首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compared with the fossil record of vascular plants, bryophyte fossils are rare; this circumstance is probably related to a lower preservation potential compared with that of vascular plants. We searched for bryophyte remains in extensive collections of plant‐fossil assemblages from the Triassic of Antarctica and identified three assemblages with surprisingly well‐preserved bryophyte fossils. Although most bryophyte remains are too fragmented to conclusively place them in a detailed systematic context, they exhibit features sufficient to suggest the presence of at least four types of leafy bryophytes and two orders of thallose liverworts (Pallaviciniales and Metzgeriales) in the high‐latitude Triassic ecosystems of Antarctica. The leafy bryophytes exhibit combinations of morphological features (e.g. keeled and entire‐margined, ecostate leaves with elongated cells) that today occur in only a few small, systematically isolated groups, but were common among Palaeozoic and especially Mesozoic bryophytes. The diverse morphologies of the bryophyte fossils add further support to previous hypotheses that during warmer periods in the Earth's history, bryophyte vegetation may have been particularly rich and diverse in high‐latitude regions. Through analysis of the sedimentology and taphonomy of these assemblages, we identify a combination of key factors that may explain the preservation of bryophyte fossils in these deposits: (1) punctuated, high‐energetic sedimentary events causing traumatic removal and incorporation of bryophytes into sediment‐laden flood waters; (2) limited transport distance, and short period of suspension, followed by rapid settling and burial as a result of a rapidly decelerating flow discharging into a floodplain environment; and (3) early‐diagenetic cementation with iron hydroxides in locally anoxic zones of the organic‐rich, muddy substrate.  相似文献   

2.
亚洲新生代藓类植物化石非常稀少,漳浦琥珀是目前已知的我国低纬度地区唯一含苔藓植物化石的新生代琥珀矿床。漳浦琥珀源自中中新世气候适宜期(~14-17 Ma)的龙脑香树脂,温暖潮湿的热带季雨林气候和广泛分布的龙脑香科植物,为藓类植物的生长、多样性演化和三维立体保存提供了条件。本研究共报道了漳浦县中中新世藓类植物化石3个属种,包括:白发藓属Leucobryum Hampe、牛舌藓属Anomodon Hook.et Taylor和扁枝藓属Homalia(Brid.)B.S.G.。首次利用三维X射线断层扫描技术(Micro-CT)研究了白发藓属化石,发现其与现生种短枝白发藓Leucobryum humillimum Cardot非常相似,因此将其命名为短枝白发藓(相似种)Leucobryum cf.humillimum。此外,当前牛舌藓属Anomodon和扁枝藓属Homalia化石是东亚地区的首例记录。漳浦琥珀中的藓类植物化石揭示了中中新世时期苔藓植物的多样性,丰富了东亚低纬度地区新生代苔藓植物的化石记录。  相似文献   

3.
Hydrozoan cnidarians are widespread in modern environments, but their polyps or hydroids, when not biomineralized, are generally rare in the fossil record. To assess the affinities of four hydrozoan taxa previously described on the basis of supposed fossils of non‐biomineralized hydroids, we re‐analysed the type specimens of these taxa using a combination of light and electron microscopic tools, including backscattered electron (BSE) scanning electron microscopy (SEM) and energy‐dispersive X‐ray spectroscopy (EDS). New morphological, ultrastructural and taphonomic data were generated for Archaeoantennularia byersi from the Devonian of Michigan, Archaeocryptolaria compacta from the Ordovician of Virginia, and Mazohydra megabertha and Drevotella proteana from the Carboniferous Mazon Creek Lagerstätte of Illinois, which are preserved as carbonaceous fossils, aluminosilicate films and iron carbonate minerals in siderite concretions, respectively. In the context of these results, we provide a review of the fossil record of non‐biomineralized hydroids, describe possible biases and changes through time in their occurrence and preservation, and evaluate the criteria commonly used to identify and interpret their fossils. Although hydroids have been reported from Phanerozoic (particularly lower Palaeozoic) rocks around the world, many putative hydroids from the Palaeozoic are poorly substantiated and may actually be hemichordates. Indeed, none of the type specimens in this study represent unequivocal hydrozoans. As shown in BSE images, metatype specimens of A. byersi possess autothecae, fusellae, stolons, stolothecae and bithecae, which decisively indicate that they are dendroid graptolites rather than hydroids. The analyses yielded no evidence that A. compacta, Mazohydra and Drevotella are hydrozoans, as their holotypes lack the diagnostic morphological, taphonomic and ecological features characteristic of purported hydroid analogues. Consequently, our results suggest that many Palaeozoic hydroids may be hemichordates and that interpretations of hydroid fossils should be tested and refined using data collected via in situ analytical techniques like BSE‐SEM and EDS.  相似文献   

4.
Fossils represent invaluable data to reconstruct the past history of life, yet fossil-rich sites are often rare and difficult to find. The traditional fossil-hunting approach focuses on small areas and has not yet taken advantage of modelling techniques commonly used in ecology to account for an organism’s past distributions. We propose a new method to assist finding fossils at continental scales based on modelling the past distribution of species, the geological suitability of fossil preservation and the likelihood of fossil discovery in the field, and apply it to several genera of Australian megafauna that went extinct in the Late Quaternary. Our models predicted higher fossil potentials for independent sites than for randomly selected locations (mean Kolmogorov-Smirnov statistic = 0.66). We demonstrate the utility of accounting for the distribution history of fossil taxa when trying to find the most suitable areas to look for fossils. For some genera, the probability of finding fossils based on simple climate-envelope models was higher than the probability based on models incorporating current conditions associated with fossil preservation and discovery as predictors. However, combining the outputs from climate-envelope, preservation, and discovery models resulted in the most accurate predictions of potential fossil sites at a continental scale. We proposed potential areas to discover new fossils of Diprotodon, Zygomaturus, Protemnodon, Thylacoleo, and Genyornis, and provide guidelines on how to apply our approach to assist fossil hunting in other continents and geological settings.  相似文献   

5.
《Palaeoworld》2016,25(2):149-169
The order Osmundales is a unique fern taxon with extensive fossil records in geological past. Diverse osmundalean fossils have been reported from China, ranging in age from the Late Palaeozoic to the Cenozoic. Most of them are based on leaf impressions/compressions, but permineralized rhizomes are also well documented. In this study, we provide a systematic overview on fossil osmundalean ferns in China with special references on diversity variations, distribution patterns, and evolutionary implications. Fossil evidence indicates that this fern lineage first appeared in the Late Palaeozoic in China. The Late Triassic to Middle Jurassic interval was the radiation stage. From the Late Jurassic onward, fossil diversity declined rapidly. Cenozoic osmundalean taxa are represented by the relict species of Osmunda. Geographically, osmundalean fossils are found from both the Northern and Southern phytoprovinces of China, though variations are documented for geographical ranges. The Chinese fossil records cover almost all important stages for the macroevolution of the Osmundales, and contribute to further understanding of evolutionary processes of this peculiar fern lineage.  相似文献   

6.
The Sidi Kassem Basin is the only limnic basin of Westphalian age in Morocco. It is built up of 1,250 m of alluvio-fluvial to lacustrine deposits that have so far yielded plant fossils and invertebrate remains only. Recent exploration for fossil tetrapod footprints in floodplain-deposits of the basin revealed a moderately diverse vertebrate ichnofauna composed of tracks assigned to cf. Batrachichnus Woodworth, 1900; cf. Hylopus Dawson, 1882; Dimetropus Romer and Price, 1940; and Notalacerta Butts, 1891. The tracks can be referred to temnospondyl, anamniote reptiliomorph, non-therapsid synapsid (pelycosaur), and captorhinomorph trackmakers. The described ichnoassemblage is important in at least three aspects: (1) It suggests an Early to mid-Pennsylvanian age for the footprint-bearing strata of the study area. (2) It is the oldest association of tetrapod footprints from Africa. (3) It is the first evidence of the relatively rare ichnogenera cf. Hylopus and Notalacerta outside of North America and Europe. Judged from the variety of tetrapod tracks and previously collected floral remains, the Sidi Kassem Basin must have represented a well-established continental ecosystem during Pennsylvanian time. Further exploration for trace and body fossils of Palaeozoic vertebrates in this basin may be important for the reconstruction of early tetrapod evolution.  相似文献   

7.
Constance M. Soja 《Ichnos》2013,20(3):173-181
Early to Late Silurian (Llandovery‐Ludlow) body and trace fossils from the Heceta Formation of southeastern Alaska are preserved in the oldest widespread carbonates in the Alexander terrane. These fossils represent the earliest benthos to inhabit diverse shallow and deep subtidal environments in the region and are important indicators of early stages in benthic community development within the evolving Alexander arc. The ichnofossils are particularly significant because they add to a small but growing body of knowledge about trace fossils in deep‐water carbonates of Paleozoic age.

Carbonate turbidites that originated along a deep marine slope within the arc yield a low‐diversity suite of trace fossils consisting of five distinct biogenic forms. Simple burrows (Planolites, two forms), ramifying tunnels (Chondrites), and tiny cylindrical burrows (?Chondrites) represent the feeding activities (fodinichnia) of pre‐turbidite animals that burrowed in the lime mud before the influx of coarser sediment deposited by turbidity currents. These trace fossils are associated locally with cross‐cutting burrows created as domichnia (Palaeophycus). Rarer hypichnial burrows and endichnial traces were created by post‐turbidite animals that fed soon after the deposition of coarse detritus from turbidity flows.

Trace fossils in these deposits reflect much lower diversity levels than in Paleozoic siliciclastic turbidites. This difference may represent unfavorable environmental conditions for infaunas, differential preservation, or significant paleogeographic isolation of the Alexander terrane during the Silurian. Greater utilization of trace fossils in terrane analysis may help to resolve this issue and provide new data for reconstructing the paleogeography of circum‐Pacific terranes.  相似文献   

8.
Siliceous hot spring deposits form at Earth's surface above terrestrial hydrothermal systems, which create low‐sulphidation epithermal mineral deposits deeper in the crust. Eruption of hot spring waters and precipitation of opal‐A create sinter apron complexes and areas of geothermally influenced wetland. These provide habitat for higher plants that may be preserved in situ, by encrustation of their surfaces and permineralization of tissues, creating T0 plant assemblages. In this study, we review the fossil record of hot spring floras from subfossil examples forming in active hot spring areas, via fossil examples from the Cenozoic, Mesozoic and Palaeozoic to the oldest known hot spring flora, the Lower Devonian Rhynie chert. We demonstrate that the well‐known megabias towards wetland plant preservation extends to hot spring floras. We highlight that the record of hot spring floras is dominated by plants preserved in situ by permineralization on geothermally influenced wetlands. Angiosperms (members of the Cyperaceae and Restionaceae) dominate Cenozoic floras. Equisetum and gleicheniaceous ferns colonized Mesozoic (Jurassic) geothermal wetlands and sphenophytes and herbaceous lycophytes late Palaeozoic examples. Evidence of the partitioning of wetland hydrophytic and dryland mesophytic communities, a feature of active geothermal areas, is provided by well‐preserved and well‐exposed fossil sinter apron complexes, which record flooding of dryland environments by thermal waters and decline of local forest ecosystems. Such observations from the fossil record back‐up hypotheses based on active hot springs and vegetation that suggest removal of taphonomic filtering in hot spring environments is accompanied by an increase in ecological and ecophysiological filtering. To this end we also demonstrate that in the hot spring environment, the wetland bias extends beyond broad ecology. We show that ecosystems preserved from the Cenozoic to the Mesozoic provide clear evidence that the dominant plants preserved in situ by hot spring activity are also halophytic, tolerant of high pH and high concentrations of heavy metals. By extension, we hypothesize that this is also the case in Palaeozoic hot spring settings and extended to the early land plant flora of the Rhynie chert.  相似文献   

9.
Fossils reported previously from the Early Silurian (Llandovery) lower Massanutten Sandstone (Virginia, USA) are formally described here as Prattella massanuttense gen. & sp. nov. Organization into cellular filaments embedded in extracellular matrix, the sizes of cells and filaments and the fluvial origin of deposits that host the fossils are all consistent with cyanobacterial affinity. Prattella massanuttense combines preservation as carbonaceous compression at a macroscopic scale with cellular preservation by mineral replacement of cell contents at a microscopic scale. These fossils provide the earliest direct evidence for the occurrence of cyanobacteria in fluvial habitats and add to the knowledge of terrestrial ecosystems that hosted early stages of land plant evolution. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 284–289.  相似文献   

10.
Abstract The fossil history of leaf beetles (Chrysomelidae) is relatively poorly documented despite an abundance of available material. Of particular interest is the origin and radiation of the diverse tortoise beetles, a derived group within Cassidinae s.l. (=Cassidinae + Hispinae) defined by the exophagous life history and specialized morphology of the immature stages. Cassidinae is also a group with relatively few fossil records that can be assigned with any degree of certainty. Here we report two of the oldest definitive tortoise beetle fossils, Eosacantha delocranioides gen.n. et sp.n. and Denaeaspis chelonopsis gen.n. et sp.n. , from the Eocene Green River Formation (ca. 47 million years old) in northwestern Colorado, U.S.A. Owing to the fine level of preservation, many important features can be observed and are coded into the recent cladistic analysis for the subfamily. Phylogenetic analysis highlights that both genera have affinities with modern lineages, one restricted to the Old World and the other restricted to the Neotropics. Although Cassidinae as a whole extend into the Cretaceous, the available information suggests that the tortoise beetles perhaps originated and diversified during the Early Tertiary. As such, the morphological and biological transitions from the leaf‐mining hispiforms to the distinctive tortoise‐like cassidiforms, with their elaborate defensive larval shields and other unique behaviours, probably took place during the latest Paleocene or earliest Eocene. These Green River fossils are the oldest yet to document the specialized morphology associated with the transition in cassidine feeding and immature biology.  相似文献   

11.
Recently discovered Silurian and Devonian coalified mesofossils provide an additional source of data on early embryophytes. Those reviewed in this paper are considered of some relevance to understanding the early history of bryophytes while highlighting the difficulties of recognizing bryophytes in often very fragmentary fossils. The first group comprises sporophytes in which terminal sporangia contain permanent dyads and tetrads. Such spores (cryptospores) are similar to those found dispersed in older Ordovician and Silurian strata, when they are considered evidence for a land vegetation of embryophytes at a bryophyte grade. The phylogenetic significance of plants, where the axes associated with both dyad- and tetrad-containing sporangia are branching, a character state not found in extant bryophytes, is discussed. The second group comprises axial fossils, many with occasional stomata, in which central conducting strands include G-type tracheids and a number of novel types of elongate elements not readily compared with those of any tracheophyte. They include smooth-walled, evenly thickened elongate elements as well as those with numerous branching +/- anastomosing projections into the lumen. Some of the latter bear an additional microporate layer, but the homogenized lateral walls between adjacent cells are never perforate. Such cells, which occur in various combinations in central strands, are compared with the leptoids and hydroids of mosses, hydroids of liverworts and presumed water-conducting cells in coeval Lower Devonian plants such as Aglaophyton. It is concluded that lack of information on the chemistry of their walls hampers sensible assessment of their functions and the affinities of the plants. Finally, a minute fossil, comprising an elongate sporangium in which a central cylindrical cavity containing spores and possible elaters terminates in a complex poral dehiscence apparatus, is used to exemplify problems of identifying early bryophytes. It is concluded that further progress necessitates the discovery of pre-Upper Silurian fossils with well-preserved anatomy, as well as a re-evaluation of criteria used to assess existing and new Devonian fossils for bryophyte affinity.  相似文献   

12.
Galliformes (landfowl) have been the focus of numerous divergence dating studies that seek a refined understanding of the early radiation of living birds. The Eocene fossil birds Amitabha urbsinterdictensis (Bridger Formation) and Gallinuloides wyomingensis (Green River Formation) have been used extensively in studies dealing with the timing of evolution in crown Galliformes. Divergence estimates from studies incorporating these fossils as calibration points suggest that multiple galliform lineages radiated in the Cretaceous and survived the Cretaceous–Tertiary mass extinction. However, the phylogenetic position of both fossils has been disputed, particularly with regard to crown or stem status. In order to resolve this debate, a new study of A. urbsinterdictensis and G. wyomingensis was undertaken. Further preparation and re‐examination of the A. urbsinterdictensis holotype indicates this fossil falls outside both crown and stem Galliformes, and reveals evidence for a relationship with Rallidae (rails). In order to reassess the status of G. wyomingensis, a matrix of 120 morphological characters was constructed by revising and expanding on previous studies. Phylogenetic analyses using this matrix place G. wyomingensis basal to all crown Galliformes. Stem placement of G. wyomingensis is retained and resolution is improved in combined analyses incorporating sequence data from cytochrome b, NADH dehydrogenase subunit 2, mitochondrial control region, 12S rDNA, and nuclear ovomucoid intron G. All evidence indicates that A. urbsinterdictensis and G. wyomingensis are inappropriate internal calibration points for Galliformes and may have contributed to overestimation of divergence event ages. Though stem galliforms existed in the Cretaceous, the divergence of crown lineages in the Cretaceous remains inconclusively demonstrated. Because few galliform fossils have been evaluated phylogenetically, further investigations into the tempo of galliform evolution must await identification of proper fossil calibration points. © The Willi Hennig Society 2009.  相似文献   

13.
Colouration is an important multifunctional attribute of modern animals, but its evolutionary history is poorly resolved, in part because of our limited ability to recognize and interpret fossil evidence of colour. Recent studies on structural and pigmentary colours in fossil insects and feathers have illuminated important aspects of the anatomy, taphonomy, evolution and function of colour in these fossils. An understanding of the taphonomic factors that control the preservation of colour is key to assessing the fidelity with which original colours are preserved and can constrain interpretations of the visual appearance of fossil insects and theropods. Various analytical approaches can identify anatomical and chemical evidence of colour in fossils; experimental taphonomic studies inform on how colour alters during diagenesis. Preservation of colour is controlled by a suite of factors, the most important of which relate to the diagenetic history of the host sediment, that is, maximum burial temperatures and fluid flow, and subsurface weathering. Future studies focussing on key morphological and chemical aspects of colour preservation relating to cuticular pigments in insects and keratinous structures and nonmelanin pigments in feathers, for example, will resolve outstanding questions regarding the taphonomy of colour and will enhance our ability to infer original colouration and its functions in fossil insects and theropods.  相似文献   

14.
The success of vertebrates is linked to the evolution of a camera-style eye and sophisticated visual system. In the absence of useful data from fossils, scenarios for evolutionary assembly of the vertebrate eye have been based necessarily on evidence from development, molecular genetics and comparative anatomy in living vertebrates. Unfortunately, steps in the transition from a light-sensitive ‘eye spot’ in invertebrate chordates to an image-forming camera-style eye in jawed vertebrates are constrained only by hagfish and lampreys (cyclostomes), which are interpreted to reflect either an intermediate or degenerate condition. Here, we report—based on evidence of size, shape, preservation mode and localized occurrence—the presence of melanosomes (pigment-bearing organelles) in fossil cyclostome eyes. Time of flight secondary ion mass spectrometry analyses reveal secondary ions with a relative intensity characteristic of melanin as revealed through principal components analyses. Our data support the hypotheses that extant hagfish eyes are degenerate, not rudimentary, that cyclostomes are monophyletic, and that the ancestral vertebrate had a functional visual system. We also demonstrate integument pigmentation in fossil lampreys, opening up the exciting possibility of investigating colour patterning in Palaeozoic vertebrates. The examples we report add to the record of melanosome preservation in Carboniferous fossils and attest to surprising durability of melanosomes and biomolecular melanin.  相似文献   

15.
The first named Ediacaran body fossil, Aspidella Terranovica   总被引:4,自引:1,他引:3  
Aspidella terranovica Billings, 1872 was first described from the late Neoproterozoic Fermeuse Formation (St. John's Group) on the Avalon Peninsula of eastern Newfoundland, approximately 1km stratigraphically above the famous Ediacaran biota at Mistaken Point, and several kilometres below the base of the Cambrian. Aspidella has been reinterpreted perhaps more than any other Precambrian taxon, and has variously been regarded as a fossil mollusc or ‘medusoid’, a gas escape structure, a concretion, or a mechanical suction mark. Our studies indicate that Aspidella includes a wide variety of preservational morphs varying from negative hyporeliefs with a raised rim and ridges radiating from a slit (Aspidella‐type preservation), to flat discs with a central boss and sharp outer ring (Spriggia preservation), to positive hyporeliefs with concentric ornamentation (Ediacaria preservation). Specimens occur in a continuum of sizes, with preservational styles dependent on the size of the specimen and the grain size of the host lithology; the elongation of specimens is tectonic. Aspidella is confirmed as a body fossil from observations of complex radial and concentric ornamentation, mutually deformed borders in clusters of specimens, and occurrence on the same bedding planes as certain distinctive Ediacaran taxa. Aspidella is indistinguishable from, and has priority over, several of the most common genera of late Neoproterozoic discoidal body fossils worldwide. Similar fossils from Australia are interpreted as holdfasts of frond‐like organisms. The density of specimens in the Aspidella beds suggests levels of benthic biomass in the Neoproterozoic that could rival those of modern marine communities. The serial growth forms, PalaeopascichnusIntrites, Neonereites renariusYelovichnus, associated with Aspidella, are interpreted as body fossils of unknown affinities rather than trace fossils. A new, trilobed, Ediacaran body fossil, Triforillonia costellae gen. et sp. nov., is described from the Aspidella beds of the Fermeuse Formation.  相似文献   

16.
17.
The evolutionary emergence of animals is one of the most significant episodes in the history of life, but its timing remains poorly constrained. Molecular clocks estimate that animals originated and began diversifying over 100 million years before the first definitive metazoan fossil evidence in the Cambrian. However, closer inspection reveals that clock estimates and the fossil record are less divergent than is often claimed. Modern clock analyses do not predict the presence of the crown‐representatives of most animal phyla in the Neoproterozoic. Furthermore, despite challenges provided by incomplete preservation, a paucity of phylogenetically informative characters, and uncertain expectations of the anatomy of early animals, a number of Neoproterozoic fossils can reasonably be interpreted as metazoans. A considerable discrepancy remains, but much of this can be explained by the limited preservation potential of early metazoans and the difficulties associated with their identification in the fossil record. Critical assessment of both records may permit better resolution of the tempo and mode of early animal evolution.  相似文献   

18.
Spiders are an important animal group, with a long history. Details of their origins remain limited, with little knowledge of their stem group, and no insights into the sequence of character acquisition during spider evolution. We describe a new fossil arachnid, Idmonarachne brasieri gen. et sp. nov. from the Late Carboniferous (Stephanian, ca 305–299 Ma) of Montceau-les-Mines, France. It is three-dimensionally preserved within a siderite concretion, allowing both laboratory- and synchrotron-based phase-contrast computed tomography reconstruction. The latter is a first for siderite-hosted fossils and has allowed us to investigate fine anatomical details. Although distinctly spider-like in habitus, this remarkable fossil lacks a key diagnostic character of Araneae: spinnerets on the underside of the opisthosoma. It also lacks a flagelliform telson found in the recently recognized, spider-related, Devonian–Permian Uraraneida. Cladistic analysis resolves our new fossil as sister group to the spiders: the spider stem-group comprises the uraraneids and I. brasieri. While we are unable to demonstrate the presence of spigots in this fossil, the recovered phylogeny suggests the earliest character to evolve on the spider stem-group is the secretion of silk. This would have been followed by the loss of a flagelliform telson, and then the ability to spin silk using spinnerets. This last innovation defines the true spiders, significantly post-dates the origins of silk, and may be a key to the group''s success. The Montceau-les-Mines locality has previously yielded a mesothele spider (with spinnerets). Evidently, Late Palaeozoic spiders lived alongside Palaeozoic arachnid grades which approached the spider condition, but did not express the full suite of crown-group autapomorphies.  相似文献   

19.
A new fossil flower and inflorescence-bearing locality has been discovered in the Oligocene of the Texas Gulf Coast. The new flora is similar to the Middle Eocene Claiborne Flora of the southeastern USA, but the quality of preservation is sometimes better in the Oligocene fossils. One component of the new flora, a mimosoid legume inflorescence, appears identical with Eomimosoidea plumosa, first reported from the Claiborne Formation of western Tennessee. Investigations of these younger specimens indicate that the taxon had changed little during the Middle Eocene-Oligocene interval, and the better quality of preservation of the Texas specimens has provided further insights into the structure of the fossils. Comparisons of the fine structural details of the pollen of Eomimosoidea with similar pollen of extant mimosoids has confirmed that the fossil genus is indeed extinct and suggests that tetrahedral tetrads of columellate, tricolporate pollen grains are ancient, possibly primitive, in the Mimosoideae.  相似文献   

20.
Fossil melanin granules (melanosomes) are an important resource for inferring the evolutionary history of colour and its functions in animals. The taphonomy of melanin and melanosomes, however, is incompletely understood. In particular, the chemical processes responsible for melanosome preservation have not been investigated. As a result, the origins of sulfur‐bearing compounds in fossil melanosomes are difficult to resolve. This has implications for interpretations of original colour in fossils based on potential sulfur‐rich phaeomelanosomes. Here we use pyrolysis gas chromatography mass spectrometry (Py‐GCMS), fourier transform infrared spectroscopy (FTIR) and time of flight secondary ion mass spectrometry (ToF‐SIMS) to assess the mode of preservation of fossil microstructures, confirmed as melanosomes based on the presence of melanin, preserved in frogs from the Late Miocene Libros biota (NE Spain). Our results reveal a high abundance of organosulfur compounds and non‐sulfurized fatty acid methyl esters in both the fossil tissues and host sediment; chemical signatures in the fossil tissues are inconsistent with preservation of phaeomelanin. Our results reflect preservation via the diagenetic incorporation of sulfur, i.e. sulfurization (natural vulcanization), and other polymerization processes. Organosulfur compounds and/or elevated concentrations of sulfur have been reported from melanosomes preserved in various invertebrate and vertebrate fossils and depositional settings, suggesting that preservation through sulfurization is likely to be widespread. Future studies of sulfur‐rich fossil melanosomes require that the geochemistry of the host sediment is tested for evidence of sulfurization in order to constrain interpretations of potential phaeomelanosomes and thus of original integumentary colour in fossils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号