首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co-chaperone HOP (also called stress-inducible protein 1) is a co-chaperone that interacts with the cytosolic 70-kDa heat shock protein (HSP70) and 90-kDa heat shock protein (HSP90) families using different tetratricopeptide repeat domains. HOP plays crucial roles in the productive folding of substrate proteins by controlling the chaperone activities of HSP70 and HSP90. Here, we examined the levels of HOP, HSC70 (cognate of HSP70, also called HSP73), and HSP90 in the tumor tissues from colon cancer patients, in comparison with the non-tumor tissues from the same patients. Expression level of HOP was significantly increased in the tumor tissues (68% of patients, n = 19). Levels of HSC70 and HSP90 were also increased in the tumor tissues (95% and 74% of patients, respectively), and the HOP level was highly correlated with those of HSP90 (r = 0.77, p < 0.001) and HSC70 (r = 0.68, p < 0.01). Immunoprecipitation experiments indicated that HOP complexes with HSC70 or HSP90 in the tumor tissues. These data are consistent with increased formation of co-chaperone complexes in colon tumor specimens compared to adjacent normal tissue and could reflect a role for HOP in this process.  相似文献   

2.
The progesterone receptor (PR) can be isolated in its native conformation able to bind hormone, yet its ligand-binding domain rapidly loses its activity at elevated temperature. However, an in vitro chaperoning system consisting of five proteins (HSP40, HSP70, HOP, HSP90, and p23) with ATP is capable of restoring this function. The first step of this chaperoning mechanism is usually thought to be the binding of HSP70 to PR. Our findings here show that the binding of HSP40 to PR is, instead, the first step. HSP40 binding occurred rapidly and was not dependent on ATP or other proteins. The stoichiometry of HSP40 to native PR in these complexes was approximately 1:1. HSP40 bound specifically and with a high affinity to native PR (K(d) = 77 nm). The binding of HSP40 to PR was sustained and did not interact in the highly dynamic fashion that has been observed previously for HSP90 in this system. The HSP40 small middle dotPR complex could be isolated as a functional unit that could, after the addition of the other chaperones, progress to a PR complex capable of hormone binding. These results indicate that HSP40 initiates the entry of PR into the HSP90 pathway.  相似文献   

3.
HOPs (HSP70–HSP90 organizing proteins) are a highly conserved family of HSP70 and HSP90 co-chaperones whose role in assisting the folding of various hormonal receptors has been extensively studied in mammals. In plants, HOPs are mainly associated with stress response, but their potential involvement in hormonal networks remains completely unexplored. In this article we describe that a member of the HOP family, HOP3, is involved in the jasmonic acid (JA) pathway and is linked to plant defense responses not only to pathogens, but also to a generalist herbivore. The JA pathway regulates responses to Botrytis cinerea infection and to Tetranychus urticae feeding; our data demonstrate that the Arabidopsis (Arabidopsis thaliana) hop3-1 mutant shows an increased susceptibility to both. The hop3-1 mutant exhibits reduced sensitivity to JA derivatives in root growth assays and downregulation of different JA-responsive genes in response to methyl jasmonate, further revealing the relevance of HOP3 in the JA pathway. Interestingly, yeast two-hybrid assays and in planta co-immunoprecipitation assays found that HOP3 interacts with COI1, suggesting that COI1 is a target of HOP3. Consistent with this observation, COI1 activity is reduced in the hop3-1 mutant. All these data strongly suggest that, specifically among HOPs, HOP3 plays a relevant role in the JA pathway by regulating COI1 activity in response to JA and, consequently, participating in defense signaling to biotic stresses.

One-sentence summary: The co-chaperone protein HOP3 (HSP70-HSP90 ORGANIZING PROTEIN 3) regulates the activity of jasmonic acid co-receptor CORONATINE INSENSITIVE 1 and functions in plant defense.  相似文献   

4.
The adenosine A2A receptor is a prototypical rhodopsin-like G protein-coupled receptor but has several unique structural features, in particular a long C terminus (of >120 residues) devoid of a palmitoylation site. It is known to interact with several accessory proteins other than those canonically involved in signaling. However, it is evident that many more proteins must interact with the A2A receptor, if the trafficking trajectory of the receptor is taken into account from its site of synthesis in the endoplasmic reticulum (ER) to its disposal by the lysosome. Affinity-tagged versions of the A2A receptor were expressed in HEK293 cells to identify interacting partners residing in the ER by a proteomics approach based on tandem affinity purification. The receptor-protein complexes were purified in quantities sufficient for analysis by mass spectrometry. We identified molecular chaperones (heat-shock proteins HSP90α and HSP70-1A) that interact with and retain partially folded A2A receptor prior to ER exit. Complex formation between the A2A receptor and HSP90α (but not HSP90β) and HSP70-1A was confirmed by co-affinity precipitation. HSP90 inhibitors also enhanced surface expression of the receptor in PC12 cells, which endogenously express the A2A receptor. Finally, proteins of the HSP relay machinery (e.g. HOP/HSC70-HSP90 organizing protein and P23/HSP90 co-chaperone) were recovered in complexes with the A2A receptor. These observations are consistent with the proposed chaperone/coat protein complex II exchange model. This posits that cytosolic HSP proteins are sequentially recruited to folding intermediates of the A2A receptor. Release of HSP90 is required prior to recruitment of coat protein complex II components. This prevents premature ER export of partially folded receptors.  相似文献   

5.
6.
7.
Inactivation of HSP90 and HSP70 leads to loss of invasion in a variety of cancer cell types, presumably as a result of destabilization of, as yet, undefined clients of these molecular chaperones that influence this phenotype. The WASF3 gene has been shown to be up-regulated in high-grade tumors and its down-regulation leads to loss of invasion and metastasis. WASF3 phosphorylation by ABL kinase is essential for its ability to regulate invasion. Mass spectroscopy analysis now shows that HSP90 is present in the WASF3 immunocomplex from prostate cancer cells. Inactivation of HSP90 in these and other cell types does not affect WASF3 stability but prevents its phosphoactivation as a result of destabilization of ABL. HSP70 was also found in the WASF3 immunocomplex and inactivation of HSP70 results in destabilization of WASF3 through proteasome degradation. Knockdown of WASF3, HSP90, and HSP70 individually, all lead to loss of invasion but as knockdown of WASF3 in the presence of robust expression of HSP90/70 has the same effect, it seems that the influence these chaperone proteins have on invasion is mediated, at least in part, by their control over the critical invasion promoting capacity of the WASF3 protein. Overexpression of HSP70 in WASF3 null cells does not enhance invasion. These observations suggest that targeting HSP90/70 may have efficacy in reducing cancer cell invasion.  相似文献   

8.
9.
In Leishmania donovani, the HSP90 chaperone complex plays an essential role in the control of the parasite’s life cycle, general viability and infectivity. Several of the associated co-chaperones were also shown to be essential for viability and/or infectivity to mammalian cells. Here, we identify and describe the co-chaperone P23 and distinguish its function from that of the structurally related small heat shock protein HSP23. P23 is expressed constitutively and associates itself with members of the HSP90 complex, i.e. HSP90 and Sti1. Viable P23 gene replacement mutants could be raised and confirmed as null mutants without deleterious effects on viability under a variety of physiological growth conditions. The null mutant also displays near-wild-type infectivity, arguing against a decisive role played by P23 in laboratory settings. However, the P23 null mutant displays a marked hypersensitivity against HSP90 inhibitors geldanamycin and radicicol. P23 also appears to affect the radicicol resistance of a HSP90 Leu33-Ile mutant described previously. Therefore, the annotation of L. donovani P23 as HSP90-interacting co-chaperone is confirmed.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-015-0595-y) contains supplementary material, which is available to authorized users.  相似文献   

10.
We previously reported the identification of small serine/threonine kinase (SSTK) that is expressed in postmeiotic germ cells, associates with HSP90, and is indispensable for male fertility. Sperm from SSTK-null mice cannot fertilize eggs in vitro and are incapable of fusing with eggs that lack zona pellucida. Here, using the yeast two-hybrid screen, we have discovered a novel SSTK-interacting protein (SIP) that is expressed exclusively in testis. The gene encoding SIP is restricted to mammals and encodes a 125-amino acid polypeptide with a predicted tetratricopeptide repeat domain. SIP is co-localized with SSTK in the cytoplasm of spermatids as they undergo restructuring and chromatin condensation, but unlike SSTK, is not retained in the mature sperm. SIP binds to SSTK with high affinity (Kd ∼10 nm), and the proteins associate with each other when co-expressed in cells. In vitro, SIP inhibited SSTK kinase activity, whereas the presence of SIP in cells resulted in enzymatic activation of SSTK without affecting Akt or MAPK activity. SIP was found to be associated with cellular HSP70, and analyses with purified proteins revealed that SIP directly bound HSP70. Importantly, SSTK recruited SIP onto HSP90, and treatment of cells with the specific HSP90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, completely abolished SSTK catalytic activity. Hence, these findings demonstrate that HSP90 is essential for functional maturation of the kinase and identify SIP as a cochaperone that is critical to the HSP90-mediated activation of SSTK.  相似文献   

11.
Heat shock proteins (HSPs) expression is commonly used as indicators of cellular stress in animals. However, very little is known about either the expression patterns of HSPs or their role in the stress-tolerance phenomenon in early life stages of fish. To this end, we examined the impact of food-deprivation (12 h), reduced oxygen levels (3.5 mg/L for 1 h) and heat shock (HS: + 5 °C for 1 h) on HSP70 and HSP90 protein expression in early life stages of the gilthead sea bream (Sparus aurata), a warm-water aquaculture species. Also, we investigated HSP70 and HSP90 response to food-deprivation (7 days) in early life stages of rainbow trout (Oncorhynchus mykiss), a cool-water aquaculture species, and the tolerance of this larvae to heat shock (either + 5 or + 10 °C for 1 h). Our results clearly demonstrate that food-deprivation enhances HSP70 and HSP90 protein expression in larvae of both species. In gilthead sea bream larvae, the stressors-induced HSP70 and HSP90 (only in the reduced oxygen group) protein expression returned to unstressed levels after 24 h recovery. In fed trout larvae, a + 5 °C heat shock did not elevate HSP70 and HSP90 expression, whereas 100% mortality was evident with a + 10 °C HS. However, food-deprived trout larvae, which had higher HSP70 and HSP90 protein content, survived HS and showed HS-dependent increases in HSP70, but not HSP90 expression. Overall, HSP70 and HSP90 protein expression in early life stages of fish have the potential to be used as markers of nutritional stress, while elevation of the tissue HSPs content may be used as a means to increase stress tolerance during larval rearing.  相似文献   

12.
V(D)J recombination, a site-specific gene rearrangement process, requires two RAG1 and RAG2 proteins specifically recognizing recombination signal sequences and forming DNA double-strand breaks. The broken DNA ends tightly bound to RAG proteins are joined by repair proteins. Here, we found that heat shock protein 70 was associated with RAG2 following two-step affinity chromatography purification. It was also co-immunoprecipitated with RAG2 in pro-B cells. Purified HSP70 protein disrupted RAG/DNA complexes assembled in vitro and also inhibited the V(D)J cleavage (both nick and hairpin formation) in a dose-dependent manner. This HSP70 action required ATP energy. These data suggest that HSP70 might play a crucial role in disassembling RAG/DNA complexes stably formed during V(D)J recombination.  相似文献   

13.
Heat shock protein 90 (HSP90) is a highly conserved and essential molecular chaperone involved in maturation and activation of signaling proteins in eukaryotes. HSP90 operates as a dimer in a conformational cycle driven by ATP binding and hydrolysis. HSP90 often functions together with co-chaperones that regulate the conformational cycle and/or load a substrate "client" protein onto HSP90. In plants, immune sensing NLR (nucleotide-binding domain and leucine-rich repeat containing) proteins are among the few known client proteins of HSP90. In the process of chaperoning NLR proteins, co-chaperones, RAR1 and SGT1 function together with HSP90. Recent structural and functional analyses indicate that RAR1 dynamically controls conformational changes of the HSP90 dimer, allowing SGT1 to bridge the interaction between NLR proteins and HSP90. Here, we discuss the regulation of NLR proteins by HSP90 upon interaction with RAR1 and SGT1, emphasizing the recent progress in our understanding of the structure and function of the complex. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).  相似文献   

14.
Heat shock proteins (HSPs) are molecular chaperones that play a pivotal role in correct folding, stabilization and intracellular transport of many client proteins including those involved in oncogenesis. HSP70, which is frequently overexpressed in prostate cancer (PCa), has been shown to critically contribute to tumor cell survival, and might therefore represent a potential therapeutic target. We treated both the androgen receptor (AR)-positive LNCaP and the AR-negative PC-3 cell lines with the pharmacologic HSP70 inhibitor VER155008. Although we observed antiproliferative effects and induction of apoptosis upon HSP70 inhibition, the apoptotic effect was more pronounced in AR-positive LNCaP cells. In addition, VER155008 treatment induced G1 cell cycle arrest in LNCaP cells and decreased AR expression. Further analysis of the HSP system by Western blot analysis revealed that expression of HSP27, HOP and HSP90β was significantly inhibited by VER155008 treatment, whereas the HSP40, HSP60, and HSP90α expression remained unchanged. Taken together, VER155008 might serve as a novel therapeutic option in PCa patients independent of the AR expression status.  相似文献   

15.
Li J  Sun X  Wang Z  Chen L  Li D  Zhou J  Liu M 《PloS one》2012,7(4):e36389
Hsp70/Hsp90-organizing protein (HOP) is a member of the co-chaperone family, which directly binds to chaperones to regulate their activities. The participation of HOP in cell motility and endothelial cell functions remains largely unknown. In this study, we demonstrate that HOP is critically involved in endothelial cell migration and angiogenesis. Tube formation and capillary sprouting experiments reveal that depletion of HOP expression significantly inhibits vessel formation from endothelial cells. Wound healing and transwell migration assays show that HOP is important for endothelial cell migration. By examination of centrosome reorientation and membrane ruffle dynamics, we find that HOP plays a crucial role in the establishment of cell polarity in response to migratory stimulus. Furthermore, our data show that HOP interacts with tubulin and colocalizes with microtubules in endothelial cells. These findings indicate HOP as a novel regulator of angiogenesis that functions through promoting vascular endothelial cell polarization and migration.  相似文献   

16.
Hemorrhage in mice results in decreased ATP levels in the jejunum, lung, kidney, heart, and brain but not in liver tissue lysates, albeit at variable levels and time kinetics. The decreased protein expression and activity of pyruvate dehydrogenase (PDH) accounted for the hemorrhage-induced ATP loss. Treatment with geldanamycin (GA; 1 microg/g body wt), a known inducer of heat shock protein (HSP)70, inhibited the hemorrhage-induced ATP loss in the jejunum, lung, heart, kidney, and brain. GA was found to increase PDH protein, preserve PDH enzymatic activity, and inhibit mucosal injury in jejunum tissues. GA-induced HSP70i was found to form complexes with PDH protein. HSP70 gene transfer into intestinal epithelial cells promoted PDH and ATP levels, whereas HSP70 short interfering RNA limited them. We conclude that agents able to increase the expression of HSP70 and PDH may be of value in reducing pathology resulting from hemorrhage-associated ATP loss.  相似文献   

17.
Molecular chaperone proteins play a pivotal role in the protozoan parasite Leishmania donovani, controlling cell fate and ensuring intracellular survival. In higher eukaryotes, the so-called co-chaperone proteins are required for client protein recognition and proper function of chaperones, among them the small glutamine-rich tetratricopeptide repeat proteins (SGT) which interact with both HSP70 and HSP90 chaperones. An atypical SGT homolog is found in the L. donovani genome, encoding a protein lacking the C-terminal glutamine-rich region, normally typical for SGT family members. The gene is expressed constitutively during the life cycle and is essential for survival and/or growth of the parasites. LdSGT forms large, stable complexes that also include another putative co-chaperone, HSC70 interacting protein (HIP). The gene product forms cytoplasmic clusters, matching the subcellular distribution of HIP and partly that of the major cytoplasmic chaperones, HSP70 and HSP90, reflecting a direct molecular interaction with both chaperones.  相似文献   

18.
Maintenance of protein homeostasis by molecular chaperones Hsp70 and Hsp90 requires their spatial and functional coordination. The cooperation of Hsp70 and Hsp90 is influenced by their interaction with the network of co-chaperone proteins, some of which contain tetratricopeptide repeat (TPR) domains. Critical to these interactions are TPR domains that target co-chaperone binding to the EEVD-COOH motif that terminates Hsp70/Hsp90. Recently, the two-TPR domain-containing protein, Tomm34, was reported to bind both Hsp70 and Hsp90. Here we characterize the structural basis of Tomm34-Hsp70/Hsp90 interactions. Using multiple methods, including pull-down assays, fluorescence polarization, hydrogen/deuterium exchange, and site-directed mutagenesis, we defined the binding activities and specificities of Tomm34 TPR domains toward Hsp70 and Hsp90. We found that Tomm34 TPR1 domain specifically binds Hsp70. This interaction is partly mediated by a non-canonical TPR1 two-carboxylate clamp and is strengthened by so far unidentified additional intermolecular contacts. The two-carboxylate clamp of the isolated TPR2 domain has affinity for both chaperones, but as part of the full-length Tomm34 protein, the TPR2 domain binds specifically Hsp90. These binding properties of Tomm34 TPR domains thus enable simultaneous binding of Hsp70 and Hsp90. Importantly, we provide evidence for the existence of an Hsp70-Tomm34-Hsp90 tripartite complex. In addition, we defined the basic conformational demands of the Tomm34-Hsp90 interaction. These results suggest that Tomm34 represents a novel scaffolding co-chaperone of Hsp70 and Hsp90, which may facilitate Hsp70/Hsp90 cooperation during protein folding.  相似文献   

19.
A subset of heat shock proteins, HSP90 alpha, HSP90 beta, and a member of the HSP70 family, HSC70, shows enhanced synthesis following mitogenic activation as well as heat shock in human peripheral blood mononuclear cells. In this study, we have examined expression of mRNA for these proteins, including the major 70-kDa heat shock protein, HSP70, in mononuclear cells following either heat shock or mitogenic activation with phytohemagglutinin (PHA), ionomycin, and the phorbol ester, tetradecanoyl phorbol acetate. The results demonstrate that the kinetics of mRNA expression of these four genes generally parallel the kinetics of enhanced protein synthesis seen following either heat shock or mitogen activation and provide clear evidence that mitogen-induced synthesis of HSC70 and HSP90 is due to increased mRNA levels and not simply to enhanced translation of preexisting mRNA. Although most previous studies have focused on cell cycle regulation of HSP70 mRNA, we found that HSP70 mRNA was only slightly and transiently induced by PHA activation, while HSC70 is the predominant 70-kDa heat shock protein homologue induced by mitogens. Similarly, HSP90 alpha appears more inducible by heat shock than mitogens while the opposite is true for HSP90 beta. These results suggest that, although HSP70 and HSC70 have been shown to contain similar promoter regions, additional regulatory mechanisms which result in differential expression to a given stimulus must exist. They clearly demonstrate that human lymphocytes are an important model system for determining mechanisms for regulation of heat shock protein synthesis in unstressed cells. Finally, based on kinetics of mRNA expression, the results are consistent with the hypothesis that HSC70 and HSP90 gene expression are driven by an IL-2/IL-2 receptor-dependent pathway in human T cells.  相似文献   

20.
The vesicle-inducing protein in plastids (VIPP1) is essential for the biogenesis of thylakoid membranes in cyanobacteria and plants. VIPP1 and its bacterial ancestor PspA form large homo-oligomeric rings of >1 MDa. We recently demonstrated that VIPP1 interacts with the chloroplast J-domain co-chaperone CDJ2 and its chaperone partner HSP70B, and hypothesized that the chaperones might be involved in the assembly and/or disassembly of VIPP1 oligomers. To test this hypothesis, we analysed the composition of VIPP1/chaperone complexes in Chlamydomonas reinhardtii cell extracts and monitored effects of the chaperones on VIPP1 assembly states in vitro. We found that CGE1, the chloroplast GrpE homologue, is also part of complexes with HSP70B, CDJ2 and VIPP1. We observed that CDJ2-VIPP1 accumulated as low- and high-molecular-weight complexes in ATP-depleted cell extracts, but as intermediate-size complexes in extracts supplemented with ATP. This was consistent with a role for the chaperones in VIPP1 assembly and disassembly. Using purified proteins, we could demonstrate that the chaperones indeed facilitated both the assembly and disassembly of VIPP1 oligomers. Electron microscopy studies revealed that, in contrast to PspA, VIPP1 rings assembled into rod-shaped supercomplexes that were morphologically similar to microtubule-like structures observed earlier in various plastid types. VIPP1 rods, too, were disassembled by the chaperones, and chaperone-mediated rod disassembly also occurred when VIPP1 lacked an approximately 30-aa C-terminal extension present in VIPP1 homologues but absent in PspA. By regulating the assembly state of VIPP1, the chloroplast HSP70 chaperone system may play an important role in the maintenance/biogenesis of thylakoid membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号