首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Vasilescu J  Guo X  Kast J 《Proteomics》2004,4(12):3845-3854
The purification of protein complexes can be accomplished by different types of affinity chromatography. In a typical immunoaffinity experiment, protein complexes are captured from a cell lysate by an immobilized antibody that recognizes an epitope on one of the known components of the complex. After extensive washing to remove unspecifically bound proteins, the complexes are eluted and analyzed by mass spectrometry (MS). Transient complexes, which are characterized by high dissociation constants, are typically lost by this approach. In the present study, we describe a novel method for identifying transient protein-protein interactions using in vivo cross-linking and MS-based protein identification. Live cells are treated with formaldehyde, which rapidly permeates the cell membrane and generates protein-protein cross-links. Proteins cross-linked to a Myc-tagged protein of interest are copurified by immunoaffinity chromatography and subjected to a procedure which dissociates the cross-linked complexes. After separation by SDS-PAGE, proteins are identified by tandem mass spectrometry. Application of this method enabled the identification of numerous proteins that copurified with a constitutively active form of M-Ras (M-Ras(Q71L)). Among these, we identified the RasGAP-related protein IQGAP1 to be a novel interaction partner of M-Ras(Q71L). This method is applicable to many proteins and will aid in the study of protein-protein interactions.  相似文献   

2.
Electrophoretic mobility shift assays (EMSA) are commonly employed for the analysis of nucleic acid/ protein interactions with a native gel system. Here, we report a method to identify RNA binding proteins from a dried EMSA gel by mass spectrometry following autoradiography. Compared to wet gel exposure, our approach resulted in an improved protein identification sensitivity and RNA/protein complex isolation accuracy. The method described here is useful for the large scale characterization of RNA- or DNA-protein complexes.  相似文献   

3.
A significant consequence of protein phosphorylation is to alter protein-protein interactions, leading to dynamic regulation of the components of protein complexes that direct many core biological processes. Recent proteomic studies have populated databases with extensive compilations of cellular phosphoproteins and phosphorylation sites and a similarly deep coverage of the subunit compositions and interactions in multiprotein complexes. However, considerably less data are available on the dynamics of phosphorylation, composition of multiprotein complexes or that define their interdependence. We describe a method to identify candidate phosphoprotein complexes by combining phosphoprotein affinity chromatography, separation by size, denaturing gel electrophoresis, protein identification by tandem mass spectrometry, and informatics analysis. Toward developing phosphoproteome profiling, we have isolated native phosphoproteins using a phosphoprotein affinity matrix, Pro-Q Diamond resin (Molecular Probes-Invitrogen). This resin quantitatively retains phosphoproteins and associated proteins from cell extracts. Pro-Q Diamond purification of a yeast whole cell extract followed by 1-D PAGE separation, proteolysis and ESI LC-MS/MS, a method we term PA-GeLC-MS/MS, yielded 108 proteins, a majority of which were known phosphoproteins. To identify proteins that were purified as parts of phosphoprotein complexes, the Pro-Q eluate was separated into two fractions by size, <100 kDa and >100 kDa, before analysis by PAGE and ESI LC-MS/MS and the component proteins queried against databases to identify protein-protein interactions. The <100 kDa fraction was enriched in phosphoproteins indicating the presence of monomeric phosphoproteins. The >100 kDa fraction contained 171 proteins of 20-80 kDa, nearly all of which participate in known protein-protein interactions. Of these 171, few are known phosphoproteins, consistent with their purification by participation in protein complexes. By comparing the results of our phosphoprotein profiling with the informational databases on phosphoproteomics, protein-protein interactions and protein complexes, we have developed an approach to examining the correlation between protein interactions and protein phosphorylation.  相似文献   

4.
We present results from a novel strategy that enables concurrent identification of protein-protein interactions and topologies in living cells without specific antibodies or genetic manipulations for immuno-/affinity purifications. The strategy consists of (i) a chemical cross-linking reaction: intact cell labeling with a novel class of chemical cross-linkers, protein interaction reporters (PIRs); (ii) two-stage mass spectrometric analysis: stage 1 identification of PIR-labeled proteins and construction of a restricted database by two-dimensional LC/MSMS and stage 2 analysis of PIR-labeled peptides by multiplexed LC/FTICR-MS; and (iii) data analysis: identification of cross-linked peptides and proteins of origin using accurate mass and other constraints. The primary advantage of the PIR approach and distinction from current technology is that protein interactions together with topologies are detected in native biological systems by stabilizing protein complexes with new covalent bonds while the proteins are present in the original cellular environment. Thus, weak or transient interactions or interactions that require properly folded, localized, or membrane-bound proteins can be labeled and identified through the PIR approach. This strategy was applied to Shewanella oneidensis bacterial cells, and initial studies resulted in identification of a set of protein-protein interactions and their contact/binding regions. Furthermore most identified interactions involved membrane proteins, suggesting that the PIR approach is particularly suited for studies of membrane protein-protein interactions, an area under-represented with current widely used approaches.  相似文献   

5.
Summary: Studies of the functional proteins encoded by the poxvirus genome provide information about the composition of the virus as well as individual virus-virus protein and virus-host protein interactions, which provides insight into viral pathogenesis and drug discovery. Widely used proteomic techniques to identify and characterize specific protein-protein interactions include yeast two-hybrid studies and coimmunoprecipitations. Recently, various mass spectrometry techniques have been employed to identify viral protein components of larger complexes. These methods, combined with structural studies, can provide new information about the putative functions of viral proteins as well as insights into virus-host interaction dynamics. For viral proteins of unknown function, identification of either viral or host binding partners provides clues about their putative function. In this review, we discuss poxvirus proteomics, including the use of proteomic methodologies to identify viral components and virus-host protein interactions. High-throughput global protein expression studies using protein chip technology as well as new methods for validating putative protein-protein interactions are also discussed.  相似文献   

6.
In accordance with their manifold tasks, various dysfunctions of mitochondria are critically involved in a large number of diseases and the aging process. This has inspired considerable efforts to identify all the mitochondrial proteins by denaturing approaches, notably, the standard gel-based method employing isoelectric focusing. Because a significant part of the mitochondrial proteome is membrane-associated and/or functions as homo- or heterooligomeric protein complexes, there is an urgent need to detect and identify mitochondrial proteins, both membranous and soluble ones, under conditions preserving protein-protein interactions. Here, we investigated mitochondria of five different rat organs (kidney, liver, heart, skeletal muscle, and brain) solubilized with digitonin, enabling the quantitative extraction of the five oxidative phosphorylation (OXPHOS) complexes. The analysis by blue-native (BN)-PAGE recovered the OXPHOS complexes to a large extent as supercomplexes and separated many other protein complexes and individual proteins which were resolved by subsequent 2D SDS-PAGE revealing the tissue-diverse mitochondrial proteomes. Using MS peptide mass fingerprinting, we identified in all five organs 92 nonredundant soluble and membrane-embedded non-OXPHOS proteins, among them, many as constituents of known mitochondrial protein complexes as well as novel ones such as the putative "stomatin-like protein 2 complex" with an apparent mass of ca. 1800 kDa. Interestingly, the identification list included 36 proteins known or presumed to be localized to nonmitochondrial compartments, for example, glycolytic enzymes, clathrin heavy chain, valosin-containing protein/p97, VoV1-ATPase, and Na,K-ATPase. We expect that more than 200 distinct non-OXPHOS proteins of digitonin-solubilized rat mitochondria separated by 2D BN/SDS-PAGE, representing a partial "protein interactome" map, can be identified.  相似文献   

7.
Mass spectrometry is a powerful tool for identification of interaction partners and structural characterization of protein interactions because of its high sensitivity, mass accuracy and tolerance towards sample heterogeneity. Several tools that allow studies of protein interaction are now available and recent developments that increase the confidence of studies of protein interaction by mass spectrometry include quantification of affinity-purified proteins by stable isotope labeling and reagents for surface topology studies that can be identified by mass-contributing reporters (e.g. isotope labels, cleavable cross-linkers or fragment ions. The use of mass spectrometers to study protein interactions using deuterium exchange and for analysis of intact protein complexes recently has progressed considerably.  相似文献   

8.
Ossipova E  Fenyö D  Eriksson J 《Proteomics》2006,6(7):2079-2085
The two central problems in protein identification by searching a protein sequence collection with MS data are the optimal use of experimental information to allow for identification of low abundance proteins and the accurate assignment of the probability that a result is false. For comprehensive MS-based protein identification, it is necessary to choose an appropriate algorithm and optimal search conditions. We report a systematic study of the quality of PMF-based protein identifications under different sequence collection search conditions using the Probability algorithm, which assigns the statistical significance to each result. We employed 2244 PMFs from 2-DE-separated human blood plasma proteins, and performed identification under various search constraints: mass accuracy (0.01-0.3 Da), maximum number of missed cleavage sites (0-2), and size of the sequence collection searched (5.6 x 10(4)-1.8 x 10(5)). By counting the number of significant results (significance levels 0.05, 0.01, and 0.001) for each condition, we demonstrate the search condition impact on the successful outcome of proteome analysis experiments. A mass correction procedure utilizing mass deviations of albumin matching peptides was tested in an attempt to improve the statistical significance of identifications and iterative searching was employed for identification of multiple proteins from each PMF.  相似文献   

9.
Protein-protein interactions are vital for almost all cellular functions, and many require the formation of multiprotein complexes. Identification of the macroscopic and microscopic protein interactions within these complexes is essential in understanding their mechanisms, both under physiologic as well as pathologic conditions. This review describes the current technology available to investigate interactions between proteins utilizing chemical cross-linking and site-directed cleavage reagents, outlining the necessary steps involved in identifying interacting proteins both in vitro and in vivo. Once interacting proteins are identified, more information about the architecture of the assemblies is necessary. Unique separation techniques coupled with cross-linking and mass spectrometry can now identify specific interaction sites and lead to the development of quaternary structural protein models. Furthermore, combination of these methods with proteomic approaches enables the identification and analysis of complex interactions in vivo. Finally, future directions in cross-linking methodologies are discussed.  相似文献   

10.
Protein-protein interactions are required for many viral and cellular functions and are potential targets for novel therapies. Here we detail a series of genetic and biochemical techniques used in combination to find an essential molecular contact point on the duck hepatitis B virus polymerase. These techniques include differential immunoprecipitation, mutagenesis and peptide competition. The strength of these techniques is their ability to identify contact points on intact proteins or protein complexes employing functional assays. This approach can be used to aid identification of putative binding sites on proteins and protein complexes which are resistant to characterization by other methods.  相似文献   

11.
Known host-parasite molecular interactions are widespread among parasite families, but these interactions have to be particularly large considering that viruses generally encode few proteins. Although some particular virus-host interactions are well described, no global study has yet shown multiple and simultaneous interactions in a host-parasite biological system. To prove that these multiple interactions occur in biological conditions, the complexes formed by a plant virus (rice yellow mottle virus) and the proteins of its natural host (rice) were extracted and purified from infected tissue sample. Remarkably mass spectrometry permitted the identification of a large number of proteins from the complexes that are involved in different functions not encoded by the virus but probably essential for its biological life cycle. This recruiting of proteins was strongly confirmed by the repetition of experiments using different pairs of virus-host and the use of high salt concentration to extract the complexes. We mainly identified proteins involved in plant defense, metabolism, translation, and protein synthesis and some proteins involved in transport. This study demonstrates that viruses are able to recruit many proteins from their hosts to ensure their development. Among different pairs of virus-host, similar protein functions were identified suggesting a particular importance of these proteins for viruses. The identification of particular paralog proteins among multigenic families suggests the high specificity of the recruiting for some protein functions.  相似文献   

12.
Recent achievements in genomics have created an infrastructure of biological information. The enormous success of genomics promptly induced a subsequent explosion in proteomics technology, the emerging science for systematic study of proteins in complexes, organelles, and cells. Proteomics is developing powerful technologies to identify proteins, to map proteomes in cells, to quantify the differential expression of proteins under different states, and to study aspects of protein-protein interaction. The dynamic nature of protein expression, protein interactions, and protein modifications requires measurement as a function of time and cellular state. These types of studies require many measurements and thus high throughput protein identification is essential. This review will discuss aspects of mass spectrometry with emphasis on methods and applications for large-scale protein identification, a fundamental tool for proteomics.  相似文献   

13.
A strategy for identifying and characterizing protein interactions among gel-separated proteins and complexes has been developed and tested. The method involves the efficient recovery of proteins or complexes from native gels without affecting their conformational integrity. The use of limited proteolysis of protein complexes, isolated from the gel or formed from the interaction of gel-recovered proteins with potential binding partners, has enabled local binding domains to be efficiently identified using a combination of microfiltration and mass spectrometric analysis. The application of mass spectrometry affords high detection sensitivities, enabling the strategy to be applied to low levels of protein and protein mixtures. The approach is demonstrated for both antigen-antibody and peptide-protein complexes for which protein-binding regions are characterized among simple peptide mixtures and proteolytic digests. The strategy can be easily adapted to achieve high sample throughput and automation using gel-excision robotics and provides a means to study protein interactions in complex biological mixtures and extracts.  相似文献   

14.
15.
16.
A main objective of proteomics research is to systematically identify and quantify proteins in a given proteome (cells, subcellular fractions, protein complexes, tissues or body fluids). Protein labeling with isotope-coded affinity tags (ICAT) followed by tandem mass spectrometry allows sequence identification and accurate quantification of proteins in complex mixtures, and has been applied to the analysis of global protein expression changes, protein changes in subcellular fractions, components of protein complexes, protein secretion and body fluids. This protocol describes protein-sample labeling with ICAT reagents, chromatographic fractionation of the ICAT-labeled tryptic peptides, and protein identification and quantification using tandem mass spectrometry. The method is suitable for both large-scale analysis of complex samples including whole proteomes and small-scale analysis of subproteomes, and allows quantitative analysis of proteins, including those that are difficult to analyze by gel-based proteomics technology.  相似文献   

17.
Methods for the simultaneous identification of interacting proteins and post-translational modifications of the focal adhesion adapter protein, paxillin, are presented. The strategy includes (1) lower-level, transient transfection of FLAG-GFP-Paxillin into HEK293 cells, (2) incubation of cells with phosphatase inhibitors prior to lysis, (3) purification of paxillin by anti-FLAG immunoprecipitation, (4) analysis of peptides generated from on-beads digestion using LTQ-FT or LTQ-ETD mass spectrometry, and (5) enrichment of phosphopeptide methyl esters with IMAC. Using the above strategies, we identify 29 phosphorylation sites (19 novel and 10 previously reported) and a novel glycosylation site on Ser 74. Furthermore, with this method, we simultaneously detect 10 co-purifying proteins which are present in focal adhesion complexes. Extension of these methods to other substrates should facilitate generation of global phosphorylation maps and protein-protein interactions for any protein of interest.  相似文献   

18.
It becomes increasingly clear that most proteins of living systems exist as components of various protein complexes rather than individual molecules. The use of various proteomic techniques significantly extended our knowledge not only about functioning of individual complexes but also formed a basis for systemic analysis of protein-protein interactions. In this study gel-filtration chromatography accompanied by mass spectrometry was used for the interactome analysis of human liver proteins. In six fractions (with average molecular masses of 45 kDa, 60 kDa, 85 kDa, 150 kDa, 250 kDa, and 440 kDa) 797 proteins were identified. In dependence of their distribution profiles in the fractions, these proteins could be subdivided into four groups: (1) single monomeric proteins that are not involved in formation of stable protein complexes; (2) proteins existing as homodimers or heterodimers with comparable partners; (3) proteins that are partially exist as monomers and partially as components of protein complexes; (4) proteins that do not exist in the monomolecular state, but also exist within protein complexes containing three or more subunits. Application of this approach to known isatin-binding proteins resulted in identification of proteins involved in formation of the homo- and heterodimers and mixed protein complexes.  相似文献   

19.
To identify protein–protein interactions and phosphorylated amino acid sites in eukaryotic mRNA translation, replicate TAP‐MudPIT and control experiments are performed targeting Saccharomyces cerevisiae genes previously implicated in eukaryotic mRNA translation by their genetic and/or functional roles in translation initiation, elongation, termination, or interactions with ribosomal complexes. Replicate tandem affinity purifications of each targeted yeast TAP‐tagged mRNA translation protein coupled with multidimensional liquid chromatography and tandem mass spectrometry analysis are used to identify and quantify copurifying proteins. To improve sensitivity and minimize spurious, nonspecific interactions, a novel cross‐validation approach is employed to identify the most statistically significant protein–protein interactions. Using experimental and computational strategies discussed herein, the previously described protein composition of the canonical eukaryotic mRNA translation initiation, elongation, and termination complexes is calculated. In addition, statistically significant unpublished protein interactions and phosphorylation sites for S. cerevisiae’s mRNA translation proteins and complexes are identified.  相似文献   

20.

Background  

Mass spectrometry based peptide mass fingerprints (PMFs) offer a fast, efficient, and robust method for protein identification. A protein is digested (usually by trypsin) and its mass spectrum is compared to simulated spectra for protein sequences in a database. However, existing tools for analyzing PMFs often suffer from missing or heuristic analysis of the significance of search results and insufficient handling of missing and additional peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号