首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Lin W 《Plant physiology》1984,74(2):219-222
Recent experiments show that exogenous NADH increases the O2 consumption and uptake of inorganic ions into isolated corn (Zea mays L. Pioneer Hybrid 3320) root protoplasts (Lin 1982, Proc Natl Acad Sci USA 79: 3773-3776). A mild treatment of protoplasts with trypsin released most of the NADH oxidation system from the plasmalemma (Lin 1982 Plant Physiol 70: 326-328). Further studies on this system showed that exogenous NADH (1.5 millimolar) tripled the proton efflux from the protoplasts thus generating a greater electrochemical proton gradient across the plasmalemma. Trypsin also released ubiquinone (11.95 nanomoles per milligrams protein) but not flavin or cytochrome from the system. Kinetic analyses showed that 1.5 millimolar NADH quadrupled Vmax of the mechanism I (saturable) component of K+ uptake, while Km was not affected. Diethylstibestrol and vanadate inhibited basal (ATPase-mediated) K+ influx and H+ efflux, while NADH-stimulated K+ uptake was not or only slightly inhibited. p-Chloromercuribenzene-sulfonic acid, N,N′-dicyclohexylcarbodiimide, ethidium bromide, and oligomycin inhibited both ATPase- and NADH-mediated H+ and K+ fluxes. A combination of 10 millimolar fusicoccin and 1.5 millimolar NADH gave an 11-fold increase of K+ influx and a more than 3-fold increase of H+ efflux. It is concluded that a plasmalemma ATPase is not involved in the NADH-mediated ion transport mechanism. NADH oxidase is a -SH containing enzyme (protein) and the proton channel is an important element in this transport system. Fusicoccin synergistically stimulates the effect of NADH on K+ uptake.  相似文献   

2.
Lin W 《Plant physiology》1982,70(1):326-328
A plasmalemma-bound NADH oxidation system (Lin 1982 Proc Natl Acad Sci USA 79: 3773-3776) in corn root protoplasts was isolated by a mild treatment of intact protoplasts with trypsin. The majority of NADH stimulated O2 consumption activity of the protoplasts could be recovered in the supernatant isolated from the intact protoplasts which have been treated with trypsin. The activation energy of NADH oxidation in the supernatant is similar to that of the intact protoplasts (8.7 versus 9.4 kilocalories per mole per degree). Unlike that of the intact protoplasts, an Arrhenius plot of the temperature response (from 5 to 25°C) of the activity in the supernatant shows no transition suggestive of a dissociation of the enzyme from the membrane. Trypsin treatment did not affect K+ uptake into cell volume of the protoplast. However, the NADH-stimulated K+ uptake and the increase of cell volume were greatly reduced. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of trichloroacetic acid-precipitated protein from the supernatant showed one extra peptide band with ~42 kilodalton molecular weight.  相似文献   

3.
It has recently been reported that plasmalemma electron transport may be involved in the generation of H+ gradients and the uptake of ions into root tissue. We report here on the influence of extracellular NADH and ferricyanide on K+ (86Rb+) influx, K+ (86Rb+) efflux, net apparent H+ efflux, and O2 consumption in 2-centimeter corn (Zea mays [A632 × Oh43]) root segments and intact corn roots. In freshly excised root segments, NADH had no effect on O2 consumption and K+ uptake. However, after the root segments were given a 4-hour wash in aerated salt solution, NADH elicited a moderate stimulation in O2 consumption but caused a dramatic inhibition of K+ influx. Moreover, net apparent H+ efflux was significantly inhibited following NADH exposure in 4-hour washed root segments.

Exogenous ferricyanide inhibited K+ influx in a similar fashion to that caused by NADH, but caused a moderate stimulation of net H+ efflux. Additionally, both reagents substantially altered K+ efflux at both the plasmalemma and tonoplast.

These complex results do not lend themselves to straightforward interpretation and are in contradiction with previously published results. They suggest that the interaction between cell surface redox reactions and membrane transport are more complex than previously considered. Indeed, more than one electron transport system may operate in the plasmalemma to influence, or regulate, a number of transport functions and other cellular processes. The results presented here suggest that plasmalemma redox reactions may be involved in the regulation of ion uptake and the `wound response' exhibited by corn roots.

  相似文献   

4.
Procedures are described for isolating highly purified porcine liver pyruvate and α-ketoglutarate dehydrogenase complexes. Rabbit serum stabilized these enzyme complexes in mitochondrial extracts, apparently by inhibiting lysosomal proteases. The complexes were purified by a three-step procedure involving fractionation with polyethylene glycol, pelleting through 12.5% sucrose, and a second fractionation under altered conditions with polyethylene glycol. Sedimentation equilibrium studies gave a molecular weight of 7.2 × 106 for the liver pyruvate dehydrogenase complex. Kinetic parameters are presented for the reaction catalyzed by the pyruvate dehydrogenase complex and for the regulatory reactions catalyzed by the pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase. For the overall catalytic reaction, the competitive Ki to Km ratio for NADH versus NAD+ and acetyl CoA versus CoA were 4.7 and 5.2, respectively. Near maximal stimulations of pyruvate dehydrogenase kinase by NADH and acetyl CoA were observed at NADH:NAD+ and acetyl CoA:CoA ratios of 0.15 and 0.5, respectively. The much lower ratios required for enhanced inactivation of the complex by pyruvate dehydrogenase kinase than for product inhibition indicate that the level of activity of the regulatory enzyme is not directly determined by the relative affinity of substrates and products of catalytic sites in the pyruvate dehydrogenase complex. In the pyruvate dehydrogenase kinase reaction, K+ and NH+4 decreased the Km for ATP and the competitive inhibition constants for ADP and (β,γ-methylene)adenosine triphosphate. Thiamine pyrophosphate strongly inhibited kinase activity. A high concentration of ADP did not alter the degree of inhibition by thiamine pyrophosphate nor did it increase the concentration of thiamine pyrophosphate required for half-maximal inhibition.  相似文献   

5.
6.
7.
Tania Bizouarn  Tina Bhakta 《BBA》2005,1708(3):404-410
Transhydrogenase (E.C. 1.6.1.1) couples the redox reaction between NAD(H) and NADP(H) to the transport of protons across a membrane. The enzyme is composed of three components. The dI and dIII components, which house the binding site for NAD(H) and NADP(H), respectively, are peripheral to the membrane, and dII spans the membrane. We have estimated dissociation constants (Kd values) for NADPH (0.87 μM), NADP+ (16 μM), NADH (50 μM), and NAD+ (100-500 μM) for intact, detergent-dispersed transhydrogenase from Escherichia coli using micro-calorimetry. This is the first complete set of dissociation constants of the physiological nucleotides for any intact transhydrogenase. The Kd values for NAD+ and NADH are similar to those previously reported with isolated dI, but the Kd values for NADP+ and NADPH are much larger than those previously reported with isolated dIII. There is negative co-operativity between the binding sites of the intact, detergent-dispersed transhydrogenase when both nucleotides are reduced or both are oxidised.  相似文献   

8.
Nicotinamide adenine dinucleotide (NAD) is a coenzyme in metabolic reactions and cosubstrate in signaling pathways of cells. While the intracellular function of NAD is well described, much less is known about its importance as an extracellular molecule. Moreover, there is only little information about the concentration of extracellular NAD and the ratio between its oxidized (NAD+) and reduced (NADH) form in humans. Therefore, our study aimed at the analysis of total NAD and NAD+/NADH ratio in human plasma depending on sex and age. First, an enzymatic assay was established for detecting NAD+ and NADH in human plasma samples. Then, plasma NAD was analyzed in 205 probands without severe diseases (91 men, 114 women) being 18–83 years old. The total plasma NAD concentration was determined with median 1.34 µM (0.44–2.88 µM) without difference between men and women. Although the amounts of NAD+ and NADH were nearly balanced, women had higher plasma NAD+/NADH ratios than men (median 1.33 vs. 1.09, P<0.001). The sex-related difference in the plasma NAD+/NADH ratio reduces with increasing age, an effect that was more obvious for two parameters of the biological age (skin autofluorescence, brachial-femoral pulse wave velocity (PWV)) than for the chronological age. However, plasma values for total NAD and NAD+/NADH ratio did not generally alter with increasing age. In conclusion, human plasma contains low micromolar concentrations of total NAD with higher NAD+/NADH redox ratios in adult but not older women compared with same-aged men.  相似文献   

9.
The evolutionarily conserved soluble adenylyl cyclase (sAC, ADCY10) mediates cAMP signaling exclusively in intracellular compartments. Because sAC activity is sensitive to local concentrations of ATP, bicarbonate, and free Ca2+, sAC is potentially an important metabolic sensor. Nonetheless, little is known about how sAC regulates energy metabolism in intact cells. In this study, we demonstrated that both pharmacological and genetic suppression of sAC resulted in increased lactate secretion and decreased pyruvate secretion in multiple cell lines and primary cultures of mouse hepatocytes and cholangiocytes. The increased extracellular lactate-to-pyruvate ratio upon sAC suppression reflected an increased cytosolic free [NADH]/[NAD+] ratio, which was corroborated by using the NADH/NAD+ redox biosensor Peredox-mCherry. Mechanistic studies in permeabilized HepG2 cells showed that sAC inhibition specifically suppressed complex I of the mitochondrial respiratory chain. A survey of cAMP effectors revealed that only selective inhibition of exchange protein activated by cAMP 1 (Epac1), but not protein kinase A (PKA) or Epac2, suppressed complex I-dependent respiration and significantly increased the cytosolic NADH/NAD+ redox state. Analysis of the ATP production rate and the adenylate energy charge showed that inhibiting sAC reciprocally affects ATP production by glycolysis and oxidative phosphorylation while maintaining cellular energy homeostasis. In conclusion, our study shows that, via the regulation of complex I-dependent mitochondrial respiration, sAC-Epac1 signaling regulates the cytosolic NADH/NAD+ redox state, and coordinates oxidative phosphorylation and glycolysis to maintain cellular energy homeostasis. As such, sAC is effectively a bioenergetic switch between aerobic glycolysis and oxidative phosphorylation at the post-translational level.  相似文献   

10.
Escherichia coli BA002, the ldhA and pflB deletion strain, cannot utilize glucose anaerobically due to the inability to regenerate NAD+. To regulate NAD(H) pool size and NADH/NAD+ ratio, overexpression of the enzymes in the NAD(H) biosynthetic pathways in BA002 was investigated. The results clearly demonstrate that the increased NAD(H) pool size and the decreased NADH/NAD+ ratio improved the glucose consumption and cell growth, which improved succinic acid production. When the pncB and the nadD genes were co-overexpressed in CA102, the ratio of NADH/NAD+ was decreased from 0.60 to 0.12, and the concentration of NAD(H) was the highest among that of all the strains. Moreover, the dry cell weight (DCW), glucose consumption, and the concentration of succinic acid in CA102 were also the highest. Based on the sufficient NAD+ supply after gene modification in the NAD(H) biosynthetic pathways, reductive carbon sources with different amounts of NADH can further change the distribution of metabolites. When sorbitol was used as a carbon source in CA102, the byproducts were lower than those of glucose fermentation, and the yield of succinic acid was increased.  相似文献   

11.
Carrot (Daucus carota L.) cells grown in suspension culture oxidized exogeneous NADH. The NADH oxidation was able to stimulate K+ (86Rb+) transport into cells, but it did not affect sucrose transport.N,N'-Dicyclohexyl-carbodiimide, diethylstilbestrol, and oligomycin, which only partially inhibited NADH oxidation, almost completely collapsed the K+ (86Rb+) transport. Vanadate, which is less effective as an ion transport inhibitor, was less effective in inhibiting the NADH-driven transport of K+ (86Rb+).p-Fluormethoxycarbonylcyanide phenylhydrazone inhibits the K+ transport over 90% including that induced by NADH. The results are interpreted as evidence that a plasma membrane redox system in root cells is closely associated with the ATPase which can drive K+ transport. Because of the inhibitor effects, it appears that membrane components common to the redox system and ATPase function in the transport of K+.  相似文献   

12.
The enzyme catalysing the l-proline-dependent reduction of NAD+has been purified over 600-fold from wheat germ acetone powder extracts. l-Proline, 3,4 dehydro-dl-proline, thiazolidine-4-carboxylate were the only substrates utilized readily. The Km for l-proline was 1·0 mM and for NAD+ 0·8 mM. The enzyme was highly specific for NAD+ with NADP+ and NADPH acting as effective competitive inhibitors with a Ki of 1·8 and 0·4 μM, respectively. All ribonucleoside triphosphates tested were good non-competitive inhibitors, in particular UTP. The purified enzyme could reduce pyrroline-5-carboxylate, either chemically synthesized or generated in a linked assay system from ornithine by a highly-purified ornithine transaminase. In the latter case both NADH and NADPH were utilized equally well as the reductant. With chemically synthesized dl-pyrroline-5-carboxy-late as the substrate. NADPH was used at only 25% the rate of NADH, and NADPH strongly inhibited the oxidation of NADH.  相似文献   

13.
The effect of polyamines (putrescine, spermine, and spermidine) on the oxidation of exogenous NADH by Jerusalem artichoke (Helianthus tuberosus L. cv. OB1) mitochondria, have been studied. Addition of spermine and/or spermidine to a suspension of mitochondria in a low-cation medium (2 millimolar-K+) caused a decrease in the apparent Km and an increase in the apparent Vmax for the oxidation of exogenous NADH. These polycations released by screening effect the mitochondrially induced quenching of 9-aminoacridine fluorescence, their efficiency being dependent on the valency of the cation (C4+ > C3+). Conversely, putrescine only slightly affected both kinetic parameters of exogenous NADH oxidation and the number of fixed charges on the membranes. Spermine and spermidine, but not putrescine, decreased the apparent Km for Ca2+ from about 1 to about 0.2 micromolar, required to activate external NADH oxidation in a high-cation medium, containing physiological concentrations of Pi, Mg2+ and K+. The results are interpreted as evidence for a role of spermine and spermidine in the modulation of exogenous NADH oxidation by plant mitochondria in vivo.  相似文献   

14.
Continuous sucrose density gradient subfractions from bovine adrenal medullary microsomes were found to accumulate 45Ca2+ in the presence of ATP and ammonium oxalate mainly in subfractions of intermediate density. (Na+ + K+)-ATPase (plasma membrane marker) and Ca2+-ATPase activities were also concentrated in these intermediate subfractions but thiamine pyrophosphatase (Golgi apparatus marker) was not. NADH oxidase (endoplasmic reticulum marker) activity was distributed throughout all subfractions.45Ca2+ accumulation in adrenal cortical microsomes was found to rise and fall in parallel with thiamine pyrophosphatase but not with (Na+ + K+)-ATPase or NADH oxidase activities.Accumulation of 45Ca2+ in membrane vesicles in these experiments suggests the existence of a calcium transfer mechanism in plasma membranes of the adrenal medulla but not adrenal cortex.  相似文献   

15.
Redox cofactors play crucial roles in the metabolic and regulatory network of living organisms. We reported here the effect of introducing a heterogeneous NADH regeneration system into Klebsiella oxytoca on cell growth and glycerol metabolism. Expression of fdh gene from Candida boidinii in K. oxytoca resulted in higher intracellular concentrations of both NADH and NAD+ during the fermentation metaphase, with the ratio of NADH to NAD+ unaltered and cell growth unaffected, interestingly different from that in engineered Escherichia coli, Lactococcus lactis, and others. Metabolic flux analysis revealed that fluxes to 1,3-propanediol, ethanol, and lactate were all increased, suggesting both the oxidative and reductive metabolisms of glycerol were enhanced. It demonstrates that in certain microbial system NADH availability can be increased with NADH to NAD+ ratio unaltered, providing a new strategy to improve the metabolic flux in those microorganisms where glycolysis is not the only central metabolic pathways.  相似文献   

16.
The pyruvate dehydrogenase complex was isolated from the mitochondria of broccoli florets and shown to be similar in its reaction mechanism to the complexes from other sources. Three families of parallel lines were obtained for the initial velocity patterns, indicating a multisite ping-pong mechanism. The apparent Km values obtained were 321 ± 18, 148 ± 13, and 7.2 ± 0.51 μm for pyruvate, NAD+, and CoA, respectively. Product inhibition studies using acetyl-CoA and NADH yielded results which were in agreement with those predicted by the multisite ping-pong mechanism. Acetyl-CoA and NADH were found to be competitive inhibitors versus CoA and NAD+, respectively. All other substrate-product combinations showed uncompetitive inhibition patterns, except for acetyl-CoA versus NAD+. Among various metabolites tested, only hydroxypyruvate (Ki = 0.11 mM) and glyoxylate (Ki = 3.27 mM) were found to be capable of inhibiting the broccoli enzyme to a significant degree. Initial velocity patterns using Mg2+? or Ca2+-thiamine pyrophosphate and pyruvate as the variable substrate were found to be consistent with an equilibrium ordered mechanism where Mg? or Ca-thiamine pyrophosphate bind first, with dissociation constants of 33.8 and 3 μm, respectively. The Mg- or Ca-thiamine pyrophosphate complexes also dissociated rapidly from the enzyme complex.  相似文献   

17.
The relationship between Rb+ influx and microsomal ATPase activity stimulated by K+ and Mg2++ K+ was investigated for roots of 7-day-old seedlings of oat (Avena sativa L., cv. Brighton). Different concentrations of K+ in the roots, K+root were produced by cultivating plants in complete nutrient solutions of different dilutions and dFifferent K+ concentrations at various temperatures. Experiments were performed in both light and darkness. The range of the influx/ATPase ratios was large with a factor of 5 or more between the highest and lowest values. In most cases, the highest ratios were obtained at low K+root and at high temperatures, and the lowest at high K+root and at low temperatures. At high temperatures (20 and 25°C) in the light, the influx/ATPase ratio was constant, independently of K+root, if K+ in the medium was kept constant but the bulk of the nutrient solution diluted. If K+ was varied and the other components of the medium kept constant, the normal relation of decreasing influx/ATPase ratio at increasing K+root was found; thus, Rb+ influx appears regulated by both the internal and external potassium conditions. Also in darkness, at 15°C and with K + in the medium varied, the influx/ATPase ratio was independent of K+root but in the corresponding light experiments, ratio and K+root had the normal, inverse relationship. The difference between light and dark conditions appears to indicate that growth rate is of importance for the relationship between energy input and transport. Our data lead to the concept of “flexible coupling” between transducers) of energy and ion carrier. Without excluding other possibilities, this may be one of the mechanisms for ecological adaptation to variations in the root medium.  相似文献   

18.
Mitochondria from the parasitic helminth, Hymenolepis diminuta, catalyzed both NADPH:NAD+ and NADH:NADP+ transhydrogenase reactions which were demonstrable employing the appropriate acetylpyridine nucleotide derivative as the hydride ion acceptor. Thionicotinamide NAD+ would not serve as the oxidant in the former reaction. Under the assay conditions employed, neither reaction was energy linked, and the NADPH:NAD+ system was approximately five times more active than the NADH:NADP+ system. The NADH:NADP+ reaction was inhibited by phosphate and imidazole buffers, EDTA, and adenyl nucleotides, while the NADPH:NAD+ reaction was inhibited only slightly by imidazole and unaffected by EDTA and adenyl nucleotides. Enzyme coupling techniques revealed that both transhydrogenase systems functioned when the appropriate physiological pyridine nucleotide was the hydride ion acceptor. An NADH:NAD+ transhydrogenase system, which was unaffected by EDTA, or adenyl nucleotides, also was demonstrable in the mitochondria of H. diminuta. Saturation kinetics indicated that the NADH:NAD+ reaction was the product of an independent enzyme system. Mitochondria derived from another parasitic helminth, Ascaris lumbricoides, catalyzed only a single transhydrogenase reaction, i.e., the NADH:NAD+ activity. Transhydrogenase systems from both parasites were essentially membrane bound and localized on the inner mitochondrial membrane. Physiologically, the NADPH:NAD+ transhydrogenase of H. diminuta may serve to couple the intramitochondrial metabolism of malate (via an NADP linked “malic” enzyme) to the anaerobic NADH-dependent ATP-generating fumarate reductase system. In A. lumbricoides, where the intramitochondrial metabolism of malate depends on an NAD-linked “malic” enzyme which is localized primarily in the intermembrane space, the NADH:NAD+ transhydrogenase activity may serve physiologically in the translocation of hydride ions across the inner membrane to the anaerobic energy-generating fumarate reductase system.  相似文献   

19.
Ralstonia eutropha is a hydrogen-oxidizing (“Knallgas”) bacterium that can easily switch between heterotrophic and autotrophic metabolism to thrive in aerobic and anaerobic environments. Its versatile metabolism makes R. eutropha an attractive host for biotechnological applications, including H2-driven production of biodegradable polymers and hydrocarbons. H2 oxidation by R. eutropha takes place in the presence of O2 and is mediated by four hydrogenases, which represent ideal model systems for both biohydrogen production and H2 utilization. The so-called soluble hydrogenase (SH) couples reversibly H2 oxidation with the reduction of NAD+ to NADH and has already been applied successfully in vitro and in vivo for cofactor regeneration. Thus, the interaction of the SH with the cellular NADH/NAD+ pool is of major interest. In this work, we applied the fluorescent biosensor Peredox to measure the [NADH]:[NAD+] ratio in R. eutropha cells under different metabolic conditions. The results suggest that the sensor operates close to saturation level, indicating a rather high [NADH]:[NAD+] ratio in aerobically grown R. eutropha cells. Furthermore, we demonstrate that multicomponent analysis of spectrally-resolved fluorescence lifetime data of the Peredox sensor response to different [NADH]:[NAD+] ratios represents a novel and sensitive tool to determine the redox state of cells.  相似文献   

20.
In mitochondria, complex I (NADH:ubiquinone oxidoreductase) uses the redox potential energy from NADH oxidation by ubiquinone to transport protons across the inner membrane, contributing to the proton-motive force. However, in some prokaryotes, complex I may transport sodium ions instead, and three subunits in the membrane domain of complex I are closely related to subunits from the Mrp family of Na+/H+ antiporters. Here, we define the relationship between complex I from Bos taurus heart mitochondria, a close model for the human enzyme, and sodium ion transport across the mitochondrial inner membrane. In accord with current consensus, we exclude the possibility of redox-coupled Na+ transport by B. taurus complex I. Instead, we show that the “deactive” form of complex I, which is formed spontaneously when enzyme turnover is precluded by lack of substrates, is a Na+/H+ antiporter. The antiporter activity is abolished upon reactivation by the addition of substrates and by the complex I inhibitor rotenone. It is specific for Na+ over K+, and it is not exhibited by complex I from the yeast Yarrowia lipolytica, which thus has a less extensive deactive transition. We propose that the functional connection between the redox and transporter modules of complex I is broken in the deactive state, allowing the transport module to assert its independent properties. The deactive state of complex I is formed during hypoxia, when respiratory chain turnover is slowed, and may contribute to determining the outcome of ischemia-reperfusion injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号