首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Using a differential display PCR, we identified a differentially expressed cDNA fragment which was detectable in retinoic acid (RA) treated F9 embryonal carcinoma (EC) cells but not in untreated F9 cells. A homology search of the Gene Bank indicated that the cDNA fragment is part of the mouse homolog of the Drosophila Disabled (mDab2) gene. Aggregate cultures of F9 EC cells grown in the presence of the RA differentiated into nonmalignant cells resembling the visceral endoderm of the mouse embryo. Upon induction of endodermal differentiation with 10(-7) M RA, the gene expression of mDab2 was increased gradually during the first 96 h. Neither undifferentiated F9 cells, nor the undifferentiated aggregate cells without RA expressed mDab2. Whole-mount in situ hybridization and quantitative RT-PCR also showed that the temporal expression pattern of the mDab2 gene coincides with the initiation pattern of RA synthesis that occurs during mouse embryogenesis. Also, two alternative splicing messages of mDab2 were detected in a tissue specific manner. All the data indicate that mDab2 may play an important role in RA-induced signal transduction during mouse development.  相似文献   

6.
The differentiation of retinoic acid-treated F9 cells (primitive endoderm-like F9 cells) into parietal endoderm-like F9 cells induced by dibutyryl cAMP was studied as a culture model of the morphogenesis of early mouse embryo. For this purpose, 6 cDNA clones coding for mRNAs specifically expressed in parietal endoderm-like F9 cells were selected. Northern hybridization of RNA extracted from variously treated F9 cells to nick-translated plasmid DNA of these clones demonstrated the reversible expression of many mRNAs depending on the presence of dibutyryl cAMP in the culture medium. This result suggested that the differentiated state of parietal endoderm, which is formed from primitive endoderm at a position adjacent to the trophectoderm in mouse embryo, can be reversed if the local signal is removed. One of the selected clones, pLAM, hybridized to an mRNA of 6.3 kb and selected mRNA producing a laminin B subunit in an in vitro translation system. This clone has an inserted sequence of 3.1 kb. Among the restriction sites in this sequence, six were consistent with those in a 1.7 kb inserted sequence of pPE 49 and pPE 386, which were isolated by Barlow et al. as laminin B1 clones. An XbaI site found in both pPE 49 and pPE 386 was, however, not found at the corresponding position of pLAM. Dot hybridization of RNA with pLAM showed that expression of laminin B in F9 cells is stimulated more than 100-fold during differentiation of F9 stem cells into parietal endoderm-like F9 cells.  相似文献   

7.
F9 teratocarcinoma stem cells treated with retinoic acid (RA) and dibutyryl cAMP (but2 cAMP) differentiate into embryonic parietal endoderm. Using heparin-affinity chromatography, endothelial cell proliferation assays, immunoprecipitation, and Western analysis with antibodies specific for acidic and basic fibroblast growth factors (FGFs), we detected biologically active FGF in F9 cells only after differentiation. A bovine basic FGF cDNA probe hybridized to 2.2-kb mRNAs in both F9 stem and parietal endoderm cells and to a 3.8-kb mRNA in F9 stem cells. A genomic DNA probe for acidic FGF hybridized to a 5.8-6.0-kb mRNA in both F9 stem and parietal endoderm cells, and to a 6.0-6.3-kb mRNA only in parietal endoderm cells. Although these FGF mRNAs were present in the stem cells, we could find no evidence that F9 stem cells synthesized FGFs, whereas differentiated F9 cells synthesized both acidic and basic FGF-like proteins. We conclude that biologically active factors with properties characteristic of acidic and basic FGF are expressed by F9 parietal endoderm cells after differentiation. Differentiating embryonic parietal endoderm thus may serve as a source of FGF molecules in the developing blastocyst, where these factors appear to play a central role in subsequent embryogenesis.  相似文献   

8.
Isolation of endo A cDNA from mouse 8-cell stage embryos   总被引:1,自引:0,他引:1  
To analyse the species of genes expressed in a cleavage stage mouse embryo, we have constructed a cDNA library containing 3.0 x 10(5) independent clones from about 2 x 10(3) embryos at the 8-cell stage of development. Endo A cDNA prepared from parietal yolk sac endoderm like PYS-2 cells was used to screen the library. Southern blot analyses using the endo A sequence as a probe and restriction mapping analyses revealed that four independent recombinants had been inserted endo A sequence. Sequencing data of these clones showed that endo A mRNA present in the 8-cell stage embryo is identical to that of parietal yolk sac endoderm cells.  相似文献   

9.
10.
In five lines of mouse embryonal carcinoma cells, PCC3/A1, PCC4, PCC4/Aza-R1, and F9, collagen synthesis was examined by immunofluorescence reaction using specific antibodies directed against collagen. All the embryonal carcinoma cell lines showed type IV collagen, and PCC7-S/Aza-R1 revealed the additional presence of type III collagen. When the F9 and PCC3/A1 EC cells were treated with retinoic acid and dibutyryl-cAMP, they differentiated into morphologically different cellular types. These cellular types showed new types of collagen. Thus, in treated F9 cells, type I, type III, and type V collagen were detected and in treated PCC3/A1 cells, type III and type V collagen were detected. In two established cellular strains, PYS-2 corresponding to parietal endoderm and 3TDM-1 corresponding to trophoblastoma, collagen was identified by immunological reaction and electrophoretic mobility. The trophoblastoma cell line was characterized by the production of type I, type III, and type IV collagen, whereas endodermal PYS-2 revealed type IV collagen.  相似文献   

11.
Treatment of F9 teratocarcinoma cells with all trans retinoic acid (RA) causes them to differentiate into two or three morphologically distinct cell types. Whereas the majority of these retinoid-derived cells exhibit properties resembling parietal endoderm, a small percentage of this differentiated cell population manifests properties distinct from the parietal endoderm cell type. The isolation and partial characterization of such a non-parietal endoderm cell line (Dif 5) derived from F9 cells following prolonged (44 days) exposure to 1 μM retinoic acid are described.Unlike the retinoid-induced parietal endoderm-like cell population, which exhibits a dramatic, characteristic morphological change upon treatment with 8-bromo cAMP, Dif 5 cells do not show any morphological change with exposure to this cAMP analog. Dif 5 cells synthesize and deposit an extracellular matrix consisting of several components of Reichert's membrane (fibronectin, laminin, and type IV collagen). This new cell line does not synthesize α-fetoprotein but does secrete plasminogen activator.An interesting property of these cells is their ability to grow in the absence of serum or other hormonal supplements. Yet the Dif 5 cells do exhibit density-dependent inhibition of growth. Unlike the parent F9 cells or parietal yolk sac (PYS-2) cells, these cells do possess specific cell surface receptors for epidermal growth factor (EGF). The growth-arrested Dif 5 cells can be reinitiated to proliferate by the addition of fetal calf serum (FCS) or EGF.The properties of Dif 5 cells determined fail to fulfill all the characteristics described for either parietal or visceral endodermal cells. This raises the possibility that Dif 5 cells might represent an endodermal cell type which is intermediate in differentiation to either parietal or visceral endoderm but which lacks the biochemical signal to complete this stage of differentiation. This new Dif 5 cell line should be of considerable value in studying the modulation of growth requirements and extracellular matrix formation during early embryonic development.  相似文献   

12.
Retinoic acid (RA) induces F9 cells, the mouse teratocarcinoma cells, to differentiate into primitive endoderm and further into visceral and parietal endoderm depending on the culture conditions. To elucidate the instructive mechanisms involved in the differentiation steps we investigated the effects of Wnt-signaling members, Wnt3a and β-catenin, on the differentiation of F9 cells and β-catenin-deficient F9 cells (βT cells). RA up-regulated the expression of differentiation markers for primitive, visceral and parietal endoderm in F9 cells but not for visceral endoderm in βT cells. Wnt3a or leukemia inhibitory factor (LIF) inhibited the RA-induced differentiation in F9 cells. LIF but not Wnt3a could inhibit differentiation in βT cells. RA evoked ZO-1α+ signals at cell-to-cell contacts in F9 cells in a Wnt3a sensitive manner. The results suggest that Wnt3a inhibits differentiation into endoderm through a pathway involving β-catenin, and β-catenin might be necessary in the process leading from primitive to visceral endoderm in F9 cells.  相似文献   

13.
The mouse F9 teratocarcinoma cell line is a model that can be manipulated to imitate one of the earliest epithelial-mesenchymal transitions in mouse development. When cells are treated with Retinoic Acid they differentiate into primitive endoderm and into parietal endoderm with the addition of dibutyryl cAMP. Parietal endoderm also develops when undifferentiated cells express a constitutively active (CA) form of Galpha13(Q226L). Differentiation is accompanied by a translocation of beta-catenin to the nucleus and considerable changes to the cytoskeleton and cell morphology. ERM proteins facilitate rearrangements to the F-actin cytoskeleton, and at least one, moesin, is essential for cell survival. In this study we found that moesin translocated to the nucleus during RA-induced differentiation, and sequence analysis identified putative nuclear localization signals in the protein. In the absence of RA, transient over-expression of rat moesin or the distantly related zebrafish homologue in F9 cells induced primitive endoderm. Furthermore, no apparent beta-catenin was seen in the nucleus of cells over-expressing zebrafish moesin. Our previous results have shown that depleting F9 cells of moesin using an antisense morpholino strategy caused them to detach from the substrate unless they expressed CA-Galpha13(Q226L). This CA-Galpha13 signalling maintained cell survival, but at the expense of differentiation. We now report that over-expressing zebrafish moesin in mouse moesin-depleted F9 cells not only ensured cell survival, but also induced differentiation to primitive endoderm. Together, the results suggest a new role for moesin, acting in a signalling pathway facilitating the differentiation of extraembryonic endoderm.  相似文献   

14.
Rabbit antiserum raised against teratocarcinoma embryoid bodies reacts with two extracellular, collagenase-resistant glycoproteins, PYS A and B, with molecular weights of approximately 350,000 and 220,000 daltons. The 220,000-dalton protein is distinguishable from fibronectin. The two proteins are synthesized and secreted into the medium in large amounts by the teratocarcinoma-derived parietal endoderm line PYS-1, and by normal parietal endoderm cells from the 10.5-day embryo. There was no detectable synthesis of PYS A and B by normal visceral endoderm cells isolated from the 10.5-day embryo, and only trace amounts of PYS A were synthesized by the teratocarcinoma-derived visceral endoderm line PSA5E and by mesodermal cells isolated from the visceral yolk sac. The two proteins therefore seem to be good biochemical markers for distinguishing parietal from visceral endoderm cells. Synthesis and secretion of PYS A and B could not be detected in undifferentiated embryonal carcinoma cells or in endoderm cells derived from them in the presence of retinoic acid.  相似文献   

15.
Retinoic acid-induced differentiation of F9 embryonal carcinoma cells to endoderm provokes the secretion of a protein factor that acts as both a chemoattractant and mitogen for smooth muscle cells. Undifferentiated F9 cells and PSA-5E (visceral endodermlike) cells produced little of this factor. However, PYS-2 (parietal endodermlike) and Dif 5 endoderm cells were found to produce significant amounts of endoderm-derived mitoattractant (EDM) activity. The activity secreted by the Dif 5 cells was partially purified using gel filtration chromatography using chemotaxis and mitogenic assays as markers for biological activity. The partially purified activity competes with [125I]iodo-platelet-derived growth factor (PDGF) for binding to target cells, and the biological activity is neutralized with anti-PDGF IgG, suggesting shared domains in the two molecules. However, the factor appears to be different from PDGF, based on its thermal stability, molecular weight, and charge. The differentiated endoderm cells including retinoic acid (RA)-treated F9, Dif 5, PSA-5E, and PYS-2 cells also exhibit specific [125I]iodo-PDGF binding, and the PSA-5E cells respond to PDGF as a chemoattractant. Conceivably, such a PDGF-like factor may contribute to the regulation of cell growth and migration during the early stages of embryogenesis.  相似文献   

16.
N-Acetylneuraminic acid lyase (NAN-lyase) activity has been found to be much higher in the differentiated, murine parietal endodermal cell (PYS-2) in culture than in the related, undifferentiated embryonal teratocarcinoma cell (F9). The level of the enzyme rapidly increases in F9 cells exposed to an inducer of differentiation such as retinoic acid (RA) (10(-7) M). The level of the enzyme increases during log phase of growth of PYS-2 cells and decreases after the cells reach confluence. NAN-lyase from PYS-2 cells has been purified 365-fold and has been partially characterized. While most of the enzyme is freely soluble, at least 16% of the enzyme in PYS-2 cells is associated with the nucleus. The possible function of NAN-lyase in the cell and the significance of its marked elevation during growth and differentiation are discussed in view of the fact that the levels of NAN, neuraminidase, NAN transferases and the enzymes that synthesize and activate NAN, remain essentially unchanged during differentiation.  相似文献   

17.
18.
We have isolated cDNA clones for mouse type IV procollagen from a library constructed from total poly A+RNA of 13.5 day mouse embryo parietal endoderm (PE) cells. In Northern analysis these clones hybridise to a 6.8 kb RNA which is abundant in embryonic PE cells and in differentiated F9 teratocarcinoma cells. Hybrid selection and in vitro translation of the cDNA specific mRNA produced a single polypeptide of Mr = 165 000. This polypeptide was specifically immunoprecipitated with mouse type IV procollagen antisera and comigrated on SDS-gel electrophoresis with one of the two in vitro synthesised chains of type IV procollagen. Undifferentiated F9 teratocarcinoma cells can be induced by retinoic acid and dibutyryl cAMP to differentiate in vitro into endoderm-like cells which resemble mouse PE cells in synthesising large amounts of basement membrane proteins, including type IV procollagen. Here we show, using one of the cDNA clones as a probe for type IV procollagen, that an increase in cellular concentration of type IV procollagen mRNA occurs within 24 to 48 hours of induction, reaching a constant high level by 72 hours.  相似文献   

19.
Epithelial-to-mesenchymal transitions (EMTs) play key roles in the normal development of an organism as well as its demise following the metastasis of a malignant tumour. An EMT during early mouse development results in the differentiation of primitive endoderm into the parietal endoderm that forms part of the parietal yolk sac. In the embryo, primitive endoderm develops from cells in the inner cell mass, but the signals that instruct these cells to become specified and adopt an epithelial fate are poorly understood. The mouse F9 teratocarcinoma cell line, a model that can recapitulate the in vivo primitive to parietal endoderm EMT, has been used extensively to elucidate the signalling cascades involved in extraembryonic endoderm differentiation. Here, we identified Wnt6 as a gene up-regulated in F9 cells in response to RA and show that Wnt6 expressing cells or cells exposed to Wnt6 conditioned media form primitive endoderm. Wnt6 induction of primitive endoderm is accompanied by beta-catenin and Snail1 translocation to the nucleus and the appearance of cytokeratin intermediate filaments. Attenuating glycogen synthase kinase 3 activity using LiCl gave similar results, but the fact that cells de-differentiate when LiCl is removed reveals that other signalling pathways are required to maintain cells as primitive endoderm. Finally, Wnt6-induced primitive endodermal cells were tested to determine their competency to complete the EMT and differentiate into parietal endoderm. Towards that end, results show that up-regulating protein kinase A activity is sufficient to induce markers of parietal endoderm. Together, these findings indicate that undifferentiated F9 cells are responsive to canonical Wnt signalling, which negatively regulates glycogen synthase kinase 3 activity leading to the epithelialization and specification of primitive endoderm competent to receive additional signals required for EMT. Considering the ability of F9 cells to mimic an in vivo EMT, the identification of this Wnt6-beta-catenin-Snail signalling cascade has broad implications for understanding EMT mechanisms in embryogenesis and metastasis.  相似文献   

20.
Mouse F9 cells differentiate into primitive endoderm when treated with retinoic acid (RA) and into parietal endoderm in response to RA and dibutyryl (db-) cAMP. G protein signaling either blocks or mimics RA-induced differentiation, the latter signaling through the Wnt-beta-catenin pathway. In our study, we found that a constitutively active Galpha13 mutant induces F9 cells to differentiate into parietal endoderm in the absence of exogenous agents. Galpha13 expression and subsequent differentiation are accompanied by beta-catenin translocation to the nucleus. Differentiation and changes in cell morphology are supported by rearrangements to the F-actin cytoskeleton. ERM (ezrin-radixin-moesin) proteins, known to link F-actin to transmembrane receptors, are also redistributed during differentiation. Furthermore, morpholino antisense and shRNA approaches show that moesin expression is essential since its knockdown leads to altered F-actin distribution and subsequent apoptosis. Moesin-depleted cells, however, remain attached to the substrate when Galpha13 is constitutively expressed, but they do not differentiate into extraembryonic endoderm. Our study demonstrates a link between Galpha13 signaling that regulates differentiation of F9 cells through primitive to parietal endoderm and a moesin requirement for cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号