首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
Cell migration is a highly regulated multistep process that requires the coordinated regulation of cell adhesion, protrusion, and contraction. These processes require numerous protein–protein interactions and the activation of specific signaling pathways. The Rho family of GTPases plays a key role in virtually every aspect of the cell migration cycle. The activation of Rho GTPases is mediated by a large and diverse family of proteins; the guanine nucleotide exchange factors (RhoGEFs). GEFs work immediately upstream of Rho proteins to provide a direct link between Rho activation and cell–surface receptors for various cytokines, growth factors, adhesion molecules, and G protein-coupled receptors. The regulated targeting and activation of RhoGEFs is essential to coordinate the migratory process. In this review, we summarize the recent advances in our understanding of the role of RhoGEFs in the regulation of cell migration.  相似文献   

2.
The regulator of G protein signaling homology (RH) Rho guanine nucleotide exchange factors (RhoGEFs) (p115RhoGEF, leukemia-associated RhoGEF, and PDZ-RhoGEF) contain an RH domain and are specific GEFs for the monomeric GTPase RhoA. The RH domains interact specifically with the α subunits of G12 heterotrimeric GTPases. Activated Gα13 modestly stimulates the exchange activity of both p115RhoGEF and leukemia-associated RhoGEF but not PDZ-RhoGEF. Because all three RH-RhoGEFs can localize to the plasma membrane upon expression of activated Gα13, cellular localization of these RhoGEFs has been proposed as a mechanism for controlling their activity. We use a small molecule-regulated heterodimerization system to rapidly control the localization of RH-RhoGEFs. Acute localization of the proteins to the plasma membrane activates RhoA within minutes and to levels that are comparable with activation of RhoA by hormonal stimulation of G protein-coupled receptors. The catalytic activity of membrane-localized RhoGEFs is not dependent on activated Gα13. We further show that the conserved RH domains can rewire two different RacGEFs to activate Rac1 in response to a traditional activator of RhoA. Thus, RH domains act as independent detectors for activated Gα13 and are sufficient to modulate the activity of RhoGEFs by hormones via mediating their localization to substrate, membrane-associated RhoA.  相似文献   

3.
Rho proteins are small GTPases of the Ras superfamily that regulate a wide variety of biological processes, ranging from gene expression to cell migration. Mechanistically, the major Rho GTPases function as molecular switches cycling between an inactive GDP-bound and an active GTP-bound conformation, although several Rho proteins spontaneously exchange nucleotides or are simply devoid of GTPase activity. For over a decade, RhoGEFs and RhoGAPs have been established as the mainstream regulators of Rho proteins, respectively flipping the switch on or off. However, regulation by GEFs and GAPs leaves several fundamental questions on the operation of the Rho switch unanswered, indicating that the regulation of Rho proteins does not rely exclusively on RhoGEFs and RhoGAPs. Recent evidence indeed suggests that Rho GTPases are finely tuned by multiple alternative regulatory mechanisms, including post-translational modifications and protein degradation, as well as crosstalk mechanisms between Rho proteins. Here we review these alternative mechanisms and discuss how they alter Rho protein function and signaling. We also envision how the classic binary Rho switch may indeed function more like a switchboard with multiple switches and dials that can all contribute to the regulation of Rho protein function.  相似文献   

4.
Junctional adhesion molecule A (JAM-A) is a broadly expressed adhesion molecule that regulates cell–cell contacts and facilitates leukocyte transendothelial migration. The latter occurs through interactions with the integrin LFA-1. Although we understand much about JAM-A, little is known regarding the protein’s role in mechanotransduction or as a modulator of RhoA signaling. We found that tension imposed on JAM-A activates RhoA, which leads to increased cell stiffness. Activation of RhoA in this system depends on PI3K-mediated activation of GEF-H1 and p115 RhoGEF. These two GEFs are further regulated by FAK/ERK and Src family kinases, respectively. Finally, we show that phosphorylation of JAM-A at Ser-284 is required for RhoA activation in response to tension. These data demonstrate a direct role of JAM-A in mechanosignaling and control of RhoA and implicate Src family kinases in the regulation of p115 RhoGEF.  相似文献   

5.
Dbs is a Rho-specific guanine nucleotide exchange factor (RhoGEF) that exhibits transforming activity when overexpressed in NIH 3T3 mouse fibroblasts. Like many RhoGEFs, the in vitro catalytic activity of Dbs is not limited to a single substrate. It can catalyze the exchange of GDP for GTP on RhoA and Cdc42, both of which are expressed in most cell types. This lack of substrate specificity, which is relatively common among members of the RhoGEF family, complicates efforts to determine the molecular basis of their transforming activity. We have recently determined crystal structures of several RhoGEFs bound to their cognate GTPases and have used these complexes to predict structural determinants dictating the specificities of coupling between RhoGEFs and GTPases. Guided by this information, we mutated Dbs to alter significantly its relative exchange activity for RhoA versus Cdc42 and show that the transformation potential of Dbs correlates with exchange on RhoA but not Cdc42. Supporting this conclusion, oncogenic Dbs activates endogenous RhoA but not endogenous Cdc42 in NIH 3T3 cells. Similarly, a competitive inhibitor that blocks RhoA activation also blocks Dbs-mediated transformation. In conclusion, this study highlights the usefulness of specificity mutants of RhoGEFs as tools to genetically dissect the multiple signaling pathways potentially activated by overexpressed or oncogenic RhoGEFs. These ideas are exemplified for Dbs, which is strongly implicated in the transformation of NIH 3T3 cells via RhoA and not Cdc42.  相似文献   

6.
The Rho family of GTPases plays an important role in coordinating dynamic changes in the cell migration machinery after integrin engagement with the extracellular matrix. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and negatively regulated by GTPase-activating proteins (GAPs). However, the mechanisms by which GEFs and GAPs are spatially and temporally regulated are poorly understood. Here the activity of the proto-oncogene Vav2, a GEF for Rac1, RhoA, and Cdc42, is shown to be regulated by a phosphorylation-dependent interaction with the ArfGAP PKL (GIT2). PKL is required for Vav2 activation downstream of integrin engagement and epidermal growth factor (EGF) stimulation. In turn, Vav2 regulates the subsequent redistribution of PKL and the Rac1 GEF β-PIX to focal adhesions after EGF stimulation, suggesting a feedforward signaling loop that coordinates PKL-dependent Vav2 activation and PKL localization. Of interest, Vav2 is required for the efficient localization of PKL and β-PIX to the leading edge of migrating cells, and knockdown of Vav2 results in a decrease in directional persistence and polarization in migrating cells, suggesting a coordination between PKL/Vav2 signaling and PKL/β-PIX signaling during cell migration.  相似文献   

7.
The multimodular guanine nucleotide exchange factors (GEFs) of the Dbl family mostly share a tandem Dbl homology (DH) and pleckstrin homology (PH) domain organization. The function of these and other domains in the DH-mediated regulation of the GDP/GTP exchange reaction of the Rho proteins is the subject of intensive investigations. This comparative study presents detailed kinetic data on specificity, activity, and regulation of the catalytic DH domains of four GEFs, namely p115, p190, PDZ-RhoGEF (PRG), and leukemia-associated RhoGEF (LARG). We demonstrate that (i) these GEFs are specific guanine nucleotide exchange factors for the Rho isoforms (RhoA, RhoB, and RhoC) and inactive toward other members of the Rho family, including Rac1, Cdc42, and TC10. (ii) The DH domain of LARG exhibits the highest catalytic activity reported for a Dbl protein till now with a maximal acceleration of the nucleotide exchange by 10(7)-fold, which is at least as efficient as reported for GEFs specific for Ran or the bacterial toxin SopE. (iii) A novel regulatory region at the N terminus of the DH domain is involved in its association with GDP-bound RhoA monitored by a fluorescently labeled RhoA. (iv) The tandem PH domains of p115 and PRG efficiently contribute to the DH-mediated nucleotide exchange reaction. (v) In contrast to the isolated DH or DH-PH domains, a p115 fragment encompassing both the regulator of G-protein signaling and the DH domains revealed a significantly reduced GEF activity, supporting the proposed models of an intramolecular autoinhibitory mechanism for p115-like RhoGEFs.  相似文献   

8.
Cell migration involves the cooperative reorganization of the actin and microtubule cytoskeletons, as well as the turnover of cell–substrate adhesions, under the control of Rho family GTPases. RhoA is activated at the leading edge of motile cells by unknown mechanisms to control actin stress fiber assembly, contractility, and focal adhesion dynamics. The microtubule-associated guanine nucleotide exchange factor (GEF)-H1 activates RhoA when released from microtubules to initiate a RhoA/Rho kinase/myosin light chain signaling pathway that regulates cellular contractility. However, the contributions of activated GEF-H1 to coordination of cytoskeletal dynamics during cell migration are unknown. We show that small interfering RNA-induced GEF-H1 depletion leads to decreased HeLa cell directional migration due to the loss of the Rho exchange activity of GEF-H1. Analysis of RhoA activity by using a live cell biosensor revealed that GEF-H1 controls localized activation of RhoA at the leading edge. The loss of GEF-H1 is associated with altered leading edge actin dynamics, as well as increased focal adhesion lifetimes. Tyrosine phosphorylation of focal adhesion kinase and paxillin at residues critical for the regulation of focal adhesion dynamics was diminished in the absence of GEF-H1/RhoA signaling. This study establishes GEF-H1 as a critical organizer of key structural and signaling components of cell migration through the localized regulation of RhoA activity at the cell leading edge.  相似文献   

9.
Rho family guanosine triphosphatases (GTPases), such as RhoA, Cdc42, and Rac1, play a fundamental role in various cellular processes. The activation of Rho proteins is catalyzed by guanine nucleotide-exchange factors (GEFs), which promote the exchange of GDP for GTP. The precise mechanisms regulating the activation of Rho proteins are not fully understood. Herein, we demonstrate that RhoA activity is regulated by cylindromatosis (CYLD), a deubiquitinase harboring multiple functions. In addition, we find that RhoA-mediated cytoskeletal rearrangement, chromosome separation, and cell polarization are altered in CYLD-depleted cells. Mechanistically, CYLD does not interact with RhoA; instead, it interacts with and deubiquitinates leukemia-associated RhoGEF (LARG). Our data further show that CYLD-mediated deubiquitination of LARG enhances its ability to stimulate the GDP/GTP exchange on RhoA. These data thus identify LARG as a new substrate of CYLD and provide novel insights into the regulation of RhoA activation. Our results also suggest that the LARG-RhoA signaling pathway may play a role in diverse CYLD-mediated cellular events.  相似文献   

10.
《Cellular signalling》2014,26(3):483-491
The Rho family of GTPases consists of several small proteins that have been described as molecular switches, playing important roles in a wide variety of fundamental cellular processes and in human diseases such as cancer. These proteins, active in the GTP conformation and inactive in the GDP form, are in turn regulated by guanine nucleotide exchange factors (GEFs), guanine nucleotide activating proteins (GAPs) and guanine dissociation inhibitors (GDIs). Two decades ago, Tiam1 (T-lymphoma invasion and metastasis) was identified as a GEF specific for Rac1 activation, but also for Cdc42 and in a lesser extent RhoA.Acting principally upstream of Rac1, Tiam1 is mainly involved in the regulation of Rac1 mediated signaling pathways including cytoskeletal activities, cell polarity, endocytosis and membrane trafficking, cell migration, adhesion and invasion, cell growth and survival, metastasis and carcinogenesis. However, given the large number of protein interaction domains found in its structure, it is possible that Tiam1 affects cellular processes in another way than through its GEF activity by interactions with other signaling proteins.Due to its functional diversity, Tiam1 is involved in multiple steps of tumorigenesis.As its name suggests, Tiam1 has been shown to increase T-cell lymphoma invasion and metastasis. It also promotes migration of fibroblasts, neuronal and cancer cells. On the contrary, Tiam1-induced cell adhesion has also been described, as opposed to cell migration. Moreover, studies indicate that Tiam1 is involved in both anti-apoptotic and pro-apoptotic mechanisms.While increasing evidence has demonstrated Tiam1's contribution to tumorigenesis and metastasis, others suggest that Tiam1 could have anti-cancer properties.In the present review, we discuss the current knowledge about the controversial roles of Tiam1 in cellular signaling. In particular, we will focus on Tiam1's regulation, its biological functions and implication in cancer.  相似文献   

11.
Rho GTPases are molecular “switches” that cycle between “on” (GTP-bound) and “off” (GDP-bound) states and regulate numerous cellular activities such as gene expression, protein synthesis, cytoskeletal rearrangements, and metabolic responses. Dysregulation of GTPases is a key feature of many diseases, especially cancers. Guanine nucleotide exchange factors (GEFs) of the Dbl family are activated by mitogenic cell surface receptors and activate the Rho family GTPases Cdc42, Rac1, and RhoA. The molecular mechanisms that regulate GEFs from the Dbl family are poorly understood. Our studies reveal that Dbl is phosphorylated on tyrosine residues upon stimulation by growth factors and that this event is critical for the regulated activation of the GEF. These findings uncover a novel layer of complexity in the physiological regulation of this protein.  相似文献   

12.
To investigate mechanisms that underlie different modes of tumor cell movement we have studied how regulation of the activity of the Rho family GTPases determines the mode of tumor cell movement. Guanine nucleotide exchange factors (GEFs) and GTPase accelerating proteins (GAPs) are key regulators of the activity of small GTPases with GEFs promoting activation to the GTP bound state and GAPs promoting inactivation by stimulating GTP hydrolysis. We identified two important signaling pathways regulating amoeboid and mesenchymal types of motility in melanoma. Here, we discuss our findings in the context of how specificity of Rho signaling is achieved by GEFs and GAPs.  相似文献   

13.
Wnt5a can activate β-catenin-independent pathways for regulation of various cellular functions, such as migration, that play critical roles in wound repair. Investigation of Wnt5a signaling may help identify therapeutic targets for enhancing corneal endothelial wound healing that could provide an alternative to corneal transplantation in patients with blindness from endothelial dysfunction. However, Wnt5a signaling in corneal endothelial cells (CECs) has not been well characterized. In this study, we show transient induction of Wnt5a by interleukin-1β (IL-1β) stimulation proceeds through NF-κB in human CECs. This leads to binding of Fzd5 to Ror2, resulting in activation of disheveled protein (Dvl) and subsequently disheveled-associated activator of morphogenesis 1 (DAAM1). This leads to activation of Cdc42 and subsequent inhibition of RhoA. Inhibition of RhoA leads to parallel dephosphorylation and inactivation of LIM domain kinase 2 along with dephosphorylation and activation of slingshot 1, resulting in dephosphorylation and activation of cofilin and leading to enhanced cell migration. These findings suggest that Wnt5a enhances cell migration through activation of Cdc42 and inactivation of RhoA in human CECs.  相似文献   

14.
Cell migration requires the coordinated spatiotemporal regulation of actomyosin contraction and cell protrusion/adhesion. Nonmuscle myosin II (MII) controls Rac1 and Cdc42 activation, and cell protrusion and focal complex formation in migrating cells. However, these mechanisms are poorly understood. Here, we show that MII interacts specifically with multiple Dbl family guanine nucleotide exchange factors (GEFs). Binding is mediated by the conserved tandem Dbl homology–pleckstrin homology module, the catalytic site of these GEFs, with dissociation constants of ∼0.3 µM. Binding to the GEFs required assembly of the MII into filaments and actin-stimulated ATPase activity. Binding of MII suppressed GEF activity. Accordingly, inhibition of MII ATPase activity caused release of GEFs and activation of Rho GTPases. Depletion of βPIX GEF in migrating NIH3T3 fibroblasts suppressed lamellipodial protrusions and focal complex formation induced by MII inhibition. The results elucidate a functional link between MII and Rac1/Cdc42 GTPases, which may regulate protrusion/adhesion dynamics in migrating cells.  相似文献   

15.

Background

Rho GTPases control many cellular processes, including cell survival, gene expression and migration. Rho proteins reside mainly in the cytosol and are targeted to the plasma membrane (PM) upon specific activation by guanine nucleotide exchange factors (GEFs). Accordingly, most GEFs are also cytosolic or associated with the PM. However, Net1, a RhoA-specific GEF predominantly localizes to the cell nucleus at steady-state. Nuclear localization for Net1 has been seen as a mechanism for sequestering the GEF away from RhoA, effectively rendering the protein inactive. However, considering the prominence of nuclear Net1 and the fact that a biological stimulus that promotes Net1 translocation out the nucleus to the cytosol has yet to be discovered, we hypothesized that Net1 might have a previously unidentified function in the nucleus of cells.

Principal Findings

Using an affinity precipitation method to pulldown the active form of Rho GEFs from different cellular fractions, we show here that nuclear Net1 does in fact exist in an active form, contrary to previous expectations. We further demonstrate that a fraction of RhoA resides in the nucleus, and can also be found in a GTP-bound active form and that Net1 plays a role in the activation of nuclear RhoA. In addition, we show that ionizing radiation (IR) specifically promotes the activation of the nuclear pool of RhoA in a Net1-dependent manner, while the cytoplasmic activity remains unchanged. Surprisingly, irradiating isolated nuclei alone also increases nuclear RhoA activity via Net1, suggesting that all the signals required for IR-induced nuclear RhoA signaling are contained within the nucleus.

Conclusions/Significance

These results demonstrate the existence of a functional Net1/RhoA signaling pathway within the nucleus of the cell and implicate them in the DNA damage response.  相似文献   

16.
The small G-protein Rap1 plays an important role in the regulation of endothelial barrier function, a process controlled largely by cell–cell adhesions and their connection to the actin cytoskeleton. During the various stages of barrier dynamics, different guanine nucleotide exchange factors (GEFs) control Rap1 activity, indicating that Rap1 integrates multiple input signals. Once activated, Rap1 induces numerous signaling cascades, together responsible for the increased endothelial barrier function. Most notably, Rap1 activation results in the inhibition of Rho to decrease radial stress fibers and the activation of Cdc42 to increase junctional actin. This implies that Rap regulates endothelial barrier function by dual control of cytoskeletal tension. The molecular details of the signaling pathways are becoming to be elucidated.  相似文献   

17.
During Xenopus development, embryonic cells dramatically change their shape and position. Rho family small GTPases, such as RhoA, Rac, and Cdc42, play important roles in this process. These GTPases are generally activated by guanine nucleotide exchange factors (GEFs); however, the roles of RhoGEFs in Xenopus development have not yet been elucidated. We therefore searched for RhoGEF genes in our Xenopus EST database, and we identified several genes expressed during embryogenesis. Among them, we focused on one gene, designated xNET1. It is similar to mammalian NET1, a RhoA-specific GEF. An in vitro binding assay revealed that xNET1 bound to RhoA, but not to Rac or Cdc42. In addition, transient expression of xNET1 activated endogenous RhoA. These results indicated that xNET1 is a GEF for RhoA. Epitope-tagged xNET1 was localized mainly to the nucleus, and the localization was regulated by nuclear localization signals in the N-terminal region of xNET1. Overexpression of either wild-type or a mutant form of xNET1 severely inhibited gastrulation movements. We demonstrated that xNET1 was co-immunoprecipitated with the Dishevelled protein, which is an essential signaling component in the non-canonical Wnt pathway. This pathway has been shown to activate RhoA and regulate gastrulation movements. We propose that xNET1 or a similar RhoGEF may mediate Dishevelled signaling to RhoA in the Wnt pathway.  相似文献   

18.
Polarized cell migration results from the transduction of extra-cellular cues promoting the activation of Rho GTPases with the intervention of multidomain proteins, including guanine exchange factors. P-Rex1 and P-Rex2 are Rac GEFs connecting Gbetagamma and phosphatidylinositol 3-kinase signaling to Rac activation. Their complex architecture suggests their regulation by protein-protein interactions. Novel mechanisms of activation of Rho GTPases are associated with mammalian target of rapamycin (mTOR), a serine/threonine kinase known as a central regulator of cell growth and proliferation. Recently, two independent multiprotein complexes containing mTOR have been described. mTORC1 links to the classical rapamycin-sensitive pathways relevant for protein synthesis; mTORC2 links to the activation of Rho GTPases and cytoskeletal events via undefined mechanisms. Here we demonstrate that P-Rex1 and P-Rex2 establish, through their tandem DEP domains, interactions with mTOR, suggesting their potential as effectors in the signaling of mTOR to Rac activation and cell migration. This possibility was consistent with the effect of dominant-negative constructs and short hairpin RNA-mediated knockdown of P-Rex1, which decreased mTOR-dependent leucine-induced activation of Rac and cell migration. Rapamycin, a widely used inhibitor of mTOR signaling, did not inhibit Rac activity and cell migration induced by leucine, indicating that P-Rex1, which we found associated to both mTOR complexes, is only active when in the mTORC2 complex. mTORC2 has been described as the catalytic complex that phosphorylates AKT/PKB at Ser-473 and elicits activation of Rho GTPases and cytoskeletal reorganization. Thus, P-Rex1 links mTOR signaling to Rac activation and cell migration.  相似文献   

19.

Background

Rho family GTPases are critical regulators of the cytoskeleton and affect cell migration, cell-cell adhesion, and cell-matrix adhesion. As with all GTPases, their activity is determined by their guanine nucleotide-bound state. Understanding how Rho proteins are activated and inactivated has largely focused on regulatory proteins such as guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). However, recent in vitro studies have indicated that GTPases may also be directly regulated by redox agents. We hypothesized that this redox-based mechanism occurs in cells and affects cytoskeletal dynamics, and in this report we conclude this is indeed a novel mechanism of regulating the GTPase RhoA.

Methodology/Principal Findings

In this report, we show that RhoA can be directly activated by reactive oxygen species (ROS) in cells, and that this requires two critical cysteine residues located in a unique redox-sensitive motif within the phosphoryl binding loop. First, we show that ROS can reversibly activate RhoA and induce stress fiber formation, a well characterized readout of RhoA activity. To determine the role of cysteine residues in this mechanism of regulation, we generated cysteine to alanine RhoA mutants. Mutation of these cysteines abolishes ROS-mediated activation and stress fiber formation, indicating that these residues are critical for redox-regulation of RhoA. Importantly, these mutants maintain the ability to be activated by GEFs.

Conclusions/Significance

Our findings identify a novel mechanism for the regulation of RhoA in cells by ROS, which is independent of classical regulatory proteins. This mechanism of regulation may be particularly relevant in pathological conditions where ROS are generated and the cellular redox-balance altered, such as in asthma and ischemia-reperfusion injury.  相似文献   

20.
Integrin binding to matrix proteins such as fibronectin (FN) leads to formation of focal adhesion (FA) cellular contact sites that regulate migration. RhoA GTPases facilitate FA formation, yet FA-associated RhoA-specific guanine nucleotide exchange factors (GEFs) remain unknown. Here, we show that proline-rich kinase-2 (Pyk2) levels increase upon loss of focal adhesion kinase (FAK) in mouse embryonic fibroblasts (MEFs). Additionally, we demonstrate that Pyk2 facilitates deregulated RhoA activation, elevated FA formation, and enhanced cell proliferation by promoting p190RhoGEF expression. In normal MEFs, p190RhoGEF knockdown inhibits FN-associated RhoA activation, FA formation, and cell migration. Knockdown of p190RhoGEF-related GEFH1 does not affect FA formation in FAK−/− or normal MEFs. p190RhoGEF overexpression enhances RhoA activation and FA formation in MEFs dependent on FAK binding and associated with p190RhoGEF FA recruitment and tyrosine phosphorylation. These studies elucidate a compensatory function for Pyk2 upon FAK loss and identify the FAK–p190RhoGEF complex as an important integrin-proximal regulator of FA formation during FN-stimulated cell motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号