH at mRNA and protein levels. Considering the favorable toxicity profile and the successful clinical experience with leflunomide in rheumatoid arthritis, this drug represents a potential new candidate for targeted therapy in neuroblastoma.  相似文献   

18.
In Parkinson’s and Alzheimer’s diseases, the allocortex accumulates aggregated proteins such as synuclein and tau well before neocortex. We present a new high-throughput model of this topographic difference by microdissecting neocortex and allocortex from the postnatal rat and treating them in parallel fashion with toxins. Allocortical cultures were more vulnerable to low concentrations of the proteasome inhibitors MG132 and PSI but not the oxidative poison H2O2. The proteasome appeared to be more impaired in allocortex because MG132 raised ubiquitin-conjugated proteins and lowered proteasome activity in allocortex more than neocortex. Allocortex cultures were more vulnerable to MG132 despite greater MG132-induced rises in heat shock protein 70, heme oxygenase 1, and catalase. Proteasome subunits PA700 and PA28 were also higher in allocortex cultures, suggesting compensatory adaptations to greater proteasome impairment. Glutathione and ceruloplasmin were not robustly MG132-responsive and were basally higher in neocortical cultures. Notably, neocortex cultures became as vulnerable to MG132 as allocortex when glutathione synthesis or autophagic defenses were inhibited. Conversely, the glutathione precursor N-acetyl cysteine rendered allocortex resilient to MG132. Glutathione and ceruloplasmin levels were then examined in vivo as a function of age because aging is a natural model of proteasome inhibition and oxidative stress. Allocortical glutathione levels rose linearly with age but were similar to neocortex in whole tissue lysates. In contrast, ceruloplasmin levels were strikingly higher in neocortex at all ages and rose linearly until middle age. PA28 levels rose with age and were higher in allocortex in vivo, also paralleling in vitro data. These neo- and allocortical differences have implications for the many studies that treat the telencephalic mantle as a single unit. Our observations suggest that the topographic progression of protein aggregations through the cerebrum may reflect differential responses to low level protein-misfolding stress but also reveal impressive compensatory adaptations in allocortex.  相似文献   

19.

Background

A major hurdle in the use of exogenous stems cells for therapeutic regeneration of injured myocardium remains the poor survival of implanted cells. To date, the delivery of stem cells into myocardium has largely focused on implantation of cell suspensions.

Methodology and Principal Findings

We hypothesize that delivering progenitor cells in an aggregate form would serve to mimic the endogenous state with proper cell-cell contact, and may aid the survival of implanted cells. Microwell methodologies allow for the culture of homogenous 3D cell aggregates, thereby allowing cell-cell contact. In this study, we find that the culture of cardiac progenitor cells in a 3D cell aggregate augments cell survival and protects against cellular toxins and stressors, including hydrogen peroxide and anoxia/reoxygenation induced cell death. Moreover, using a murine model of cardiac ischemia-reperfusion injury, we find that delivery of cardiac progenitor cells in the form of 3D aggregates improved in vivo survival of implanted cells.

Conclusion

Collectively, our data support the notion that growth in 3D cellular systems and maintenance of cell-cell contact improves exogenous cell survival following delivery into myocardium. These approaches may serve as a strategy to improve cardiovascular cell-based therapies.  相似文献   

20.
Dendritic cells are the professional antigen presenting cells of innate immunity and key players in maintaining the balance of immune responses. Studies with dendritic cells are mainly limited by their low numbers in vivo and their difficult maintenance in vitro. We differentiated bone marrow cells from transgenic mice expressing an inducible SV40 large T-antigen into dendritic cells. When immortalized by dexamethasone and doxycycline, these cells were stable in long-term culture. In the absence of dexamethasone and doxycycline (de-induction), dendritic cells displayed properties of primary cells, characterized by expression of classical dendritic cell surface markers CD11c, CD11b, MHCII, CD40 and CD86. Furthermore, de-induced lipopolysaccharide activated dendritic cells secreted IL-1β, IL-6, TNFα and IL-12. De-induced, Ovalbumin-loaded dendritic cells polarize CD4+ T cells into Th1, Th17 and Th2 cells, indicating their correct antigen presenting property. Consistent with intratracheal application of Ovalbumin-loaded primary dendritic cells into mice, the application of de-induced dendritic cells resulted in recruitment of lymphocytes to the lungs. In summary, we successfully expanded dendritic cells using conditional immortalization. The generated dendritic cells demonstrate the characteristic immunophenotype of primary dendritic cells and will facilitate further studies on immunomodulatory properties of dendritic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号