首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Tsuda  Y Hasegawa  M Yoshida  K Yagi  K Hikichi 《Biochemistry》1988,27(11):4120-4126
Rabbit skeletal muscle troponin C (TnC) was investigated by means of 1H NMR in the presence of dithiothreitol that prevents dimerization of the protein. Two-dimensional (2D) 1H NMR spectra were observed in order to assign resonances to specific amino acids. One-dimensional 1H NMR spectra were observed as a function of Ca2+ concentration. The Ca2+-induced spectral change is categorized into two types: type 1 corresponds to the conformational change of the C-terminal-half domain (Ca2+ high-affinity sites) and type 2 to that of the N-terminal-half domain (Ca2+ low-affinity sites). From the 2D NMR spectra and Ca2+ titration data, it was suggested that (1) amide protons of Gly-108, Ile-110, Gly-144, and Ile-146 are hydrogen-bonded when the C-terminal-half domain binds 2 mol of Ca2+ and (2) hydrogen bonds of Gly-108, Ile-110, Gly-144, and Ile-146 are destroyed or weakened when the C-terminal-half domain releases 2 mol of Ca2+. Nuclear Overhauser enhancement difference spectra as well as the Ca2+ titration data suggested that a hydrophobic cluster is formed in the C-terminal-half domain when the C-terminal-half domain binds 2 mol of Ca2+. A hydrophobic cluster exists in the N-terminal-half domain without regard to Ca2+ binding to the N-terminal-half domain. The spectra of Tyr-10 showed both types of spectral change during the Ca2+ titration. The results suggested that Tyr-10 of apo-TnC interacts with the C-terminal-half domain.  相似文献   

2.
Ueki S  Nakamura M  Komori T  Arata T 《Biochemistry》2005,44(1):411-416
Calcium-induced structural transition in the amino-terminal domain of troponin C (TnC) triggers skeletal and cardiac muscle contraction. The salient feature of this structural transition is the movement of the B and C helices, which is termed the "opening" of the N-domain. This movement exposes a hydrophobic region, allowing interaction with the regulatory domain of troponin I (TnI) as can be seen in the crystal structure of the troponin ternary complex [Takeda, S., Yamashita, A., Maeda, K., and Maeda, Y. (2003) Nature 424, 35-41]. In contrast to skeletal TnC, Ca(2+)-binding site I (an EF-hand motif that consists of an A helix-loop-B helix motif) is inactive in cardiac TnC. The question arising from comparisons with skeletal TnC is how both helices move according to Ca(2+) binding or interact with TnI in cardiac TnC. In this study, we examined the Ca(2+)-induced movement of the B and C helices relative to the D helix in a cardiac TnC monomer state and TnC-TnI binary complex by means of site-directed spin labeling electron paramagnetic resonance (EPR). Doubly spin-labeled TnC mutants were prepared, and the spin-spin distances were estimated by analyzing dipolar interactions with the Fourier deconvolution method. An interspin distance of 18.4 A was estimated for mutants spin labeled at G42C on the B helix and C84 on the D helix in a Mg(2+)-saturated monomer state. The interspin distance between Q58C on the C helix and C84 on the D helix was estimated to be 18.3 A under the same conditions. Distance changes were observed by the addition of Ca(2+) ions and the formation of a complex with TnI. Our data indicated that the C helix moved away from the D helix in a distinct Ca(2+)-dependent manner, while the B helix did not. A movement of the B helix by interaction with TnI was observed. Both Ca(2+) and TnI were also shown to be essential for the full opening of the N-domain in cardiac TnC.  相似文献   

3.
4.
There are significant isoform differences between the skeletal and cardiac troponin complexes. Studies of the regulatory properties of these proteins have previously shown only significant differences in the calcium dependence of their regulation. Using a sensitive myosin subfragment 1 (S1) binding assay we show that in the presence of calcium, thin filaments reconstituted with either skeletal or cardiac troponin produce virtually identical S1 binding curves. However in the absence of calcium the S1 binding curves differ considerably. Combined with kinetic measurements, curve fitting to the three-state thin filament regulatory model shows the main difference is that calcium produces a 4-fold change in K(T) (the closed-open equilibrium) for the skeletal system but little change in the cardiac system. The results show a significant difference in the range of regulatory effect between the cardiac and skeletal systems that we interpret as effects upon actin-troponin (Tn)I-TnC binding equilibria. As structural data show that the Ca(2+)-bound TnC structures differ, the additional counter-intuitive result here is that with respect to myosin binding the +Ca(2+) state of the two systems is similar whereas the -Ca(2+) state differs. This shows the regulatory tuning of the troponin complex produced by isoform variation is the net result of a complex series of interactions among all the troponin components.  相似文献   

5.
Skinned fibers prepared from rabbit fast and slow skeletal and cardiac muscles showed acidotic depression of the Ca2+ sensitivity of force generation, in which the magnitude depends on muscle type in the order of cardiac>fast skeletal>slow skeletal. Using a method that displaces whole troponin-complex in myofibrils with excess troponin T, the roles of Tn subunits in the differential pH dependence of the Ca2+ sensitivity of striated muscle were investigated by exchanging endogenous troponin I and troponin C in rabbit skinned cardiac muscle fibres with all possible combinations of the corresponding isoforms expressed in rabbit fast and slow skeletal and cardiac muscles. In fibers exchanged with fast skeletal or cardiac troponin I, cardiac troponin C confers a higher sensitivity to acidic pH on the Ca2+ sensitive force generation than fast skeletal troponin C independently of the isoform of troponin I present. On the other hand, fibres exchanged with slow skeletal troponin I exhibit the highest resistance to acidic pH in combination with either isoform of troponin C. These results indicate that troponin C is a determinant of the differential pH sensitivity of fast skeletal and cardiac muscles, while troponin I is a determinant of the pH sensitivity of slow skeletal muscle.  相似文献   

6.
In adult fast skeletal muscle, specific combinations of thin filament and Z-line protein isoforms are coexpressed. To determine whether the expression of these sets of proteins, designated the TnT1f, TnT2f, and TnT3f programs, is coordinated during development, we characterized the transitions in troponin T (TnT), tropomyosin (Tm), and alpha-actinin isoforms that occur in developing fetal and neonatal rabbit skeletal muscle. Two coordinated developmental transitions were identified, and a novel pattern of thin filament expression was found in fetal muscle. In fetal muscle, new TnT species--whose protein and immunochemical properties suggest that they are the products of a new TnT gene--are expressed in combination with beta 2 Tm and alpha-actinin1f/s. This pattern, which is found in both back and hindlimb muscles, is specific to fetal and early neonatal muscle. Just prior to birth, there is a transition from the fetal program to the isoforms that define the TnT3f program, TnT3f, and alpha beta Tm. Like the fetal program, expression of the TnT3f program appears to be a general feature of muscle development, because it occurs in a variety of fast muscles as well as in the slow muscle soleus. The transition to adult patterns of thin filament expression begins at the end of the first postnatal week. Based on studies of erector spinae, the isoforms comprising the TnT2f program, TnT2f, alpha 2 Tm, and alpha-actinin2f, appear and increase coordinately at this time. The transitions, first to the TnT3f program, and then to adult patterns of expression indicate that synthesis of the isoforms comprising each program is coordinated during muscle specialization and throughout muscle development. In addition, these observations point to a dual role for the TnT3f program, which is the major thin filament program in some adult muscles, but appears to bridge the transition from developmentally to physiologically regulated patterns of thin filament expression during the late fetal and early neonatal development.  相似文献   

7.
Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.  相似文献   

8.
Previously, we utilized (15)N transverse relaxation rates to demonstrate significant mobility in the linker region and conformational exchange in the regulatory domain of Ca(2+)-saturated cardiac troponin C bound to the isolated N-domain of cardiac troponin I (Gaponenko, V., Abusamhadneh, E., Abbott, M. B., Finley, N., Gasmi-Seabrook, G., Solaro, R.J., Rance, M., and Rosevear, P.R. (1999) J. Biol. Chem. 274, 16681-16684). Here we show a large decrease in cardiac troponin C linker flexibility, corresponding to residues 85-93, when bound to intact cardiac troponin I. The addition of 2 m urea to the intact cardiac troponin I-troponin C complex significantly increased linker flexibility. Conformational changes in the regulatory domain of cardiac troponin C were monitored in complexes with troponin I-(1-211), troponin I-(33-211), troponin I-(1-80) and bisphosphorylated troponin I-(1-80). The cardiac specific N terminus, residues 1-32, and the C-domain, residues 81-211, of troponin I are both capable of inducing conformational changes in the troponin C regulatory domain. Phosphorylation of the cardiac specific N terminus reversed its effects on the regulatory domain. These studies provide the first evidence that the cardiac specific N terminus can modulate the function of troponin C by altering the conformational equilibrium of the regulatory domain.  相似文献   

9.
Numerous troponin T (TnT) isoforms are produced by alternative splicing from three genes characteristic of cardiac, fast skeletal, and slow skeletal muscles. Apart from the developmental transition of fast skeletal muscle TnT isoforms, switching of TnT expression during muscle development is poorly understood. In this study, we investigated precisely and comprehensively developmental changes in chicken cardiac and slow skeletal muscle TnT isoforms by two-dimensional gel electrophoresis and immunoblotting with specific antisera. Four major isoforms composed of two each of higher and lower molecular weights were found in cardiac TnT (cTnT). Expression of cTnT changed from high- to low-molecular-weight isoforms during cardiac muscle development. On the other hand, such a transition was not found and only high-molecular-weight isoforms were expressed in the early stages of chicken skeletal muscle development. Two major and three minor isoforms of slow skeletal muscle TnT (sTnT), three of which were newly found in this study, were expressed in chicken skeletal muscles. The major sTnT isoforms were commonly detected throughout development in slow and mixed skeletal muscles, and at developmental stages until hatching-out in fast skeletal muscles. The expression of minor sTnT isoforms varied from muscle to muscle and during development.  相似文献   

10.
Thin filament proteins tropomyosin (Tm), troponin T (TnT), and troponin I (TnI) form an allosteric regulatory complex that is required for normal cardiac contraction. Multiple isoforms of TnT, Tm, and TnI are differentially expressed in both cardiac development and disease, but concurrent TnI, Tm, and TnT isoform switching has hindered assignment of cellular function to these transitions. We systematically incorporated into the adult sarcomere the embryonic/fetal isoforms of Tm, TnT, and TnI by using gene transfer. In separate experiments, greater than 90% of native TnI and 40-50% of native Tm or TnT were specifically replaced. The Ca(2+) sensitivity of tension development was markedly enhanced by TnI replacement but not by TnT or Tm isoform replacement. Titration of TnI replacement from >90% to <30% revealed a dominant functional effect of slow skeletal TnI to modulate regulation. Over this range of isoform replacement, TnI, but not Tm or TnT embryonic isoforms, influenced calcium regulation of contraction, and this identifies TnI as a potential target to modify contractile performance in normal and diseased myocardium.  相似文献   

11.
J E Van Eyk  C M Kay  R S Hodges 《Biochemistry》1991,30(41):9974-9981
The cardiac and skeletal TnI inhibitory regions have identical sequences except at position 110 which contains Pro in the skeletal sequence and Thr in the cardiac sequence. The effect of the synthetic TnI inhibitory peptides [skeletal TnI peptide (104-115), cardiac TnI peptide (137-148), and a single Gly-substituted analogue at position 110] on the secondary structure of skeletal and cardiac TnC was investigated. The biphasic increases in ellipticity and tyrosine fluorescence were analyzed to determine the Ca2+ binding constants for the high- and low-affinity Ca2+ binding sites of TnC. Importantly, the skeletal and cardiac TnI peptides altered Ca2+ binding at the low-affinity sites of TnC, but the magnitude and direction of the pCa shifts depended on whether the peptides were bound to skeletal or cardiac TnC. For example, binding of skeletal TnI peptide to skeletal TnC (monitored by CD) caused a pCa shift of +0.30 unit such that a lower Ca2+ concentration was required to fill sites I and II, while binding of this peptide to cardiac TnC caused a pCa shift of -0.35 unit such that a higher Ca2+ concentration was required to fill site II. This is the first report of the alteration at the low-affinity regulatory sites (located in the N-terminal domain) by the skeletal TnI inhibitory peptide, even though the primary peptide binding site is located in the C-terminal domain of TnC, a finding which strongly indicates that there is communication between the two halves of the TnC molecule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Using several independent methods, the interaction between troponin T and troponin C from skeletal and cardiac muscles was studied. It was found that troponin T and troponin C from skeletal muscles form a complex whose stability depends on Ca2+ concentration. Study of interactions between these troponin components demonstrated that both electrostatic and hydrophobic forces are involved in the complex formation. Cardiac troponin T and troponin C weakly interact with each other irrespective of experimental conditions. It was assumed that the weakening of interactions between the components of cardiac troponin is due to structural peculiarities of cardiac troponin T.  相似文献   

13.
The binding of the chymotryptic troponin T subfragments to tropomyosin, troponin I, and troponin C was semiquantitatively examined by using affinity chromatography, and also by co-sedimentation with F-actin and polyacrylamide gel electrophoresis in 14 mM Tris/90 mM glycine. Circular dichroism spectra of the subfragments were measured to confirm that the subfragments retained their conformational structures. Based on these results, the binding sites of tropomyosin, troponin I, and troponin C on the troponin T sequence were elucidated. Tropomyosin bound mainly to the region of troponin T1 (residues 1-158) with the same binding strength as to the original troponin T. The C-terminal region of troponin T (residues 243-259) was the second binding site to tropomyosin under physiological conditions. The binding site of troponin I was concluded to be the region including residues 223-227. The binding of troponin C was dependent on Ca2+ ion concentration. The C-terminal region of troponin T2 (residues 159-259) was indicated to be the Ca2+-independent troponin C-binding site and the N-terminal side of troponin T2 to be the Ca2+-dependent site.  相似文献   

14.
Conformational exchange has been demonstrated within the regulatory domain of calcium-saturated cardiac troponin C when bound to the NH2-terminal domain of cardiac troponin I-(1-80), and cardiac troponin I-(1-80)DD, having serine residues 23 and 24 mutated to aspartate to mimic the phosphorylated form of the protein. Binding of cardiac troponin I-(1-80) decreases conformational exchange for residues 29, 32, and 34. Comparison of average transverse cross correlation rates show that both the NH2- and COOH-terminal domains of cardiac troponin C tumble with similar correlation times when bound to cardiac troponin I-(1-80). In contrast, the NH2- and COOH-terminal domains in free cardiac troponin C and cardiac troponin C bound cardiac troponin I-(1-80)DD tumble independently. These results suggest that the nonphosphorylated cardiac specific NH2 terminus of cardiac troponin I interacts with the NH2-terminal domain of cardiac troponin C.  相似文献   

15.
In adult fast skeletal muscle, specific combinations of thin filament and Z-line protein isoforms are coexpressed. To determine whether the expression of these sets of proteins, designated the TnT1f, TnT2f, and TnT3f programs, is coordinated during development, we characterized the transitions in troponin T (TnT), tropomyosin (Tm), and α-actinin isoforms that occur in developing fetal and neonatal rabbit skeletal muscle. Two coordinated developmental transitions were identified, and a novel pattern of thin filament expression was found in fetal muscle. In fetal muscle, new TnT species—whose protein and immunochemical properties suggest that they are the products of a new TnT gene—are expressed in combination with β2 Tm and α-actinin1f/8. This pattern, which is found in both back and hindlimb muscles, is specific to fetal and early neonatal muscle. Just prior to birth, there is a transition from the fetal program to the isoforms that define the TnT3f program, TnT3f, and αβ Tm. Like the fetal program, expression of the TnT3f program appears to be a general feature of muscle development, because it occurs in a variety of fast muscles as well as in the slow muscle soleus. The transition to adult patterns of thin filament expression begins at the end of the first postnatal week. Based on studies of erector spinae, the isoforms comprising the TnT2f program, TnT2f, α2 Tm, and α-actinin2f, appear and increase coordinately at this time. The transitions, first to the TnT3f program, and then to adult patterns of expression indicate that synthesis of the isoforms comprising each program is coordinated during muscle specialization and throughout muscle development. In addition, these observations point to a dual role for the TnT3f program, which is the major thin filament program in some adult muscles, but appears to bridge the transition from developmentally to physiologically regulated patterns of thin filament expression during late fetal and early neonatal development.  相似文献   

16.
We have previously identified evolutionarily conserved heptad hydrophobic repeat (HR) domains in all isoprotein members of troponin T (TnT) and troponin I (TnI), two subunits of the Ca(2+)-regulatory troponin complex. Our suggestion that the HR domains are involved in the formation of a coiled-coil heterodimer of TnT and TnI has been recently confirmed by the crystal structure of the core domain of the human cardiac troponin complex. Here we studied a series of recombinant deletion mutants of the fast skeletal TnT to determine the minimal sequence required for stable coiled-coil formation with the HR domain of the fast skeletal TnI. Using circular dichroism spectroscopy, we measured the alpha helical content of the coiled-coil formed by the various TnT peptides with TnI HR domain. Sedimentation equilibrium experiments confirmed that the individual peptides of TnT were monomeric but formed heterodimers when mixed with HR domain of TnI. Isothermal titration calorimetry was then used to directly measure the affinity of the TnT peptides for the TnI HR domain. Surprisingly we found that the HR regions alone of the fast skeletal TnT and TnI, as defined earlier, were insufficient to form a coiled-coil. Furthermore we showed that an additional 14 amino acid residues N-terminal to the conserved HR region (TnT residues 165-178) are essential for the stable coiled-coil formation. We discuss the implication of our finding in the fast skeletal troponin isoform in the light of the crystal structure of the cardiac isoform.  相似文献   

17.
The different isoforms of fast skeletal muscle troponin T (TnT) are generated by alternative splicing of several 5' exons in the fast TnT gene. In rabbit skeletal muscle this process results in three major fast TnT species, TnT1f, TnT2f and TnT3f, that differ in a region of 30 to 40 amino acid residues near the N terminus. Differential expression of these three isoforms modulates the activation of the thin filament by calcium. To establish a basis for further structure-function studies, we have sequenced the N-terminal region of these proteins. TnT2f is the fast TnT sequenced by Pearlstone et al. The larger species TnT1f contains six additional amino acid residues identical in sequence and position to those encoded by exon 4 in the rat fast skeletal muscle TnT gene. TnT3f also contains that sequence but lacks 17 amino acid residues spanning the region encoded by exons 6 and 7 of the rat gene. These three TnTs appear to be generated by discrete alternative splicing pathways, each differing by a single event. Comparison of these TnT sequences with those from chicken fast skeletal muscle and bovine heart shows that the splicing pattern resulting in the excision of exon 4 is evolutionarily conserved and leads to a more calcium-sensitive thin filament.  相似文献   

18.
Using a new methodological approach based on the binding of 125I-labeled troponin C to troponins I and T immobilized on polyvinylchloride, the Ca2+-dependent interaction of troponin components was investigated. In the absence of Ca2+, two types of sites of troponin C--troponin T interaction were revealed (Kd = 3.6.10(-8) M and 5.10(-7) M). It was found that Ca2+ induced the formation of a troponin I--troponin C complex which was resistant to 5 M urea (Kd = 4.10(-8) M). In the absence of Ca2+, the binary troponin T--troponin C complex also revealed two types of interaction sites (Kd = 7.1.10(-8) M and 2.10(-7) M); however, in the presence of Ca2+ only high affinity sites whose number increased almost 2-fold were revealed. The events that may take place in the whole troponin complex during Ca2+ binding by troponin C are discussed.  相似文献   

19.
We present here the solution structure for the bisphosphorylated form of the cardiac N-extension of troponin I (cTnI(1-32)), a region for which there are no previous high-resolution data. Using this structure, the X-ray crystal structure of the cardiac troponin core, and uniform density models of the troponin components derived from neutron contrast variation data, we built atomic models for troponin that show the conformational transition in cardiac troponin induced by bisphosphorylation. In the absence of phosphorylation, our NMR data and sequence analyses indicate a less structured cardiac N-extension with a propensity for a helical region surrounding the phosphorylation motif, followed by a helical C-terminal region (residues 25-30). In this conformation, TnI(1-32) interacts with the N-lobe of cardiac troponin C (cTnC) and thus is positioned to modulate myofilament Ca2+-sensitivity. Bisphosphorylation at Ser23/24 extends the C-terminal helix (residues 21-30) which results in weakening interactions with the N-lobe of cTnC and a re-positioning of the acidic amino terminus of cTnI(1-32) for favorable interactions with basic regions, likely the inhibitory region of cTnI. An extended poly(L-proline)II helix between residues 11 and 19 serves as the rigid linker that aids in re-positioning the amino terminus of cTnI(1-32) upon bisphosphorylation at Ser23/24. We propose that it is these electrostatic interactions between the acidic amino terminus of cTnI(1-32) and the basic inhibitory region of troponin I that induces a bending of cTnI at the end that interacts with cTnC. This model provides a molecular mechanism for the observed changes in cross-bridge kinetics upon TnI phosphorylation.  相似文献   

20.
In this study, 10 troponin T isoforms from adult porcine skeletal muscle messenger RNA were clarified. These were eight fast- and two slow-type isoforms. Fast-type isoforms had three and two variable exons in the N-terminal and the C-terminal region respectively. Slow-type isoforms had one variable exon in the N-terminal region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号