首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Crustaceans of the order Notostraca (Branchiopoda) are distributed worldwide and are known for the remarkable morphological stasis between their extant and Permian fossil species. Moreover, these crustaceans show relevant ecological traits and a wide range of reproductive strategies. However, genomic studies on notostracans are fairly limited. Here, we present the genome sequences of two notostracan taxa, Lepidurus arcticus and Lepidurus apus lubbocki. Taking advantage of the small genome sizes (~0.11 pg) of these taxa, genomes were sequenced for one individual per species with one run on the Illumina HiSeq X platform. We finally assembled 73.2 Mbp (L. arcticus) and 90.3 Mbp (L. apus lubbocki) long genomes. Assemblies cover up to 84% of the estimated genome size, with a gene completeness >97% for both genomes. In total, 13%–16% of the assembled genomes consist of repeats, and based on read mapping, L. apus lubbocki shows a significantly lower transposable element content than L. arcticus. The analysis of 2,376 orthologous genes indicates an ~7% divergence between the two Lepidurus taxa, with a nucleotide substitution rate significantly lower than that of Daphnia taxa. Ka/Ks analysis suggests purifying selection in both branchiopod lineages, raising the question of whether the low substitution rate of Lepidurus is correlated with morphological conservation or is linked to specific biological traits. Our analysis demonstrates that, in these organisms, it is possible to obtain high‐quality draft genomes from single individuals with a relatively low sequencing effort. This result makes Lepidurus and Notostraca interesting models for genomic studies at taxonomic, ecological and evolutionary levels.  相似文献   

2.
Coelacanths are lobe-finned fish represented by two extant species, Latimeria chalumnae in South Africa and Comoros and L. menadoensis in Indonesia. Due to their intermediate phylogenetic position between ray-finned fish and tetrapods in the vertebrate lineage, they are of great interest from an evolutionary point of view. In addition, extant specimens look similar to 300 million-year-old fossils; because of their apparent slowly evolving morphology, coelacanths have been often described as « living fossils ». As an underlying cause of such a morphological stasis, several authors have proposed a slow evolution of the coelacanth genome. Accordingly, sequencing of the L. chalumnae genome has revealed a globally low substitution rate for protein-coding regions compared to other vertebrates. However, genome and gene evolution can also be influenced by transposable elements, which form a major and dynamic part of vertebrate genomes through their ability to move, duplicate and recombine. In this work, we have searched for evidence of transposition activity in coelacanth genomes through the comparative analysis of orthologous genomic regions from both Latimeria species. Comparison of 5.7 Mb (0.2%) of the L. chalumnae genome with orthologous Bacterial Artificial Chromosome clones from L. menadoensis allowed the identification of 27 species-specific transposable element insertions, with a strong relative contribution of CR1 non-LTR retrotransposons. Species-specific homologous recombination between the long terminal repeats of a new coelacanth endogenous retrovirus was also detected. Our analysis suggests that transposon activity is responsible for at least 0.6% of genome divergence between both Latimeria species. Taken together, this study demonstrates that coelacanth genomes are not evolutionary inert: they contain recently active transposable elements, which have significantly contributed to post-speciation genome divergence in Latimeria.  相似文献   

3.
High-throughput DNA sequencing technologies have revolutionized genomic analysis, including the de novo assembly of whole genomes. Nevertheless, assembly of complex genomes remains challenging, in part due to the presence of dispersed repeats which introduce ambiguity during genome reconstruction. Transposable elements (TEs) can be particularly problematic, especially for TE families exhibiting high sequence identity, high copy number, or complex genomic arrangements. While TEs strongly affect genome function and evolution, most current de novo assembly approaches cannot resolve long, identical, and abundant families of TEs. Here, we applied a novel Illumina technology called TruSeq synthetic long-reads, which are generated through highly-parallel library preparation and local assembly of short read data and which achieve lengths of 1.5–18.5 Kbp with an extremely low error rate (0.03% per base). To test the utility of this technology, we sequenced and assembled the genome of the model organism Drosophila melanogaster (reference genome strain y; cn, bw, sp) achieving an N50 contig size of 69.7 Kbp and covering 96.9% of the euchromatic chromosome arms of the current reference genome. TruSeq synthetic long-read technology enables placement of individual TE copies in their proper genomic locations as well as accurate reconstruction of TE sequences. We entirely recovered and accurately placed 4,229 (77.8%) of the 5,434 annotated transposable elements with perfect identity to the current reference genome. As TEs are ubiquitous features of genomes of many species, TruSeq synthetic long-reads, and likely other methods that generate long-reads, offer a powerful approach to improve de novo assemblies of whole genomes.  相似文献   

4.
Poriferan mitochondrial DNA (mtDNA), especially large intergenic regions, is a target for the insertion of repetitive hairpin-forming elements. These elements are responsible for the large mt genome size differences observed even among closely related sponge taxa. In this study, we present the new, nearly complete, mt genome sequence of Ephydatia fluviatilis and compare it with previously published mt genomes of freshwater sponges. Special emphasis was placed on comparison with the closely related species Ephydatia muelleri, thereby comparing the only two species of the genus Ephydatia on the western Balkan Peninsula. In particular, we analyzed repetitive palindromic elements within the mitochondrial intergenic regions. The genomic distribution of these repetitive elements was analyzed and their potential role in the evolution of mt genomes discussed. We show here that palindromic elements are widespread through the whole mt genome, including the protein coding genes, thus introducing genetic variability into mt genomes.  相似文献   

5.
The understanding the different kinds of sequences that make up a genome, as well as their proportions in genomes (obtained by the sequencing of the complete genome), has considerably changed our idea of evolution at the genomic level. The former view of a slowly evolving genome has given way to the idea of a genome that can undergo many transformations, on a large or small scale, depending on the evolution of the different types of sequences constituting it. Here we summarise the evolution of these sequences and the impact it can have on the genome. We have focused on micro-transformations, and especially on the impact of transposable elements on genomes. To cite this article: E. Bonnivard, D. Higuet, C. R. Biologies 332 (2009).  相似文献   

6.
Le Rouzic A  Dupas S  Capy P 《Gene》2007,390(1-2):214-220
Transposable elements are known to be “selfish DNA” sequences able to spread and be maintained in all genomes analyzed so far. Their evolution depends on the interaction they have with the other components of the genome, including genes and other transposable elements. These relationships are complex and have often been compared to those of species living and competing in an ecosystem. The aim of this current work is a proposition to fill the conceptual gap existing between genome biology and ecology, assuming that genomic components, such as transposable elements families, can be compared to species interacting in an ecosystem. Using this framework, some of the main models defined in the population genetics of transposable elements can then been reformulated, and some new kinds of realistic relationships, such as symbiosis between different genomic components, can then be modelled and explored.  相似文献   

7.
8.
9.
Genomic data are important for understanding the origin and evolution of traits. Under the context of rapidly developing of sequencing technologies and more widely available genome sequences, researchers are able to study evolutionary mechanisms of traits via comparative genomic methods. Compared with other vertebrates, bird genomes are relatively small and exhibit conserved synteny with few repetitive elements, which makes them suitable for evolutionary studies. Increasing genomic progress has been reported on the evolution of powered flight, body size variation, beak morphology, plumage colouration, high-elevation colonization, migration, and vocalization. By summarizing previous studies, we demonstrate the genetic bases of trait evolution, highlighting the roles of small-scale sequence variation, genomic structural variation, and changes in gene interaction networks. We suggest that future studies should focus on improving the quality of reference genomes, exploring the evolution of regulatory elements and networks, and combining genomic data with morphological, ecological, behavioural, and developmental biology data.  相似文献   

10.
11.
12.

Background  

Transposable elements are abundant in the genomes of many filamentous fungi, and have been implicated as major contributors to genome rearrangements and as sources of genetic variation. Analyses of fungal genomes have also revealed that transposable elements are largely confined to distinct clusters within the genome. Their impact on fungal genome evolution is not well understood. Using the recently available genome sequence of the plant pathogenic fungus Magnaporthe oryzae, combined with additional bacterial artificial chromosome clone sequences, we performed a detailed analysis of the distribution of transposable elements, syntenic blocks, and other features of chromosome 7.  相似文献   

13.

Background  

Higher eukaryotic genomes are typically large, complex and filled with both genes and multiple classes of repetitive DNA. The repetitive DNAs, primarily transposable elements, are a rapidly evolving genome component that can provide the raw material for novel selected functions and also indicate the mechanisms and history of genome evolution in any ancestral lineage. Despite their abundance, universality and significance, studies of genomic repeat content have been largely limited to analyses of the repeats in fully sequenced genomes.  相似文献   

14.
Pie MR  Torres RA  Brito DM 《Genetica》2007,131(1):51-58
Despite remarkable advances in genomic studies over the past few decades, surprisingly little is known about the processes governing genome evolution at macroevolutionary timescales. In a seminal paper, Hinegardner and Rosen (Am Nat 106:621–644, 1972) suggested that taxa characterized by larger genomes should also display disproportionately stronger fluctuations in genome size. Therefore, according to the Hinegardner and Rosen (HR) hypothesis, there should be a negative correlation between average within-family genome size and its corresponding coefficient of variation (CV), a prediction that was supported by their analysis of the genomes of 275 species of fish. In this study we reevaluate the HR hypothesis using an expanded dataset (2050 genome size records). Moreover, in addition to the use of standard linear regression techniques, we also conducted modern comparative analyses that take into account phylogenetic non-independence. Our analyses failed to confirm the negative relationship detected in the original study, suggesting that the evolution of genome size in fishes might be more complex than envisioned by the HR hypothesis. Interestingly, the frequency distribution of fish genome sizes was strongly skewed, even on a logarithmic scale, suggesting that the dynamics underlying genome size evolution are driven by multiplicative phenomena, which might include chromosomal rearrangements and the expansion of transposable elements.  相似文献   

15.
Long Terminal Repeat (LTR) retrotransposons are ubiquitous components of plant genomes. Because of their copy-and-paste mode of transposition, these elements tend to increase their copy number while they are active. In addition, it is now well established that the differences in genome size observed in the plant kingdom are accompanied by variations in LTR retrotransposon content, suggesting that LTR retrotransposons might be important players in the evolution of plant genome size, along with polyploidy. The recent availability of large genomic sequences for many crop species has made it possible to examine in detail how LTR retrotransposons actually drive genomic changes in plants. In the present paper, we provide a review of the recent publications that have contributed to the knowledge of plant LTR retrotransposons, as structural components of the genomes, as well as from an evolutionary genomic perspective. These studies have shown that plant genomes undergo genome size increases through bursts of retrotransposition, while there is a counteracting process that tends to eliminate the transposed copies from the genomes. This process involves recombination mechanisms that occur either between the LTRs of the elements, leading to the formation of solo-LTRs, or between direct repeats anywhere in the sequence of the element, leading to internal deletions. All these studies have led to the emergence of a new model for plant genome evolution that takes into account both genome size increases (through retrotransposition) and decreases (through solo-LTR and deletion formation). In the conclusion, we discuss this new model and present the future prospects in the study of plant genome evolution in relation to the activity of transposable elements.  相似文献   

16.
Ciliates are unicellular eukaryotes with both a germline genome and a somatic genome in the same cytoplasm. The somatic macronucleus (MAC), responsible for gene expression, is not sexually transmitted but develops from a copy of the germline micronucleus (MIC) at each sexual generation. In the MIC genome of Paramecium tetraurelia, genes are interrupted by tens of thousands of unique intervening sequences called internal eliminated sequences (IESs), which have to be precisely excised during the development of the new MAC to restore functional genes. To understand the evolutionary origin of this peculiar genomic architecture, we sequenced the MIC genomes of 9 Paramecium species (from approximately 100 Mb in Paramecium aurelia species to >1.5 Gb in Paramecium caudatum). We detected several waves of IES gains, both in ancestral and in more recent lineages. While the vast majority of IESs are single copy in present-day genomes, we identified several families of mobile IESs, including nonautonomous elements acquired via horizontal transfer, which generated tens to thousands of new copies. These observations provide the first direct evidence that transposable elements can account for the massive proliferation of IESs in Paramecium. The comparison of IESs of different evolutionary ages indicates that, over time, IESs shorten and diverge rapidly in sequence while they acquire features that allow them to be more efficiently excised. We nevertheless identified rare cases of IESs that are under strong purifying selection across the aurelia clade. The cases examined contain or overlap cellular genes that are inactivated by excision during development, suggesting conserved regulatory mechanisms. Similar to the evolution of introns in eukaryotes, the evolution of Paramecium IESs highlights the major role played by selfish genetic elements in shaping the complexity of genome architecture and gene expression.

A comparative genomics study of nine Paramecium species reveals successful invasion of genes by transposable elements in their germline genomes, showing that the internal eliminated sequences (IESs) followed an evolutionary trajectory remarkably similar to that of spliceosomal introns.  相似文献   

17.
Recent sequencing of the Brassica rapa and Brassica oleracea genomes revealed extremely contrasting genomic features such as the abundance and distribution of transposable elements between the two genomes. However, whether and how these structural differentiations may have influenced the evolutionary rates of the two genomes since their split from a common ancestor are unknown. Here, we investigated and compared the rates of nucleotide substitution between two long terminal repeats (LTRs) of individual orthologous LTR‐retrotransposons, the rates of synonymous and non‐synonymous substitution among triplicated genes retained in both genomes from a shared whole genome triplication event, and the rates of genetic recombination estimated/deduced by the comparison of physical and genetic distances along chromosomes and ratios of solo LTRs to intact elements. Overall, LTR sequences and genic sequences showed more rapid nucleotide substitution in B. rapa than in B. oleracea. Synonymous substitution of triplicated genes retained from a shared whole genome triplication was detected at higher rates in B. rapa than in B. oleracea. Interestingly, non‐synonymous substitution was observed at lower rates in the former than in the latter, indicating shifted densities of purifying selection between the two genomes. In addition to evolutionary asymmetry, orthologous genes differentially regulated and/or disrupted by transposable elements between the two genomes were also characterized. Our analyses suggest that local genomic and epigenomic features, such as recombination rates and chromatin dynamics reshaped by independent proliferation of transposable elements and elimination between the two genomes, are perhaps partially the causes and partially the outcomes of the observed inter‐specific asymmetric evolution.  相似文献   

18.
Insertion sequences (ISs) are simple transposable elements present in most bacterial and archaeal genomes and play an important role in genomic evolution. The recent expansion of sequenced genomes offers the opportunity to study ISs comprehensively, but this requires efficient and accurate tools for IS annotation. We have developed an open-source program called OASIS, or Optimized Annotation System for Insertion Sequences, which automatically annotates ISs within sequenced genomes. OASIS annotations of 1737 bacterial and archaeal genomes offered an unprecedented opportunity to examine IS evolution. At a broad scale, we found that most IS families are quite widespread; however, they are not present randomly across taxa. This may indicate differential loss, barriers to exchange and/or insufficient time to equilibrate across clades. The number of ISs increases with genome length, but there is both tremendous variation and no increase in IS density for genomes >2 Mb. At the finer scale of recently diverged genomes, the proportion of shared IS content falls sharply, suggesting loss and/or emergence of barriers to successful cross-infection occurs rapidly. Surprisingly, even after controlling for 16S rRNA sequence divergence, the same ISs were more likely to be shared between genomes labeled as the same species rather than as different species.  相似文献   

19.
Evolution is frequently concentrated in bursts of rapid morphological change and speciation followed by long‐term stasis. We propose that this pattern of punctuated equilibria results from an evolutionary tug‐of‐war between host genomes and transposable elements (TEs) mediated through the epigenome. According to this hypothesis, epigenetic regulatory mechanisms (RNA interference, DNA methylation and histone modifications) maintain stasis by suppressing TE mobilization. However, physiological stress, induced by climate change or invasion of new habitats, disrupts epigenetic regulation and unleashes TEs. With their capacity to drive non‐adaptive host evolution, mobilized TEs can restructure the genome and displace populations from adaptive peaks, thus providing an escape from stasis and generating genetic innovations required for rapid diversification. This “epi‐transposon hypothesis” can not only explain macroevolutionary tempo and mode, but may also resolve other long‐standing controversies, such as Wright's shifting balance theory, Mayr's peripheral isolates model, and McClintock's view of genome restructuring as an adaptive response to challenge.  相似文献   

20.
Asparagus officinalis is an economically and nutritionally important vegetable crop that is widely cultivated and is used as a model dioecious species to study plant sex determination and sex chromosome evolution. To improve our understanding of its genome composition, especially with respect to transposable elements (TEs), which make up the majority of the genome, we performed Illumina HiSeq2000 sequencing of both male and female asparagus genomes followed by bioinformatics analysis. We generated 17 Gb of sequence (12×coverage) and assembled them into 163,406 scaffolds with a total cumulated length of 400 Mbp, which represent about 30% of asparagus genome. Overall, TEs masked about 53% of the A. officinalis assembly. Majority of the identified TEs belonged to LTR retrotransposons, which constitute about 28% of genomic DNA, with Ty1/copia elements being more diverse and accumulated to higher copy numbers than Ty3/gypsy. Compared with LTR retrotransposons, non-LTR retrotransposons and DNA transposons were relatively rare. In addition, comparison of the abundance of the TE groups between male and female genomes showed that the overall TE composition was highly similar, with only slight differences in the abundance of several TE groups, which is consistent with the relatively recent origin of asparagus sex chromosomes. This study greatly improves our knowledge of the repetitive sequence construction of asparagus, which facilitates the identification of TEs responsible for the early evolution of plant sex chromosomes and is helpful for further studies on this dioecious plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号