首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Key message

An ultra-high density genetic map containing 34,574 sequence-defined markers was developed in Lupinus angustifolius. Markers closely linked to nine genes of agronomic traits were identified. A physical map was improved to cover 560.5 Mb genome sequence.

Abstract

Lupin (Lupinus angustifolius L.) is a recently domesticated legume grain crop. In this study, we applied the restriction-site associated DNA sequencing (RADseq) method to genotype an F9 recombinant inbred line population derived from a wild type × domesticated cultivar (W × D) cross. A high density linkage map was developed based on the W × D population. By integrating sequence-defined DNA markers reported in previous mapping studies, we established an ultra-high density consensus genetic map, which contains 34,574 markers consisting of 3508 loci covering 2399 cM on 20 linkage groups. The largest gap in the entire consensus map was 4.73 cM. The high density W × D map and the consensus map were used to develop an improved physical map, which covered 560.5 Mb of genome sequence data. The ultra-high density consensus linkage map, the improved physical map and the markers linked to genes of breeding interest reported in this study provide a common tool for genome sequence assembly, structural genomics, comparative genomics, functional genomics, QTL mapping, and molecular plant breeding in lupin.
  相似文献   

4.
The red‐spotted grouper Epinephelus akaara (E. akaara) is one of the most economically important marine fish in China, Japan and South‐East Asia and is a threatened species. The species is also considered a good model for studies of sex inversion, development, genetic diversity and immunity. Despite its importance, molecular resources for E. akaara remain limited and no reference genome has been published to date. In this study, we constructed a chromosome‐level reference genome of E. akaara by taking advantage of long‐read single‐molecule sequencing and de novo assembly by Oxford Nanopore Technology (ONT) and Hi‐C. A red‐spotted grouper genome of 1.135 Gb was assembled from a total of 106.29 Gb polished Nanopore sequence (GridION, ONT), equivalent to 96‐fold genome coverage. The assembled genome represents 96.8% completeness (BUSCO) with a contig N50 length of 5.25 Mb and a longest contig of 25.75 Mb. The contigs were clustered and ordered onto 24 pseudochromosomes covering approximately 95.55% of the genome assembly with Hi‐C data, with a scaffold N50 length of 46.03 Mb. The genome contained 43.02% repeat sequences and 5,480 noncoding RNAs. Furthermore, combined with several RNA‐seq data sets, 23,808 (99.5%) genes were functionally annotated from a total of 23,923 predicted protein‐coding sequences. The high‐quality chromosome‐level reference genome of E. akaara was assembled for the first time and will be a valuable resource for molecular breeding and functional genomics studies of red‐spotted grouper in the future.  相似文献   

5.
Soybean(Glycine max) is a major source of plant protein and oil.Soybean breeding has benefited from advances in functional genomics.In particular,the release of soybean reference genomes has advanced our understanding of soybean adaptation to soil nutrient deficiencies,the molecular mechanism of symbiotic nitrogen(N) fixation,biotic and abiotic stress tolerance,and the roles of flowering time in regional adaptation,plant architecture,and seed yield and quality.Nevertheless,many challenges remain...  相似文献   

6.
Tomato (Solanum lycopersicum) is considered a model plant species for a group of economically important crops, such as potato, pepper, eggplant, since it exhibits a reduced genomic size (950 Mb), a short generation time, and routine transformation technologies. Moreover, it shares with the other Solanaceous plants the same haploid chromosome number and a high level of conserved genomic organization. Finally, many genomic and genetic resources are actually available for tomato, and the sequencing of its genome is in progress. These features make tomato an ideal species for theoretical studies and practical applications in the genomics field. The present review describes how structural genomics assist the selection of new varieties resistant to pathogens that cause damage to this crop. Many molecular markers highly linked to resistance genes and cloned resistance genes are available and could be used for a high-throughput screening of multiresistant varieties. Moreover, a new genomics-assisted breeding approach for improving fruit quality is presented and discussed. It relies on the identification of genetic mechanisms controlling the trait of interest through functional genomics tools. Following this approach, polymorphisms in major gene sequences responsible for variability in the expression of the trait under study are then exploited for tracking simultaneously favourable allele combinations in breeding programs using high-throughput genomic technologies. This aims at pyramiding in the genetic background of commercial cultivars alleles that increase their performances. In conclusion, tomato breeding strategies supported by advanced technologies are expected to target increased productivity and lower costs of improved genotypes even for complex traits.Key Words: Solanum lycopersicum, genetic and genomic resources, molecular markers, microarray, resistance to pathogens, fruit quality.  相似文献   

7.
Pulses are multipurpose crops for providing income, employment and food security in the underprivileged regions, notably the FAO-defined low-income food-deficit countries. Owing to their intrinsic ability to endure environmental adversities and the least input/management requirements, these crops remain central to subsistence farming. Given their pivotal role in rain-fed agriculture, substantial research has been invested to boost the productivity of these pulse crops. To this end, genomic tools and technologies have appeared as the compelling supplement to the conventional breeding. However, the progress in minor pulse crops including dry beans (Vigna spp.), lupins, lablab, lathyrus and vetches has remained unsatisfactory, hence these crops are often labeled as low profile or lesser researched. Nevertheless, recent scientific and technological breakthroughs particularly the next generation sequencing (NGS) are radically transforming the scenario of genomics and molecular breeding in these minor crops. NGS techniques have allowed de novo assembly of whole genomes in these orphan crops. Moreover, the availability of a reference genome sequence would promote re-sequencing of diverse genotypes to unlock allelic diversity at a genome-wide scale. In parallel, NGS has offered high-resolution genetic maps or more precisely, a robust genetic framework to implement whole-genome strategies for crop improvement. As has already been demonstrated in lupin, sequencing-based genotyping of the representative sample provided access to a number of functionally-relevant markers that could be deployed straight away in crop breeding programs. This article attempts to outline the recent progress made in genomics of these lesser explored pulse crops, and examines the prospects of genomics assisted integrated breeding to enhance and stabilize crop yields.  相似文献   

8.
As PCR methods have improved over the last 15 years, there has been an upsurge in the number of new DNA marker tools, which has allowed the generation of high-density molecular maps for all the key Brassica crop types. Biotechnology and molecular plant breeding have emerged as a significant tool for molecular understanding that led to a significant crop improvement in the Brassica napus species. Brassica napus possess a very complicated polyploidy-based genomics. The quantitative trait locus (QTL) is not sufficient to develop effective markers for trait introgression. In the coming years, the molecular marker techniques will be more effective to determine the whole genome impairing desired traits. Available genetic markers using the single-nucleotide sequence (SNP) technique and high-throughput sequencing are effective in determining the maps and genome polymorphisms amongst candidate genes and allele interactions. High-throughput sequencing and gene mapping techniques are involved in discovering new alleles and gene pairs, serving as a bridge between the gene map and genome evaluation. The decreasing cost for DNA sequencing will help in discovering full genome sequences with less resources and time. This review describes (1) the current use of integrated approaches, such as molecular marker technologies, to determine genome arrangements and interspecific outcomes combined with cost-effective genomes to increase the efficiency in prognostic breeding efforts. (2) It also focused on functional genomics, proteomics and field-based breeding practices to achieve insight into the genetics underlying both simple and complex traits in canola.  相似文献   

9.
10.
The monogonont rotifer, Brachionus ibericus (S type), is considered to be a promising model species for developmental biology, evolution, and environmental genomics. In an attempt to accelerate the molecular understanding of B. ibericus, we sequenced 680.5 Mb of genomic DNA using the genome sequencer GS-FLX-Titanium. We obtained 2,062,621 reads (average read length 329.9 bp) and 145,418 contigs (total contigs length 125.7 Mb) after excluding small reads (less than 200 bp) from the assembly, and finally obtained 10,133 unigenes (E value ?? 9.00E?04) after non-redundant (NR) BLAST search. In this article, we summarize the genomic DNA sequences of B. ibericus and discuss their potential use in the study of reproductive biology, endocrinology, environmental genomics, and ecotoxicological studies, and for providing insight into the genetic basis of mechanisms such as egg formation, antioxidant stress defense, and xenobiotic metabolism.  相似文献   

11.
《Genomics》2022,114(4):110400
Endive (Cichorium endivia L.) is a leafy vegetable in the Asteraceae family. Sesquiterpene lactones (STLs) in endive leaves bring a bitter taste that varies between varieties. Despite their importance in breeding varieties with unique flavours, sesquiterpenoid biosynthesis pathways in endive are poorly understood. We assembled a chromosome-scale endive genome of 641 Mb with a contig N50 of 5.16 Mb and annotated 46,711 protein-coding genes. Several gene families, especially terpene synthases (TPS) genes, expanded significantly in the C. endivia genome. STLs biosynthesis-related genes and TPS genes in more bitter varieties have shown a higher level of expression, which could be attributed to genomic variations. Our results penetrate the origin and diversity of bitter taste and facilitate the molecular breeding of endive varieties with unique bitter tastes. The high-quality endive assembly would provide a reference genome for studying the evolution and diversity of Asteraceae.  相似文献   

12.
A high-density genetic map, an essential tool for comparative genomic studies and quantitative trait locus fine mapping, can also facilitate genome sequence assembly. The sequence-based marker technology known as restriction site-associated DNA (RAD) enables synchronous, single nucleotide polymorphism marker discovery, and genotyping using massively parallel sequencing. We constructed a high-density linkage map for carnation (Dianthus caryophyllus L.) based on simple sequence repeat (SSR) markers in combination with RAD markers developed by double-digest RAD sequencing (ddRAD-seq). A total of 2404 (285 SSR and 2119 RAD) markers could be assigned to 15 linkage groups spanning 971.5 cM, with an average marker interval of 0.4 cM. The total length of scaffolds with identified map positions was 95.6 Mb, which is equivalent to 15.4 % of the estimated genome size. The generated map is the first SSR and RAD marker-based high-density linkage map reported for carnation. The ddRAD-seq pipeline developed in this study should also help accelerate genetic and genomics analyses and molecular breeding of carnation and other non-model crops.  相似文献   

13.
《Genomics》2023,115(2):110582
The oyster Ostrea denselamellosa is a live-bearing species with a sharp decline in the natural population. Despite recent breakthroughs in long-read sequencing, high quality genomic data are very limited in O. denselamellosa. Here, we carried out the first whole genome sequencing at the chromosome-level in O. denselamellosa. Our studies yielded a 636 Mb assembly with scaffold N50 around 71.80 Mb. 608.3 Mb (95.6% of the assembly) were anchored to 10 chromosomes. A total of 26,412 protein-coding genes were predicted, of which 22,636 (85.7%) were functionally annotated. By comparative genomics, we found that long interspersed nuclear element (LINE) and short interspersed nuclear element (SINE) made up a larger proportion in O. denselamellosa genome than in other oysters'. Moreover, gene family analysis showed some initial insight into its evolution. This high-quality genome of O. denselamellosa provides a valuable genomic resource for studies of evolution, adaption and conservation in oysters.  相似文献   

14.
Haloxylon ammodendron is a xerophytic perennial shrub or small tree that has a high ecological value in anti-desertification due to its high tolerance to drought and salt stress. Here, we report a high-quality, chromosome-level genome assembly of H. ammodendron by integrating PacBio’s high-fidelity sequencing and Hi-C technology. The assembled genome size was 685.4 Mb, of which 99.6% was assigned to nine pseudochromosomes with a contig N50 value of 23.6 Mb. Evolutionary analysis showed that both the recent substantial amplification of long terminal repeat retrotransposons and tandem gene duplication may have contributed to its genome size expansion and arid adaptation. An ample amount of low-GC genes was closely related to functions that may contribute to the desert adaptation of H. ammodendron. Gene family clustering together with gene expression analysis identified differentially expressed genes that may play important roles in the direct response of H. ammodendron to water-deficit stress. We also identified several genes possibly related to the degraded scaly leaves and well-developed root system of H. ammodendron. The reference-level genome assembly presented here will provide a valuable genomic resource for studying the genome evolution of xerophytic plants, as well as for further genetic breeding studies of H. ammodendron.  相似文献   

15.
Spinach (Spinacia oleracea) is grown as a nutritious leafy vegetable worldwide. To accelerate spinach breeding efficiency, a high-quality reference genome sequence with great completeness and continuity is needed as a basic infrastructure. Here, we used long-read and linked-read technologies to construct a de novo spinach genome assembly, designated SOL_r1.1, which was comprised of 287 scaffolds (total size: 935.7 Mb; N50 = 11.3 Mb) with a low proportion of undetermined nucleotides (Ns = 0.34%) and with high gene completeness (BUSCO complete 96.9%). A genome-wide survey of resistance gene analogues identified 695 genes encoding nucleotide-binding site domains, receptor-like protein kinases, receptor-like proteins and transmembrane-coiled coil domains. Based on a high-density double-digest restriction-site associated DNA sequencing-based linkage map, the genome assembly was anchored to six pseudomolecules representing ∼73.5% of the whole genome assembly. In addition, we used SOL_r1.1 to identify quantitative trait loci for bolting timing and fruit/seed shape, which harbour biologically plausible candidate genes, such as homologues of the FLOWERING LOCUS T and EPIDERMAL PATTERNING FACTOR-LIKE genes. The new genome assembly, SOL_r1.1, will serve as a useful resource for identifying loci associated with important agronomic traits and for developing molecular markers for spinach breeding/selection programs.  相似文献   

16.
Capsicum species commonly known as Chili peppers are economically important group of plants belonging to the Solanaceae family. Of the 38 species reported, only six species namely, Capsicum annuum, C. assamicum, C. baccatum, C. frutescence, C. chinense and C. pubescens are cultivated. They are very important component of the human being as peppers are used as vegetables, spices, and a coloring agent and for medicinal purposes. Based on pungency trait which is due to the presence of a group of compounds known as capsaicinoids, cultivated capsicums are classified into sweet peppers and hot peppers. Although conventional breeding and classical genetic analysis were successful in estimating the number of genes for economically important traits governed by few major genes and their incorporation in the breeding programme, the advent of molecular markers and recently developed next generation sequencing technologies supplemented greatly in dissecting the genetic and molecular basis of economically important traits in the capsicum genome for applied research. Here in this review, we tried to highlight the use of molecular markers, comparative mapping and advanced genomics technologies and their integrated use in the translational research of cultivated Capsicums.  相似文献   

17.
Despite the intensive soybean [Glycine max (L.) Merrill] genome studies, the high chromosome number (20) of the soybean plant relative to many other major crops has hindered the development of a high-resolution genomewide genetic map derived from a single population. Here, we report such a map, which was constructed in an F15 population derived from a cross between G. max and G. soja lines using indel polymorphisms detected via a G. soja genome resequencing. By targeting novel indel markers to marker-poor regions, all marker intervals were reduced to under 6 cM on a genome scale. Comparison of the Williams 82 soybean reference genome sequence and our genetic map indicated that marker orders of 26 regions were discrepant with each other. In addition, our comparison showed seven misplaced and two absent markers in the current Williams 82 assembly and six markers placed on the scaffolds that were not incorporated into the pseudomolecules. Then, we showed that, by determining the missing sequences located at the presumed beginning points of the five major discordant segments, these observed discordant regions are mostly errors in the Williams 82 assembly. Distributions of the recombination rates along the chromosomes were similar to those of other organisms. Genotyping of indel markers and genome resequencing of the two parental lines suggested that some marker-poor chromosomal regions may represent introgression regions, which appear to be prevalent in soybean. Given the even and dense distribution of markers, our genetic map can serve as a bridge between genomics research and breeding programs.  相似文献   

18.
Caper spurge, Euphorbia lathyris L., is an important energy crop and medicinal crop. Here, we generated a high-quality, chromosome-level genome assembly of caper spurge using Oxford Nanopore sequencing, Illumina sequencing, and Hi-C technology. The final genome assembly was ∼988.9 Mb in size, 99.8% of which could be grouped into 10 pseudochromosomes, with contig and scaffold N50 values of 32.6 and 95.7 Mb, respectively. A total of 651.4 Mb repetitive sequences and 36,342 protein-coding genes were predicted in the genome assembly. Comparative genomic analysis showed that caper spurge and castor bean clustered together. We found that no independent whole-genome duplication event had occurred in caper spurge after its split from the castor bean, and recent substantial amplification of long terminal repeat retrotransposons has contributed significantly to its genome expansion. Furthermore, based on gene homology searching, we identified a number of candidate genes involved in the biosynthesis of fatty acids and triacylglycerols. The reference genome presented here will be highly useful for the further study of the genetics, genomics, and breeding of this high-value crop, as well as for evolutionary studies of spurge family and angiosperms.  相似文献   

19.
Chinese liquorice/licorice (Glycyrrhiza uralensis) is a leguminous plant species whose roots and rhizomes have been widely used as a herbal medicine and natural sweetener. Whole‐genome sequencing is essential for gene discovery studies and molecular breeding in liquorice. Here, we report a draft assembly of the approximately 379‐Mb whole‐genome sequence of strain 308‐19 of G. uralensis; this assembly contains 34 445 predicted protein‐coding genes. Comparative analyses suggested well‐conserved genomic components and collinearity of gene loci (synteny) between the genome of liquorice and those of other legumes such as Medicago and chickpea. We observed that three genes involved in isoflavonoid biosynthesis, namely, 2‐hydroxyisoflavanone synthase (CYP93C), 2,7,4′‐trihydroxyisoflavanone 4′‐O‐methyltransferase/isoflavone 4′‐O‐methyltransferase (HI4OMT) and isoflavone‐7‐O‐methyltransferase (7‐IOMT) formed a cluster on the scaffold of the liquorice genome and showed conserved microsynteny with Medicago and chickpea. Based on the liquorice genome annotation, we predicted genes in the P450 and UDP‐dependent glycosyltransferase (UGT) superfamilies, some of which are involved in triterpenoid saponin biosynthesis, and characterised their gene expression with the reference genome sequence. The genome sequencing and its annotations provide an essential resource for liquorice improvement through molecular breeding and the discovery of useful genes for engineering bioactive components through synthetic biology approaches.  相似文献   

20.

Vegetable crops provide a rich source of essential nutrients for humanity and represent critical economic values to global rural societies. However, genetic studies of vegetable crops have lagged behind major food crops, such as rice, wheat and maize, thereby limiting the application of molecular breeding. In the past decades, genome sequencing technologies have been increasingly applied in genetic studies and breeding of vegetables. In this review, we recapitulate recent progress on reference genome construction, population genomics and the exploitation of multi-omics datasets in vegetable crops. These advances have enabled an in-depth understanding of their domestication and evolution, and facilitated the genetic dissection of numerous agronomic traits, which jointly expedites the exploitation of state-of-the-art biotechnologies in vegetable breeding. We further provide perspectives of further directions for vegetable genomics and indicate how the ever-increasing omics data could accelerate genetic, biological studies and breeding in vegetable crops.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号