首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Gene transfer to burn wounds could present an alternative to conventional and often insufficient topical and systemic application of therapeutic agents to aid in wound healing. The goals of this study were to assess and optimize the potential of transient non-viral gene delivery to burn wounds. METHODS: HaCaT cells were transfected with luciferase or beta-galactosidase transgene using either pure plasmid DNA (pDNA) or complexed with Lipofectamine 2000, FuGENE6, or DOTAP-Chol. Expression was determined by bioluminescence and fluorescence. Forty male Sprague-Dawley rats received naked pDNA, lipoplexes, or carrier control intradermally into either unburned skin, superficial, partial, or full-thickness scald burn. Animals were sacrificed after 24 h, 48 h, or 7 days, and transgene expression was assessed. RESULTS: Gene transfer to HaCaT cells showed the overall highest expression for DOTAP/Chol (77.85 ng luciferase/mg protein), followed by Lipofectamine 2000 (33.14 ng luciferase/mg protein). pDNA-derived gene transfer to superficial burn wounds showed the highest expression among burn groups (0.77 ng luciferase/mg protein). However, lipoplex-derived gene transfer to superficial burns and unburned skin failed to show higher expression. CONCLUSIONS: Lipofectamine 2000 and DOTAP/Chol lipoplex showed significantly enhanced gene transfer, whereas no transfection was detectable for naked DNA in vitro. In contrast to the in vitro study, naked DNA was the only agent with which gene delivery was successful in experimental burn wounds. These findings highlight the limited predictability of in vitro analysis for gene delivery as a therapeutic approach.  相似文献   

2.
3.
Endothelial cells are an important cell type to both cardiovascular disease and cancer, as they play critical roles in vascular function and angiogenesis. However, effective and safe gene delivery to primary endothelial cells in the presence of serum proteins is known to be particularly challenging. A library of biodegradable poly(beta-amino esters) was synthesized for use as potential vectors. Promising vectors were optimized for high efficacy and low cytotoxicity to human umbilical vein endothelial cells (HUVECs) in serum. Vector parameters including polymer type, polymer weight, and DNA loading were varied, and biophysical properties including particle size, zeta potential, and particle stability over time were studied. While many of the poly(beta-amino ester) vectors have similar biophysical properties in the presence of buffer, their biophysical properties changed differentially in the presence of serum proteins, and the properties of these serum-interacting particles correlated to transfection efficacy. Leading poly(beta-amino ester) vectors were found to transfect HUVECs in the presence of serum significantly higher (47 +/- 9% positive, n = 10) than the best commercially available transfection reagents including jetPEI (p < 0.001) and Lipofectamine 2000 (p < 0.01). These results demonstrate the potential of a new class of biomaterials, poly(beta-amino esters), for effective human endothelial cell gene therapy.  相似文献   

4.
5.

Background

The goal of this work was the development of a gene targeting technology that will enable the delivery of therapeutic genes to brain cancer cells in vivo following intravenous administration. High‐grade brain gliomas overexpress the epidermal growth factor receptor (EGFR) and EGFR antisense gene therapy could reduce the growth of EGFR‐dependent gliomas.

Methods

A human EGFR antisense gene driven by the SV40 promoter in a non‐viral plasmid carrying elements that facilitate extra‐chromosomal replication was packaged in the interior of 85 nm pegylated immunoliposomes (PILs). The PILs were targeted to U87 human glioma cells with the 83‐14 murine monoclonal antibody (MAb) to the human insulin receptor (HIR).

Results

Confocal fluorescent microscopy demonstrated that the unconjugated HIR MAb is rapidly internalized by the glioma cells. Endocytosis followed by entry into the nucleus was also demonstrated for the HIR MAb conjugated PILs carrying fluorescein‐labeled plasmid DNA. The PILs delivered exogenous genes to virtually all cells in culture, based on β‐galactosidase histochemistry. The targeting of a luciferase gene to the U87 cells with the PILs resulted in luciferase levels in excess of 150 pg/mg protein after 72 h of incubation. The level of luciferase gene expression in the U87 cells achieved with the PIL gene targeting system was comparable to that with lipofectamine. Targeting the EGFR antisense gene to U87 glioma cells with the PILs resulted in more than 70% reduction in [3H]thymidine incorporation into the cells; this was paralleled by a 79% reduction in the level of immunoreactive EGFR.

Conclusion

The present work describes the targeting of an EGFR antisense gene to human brain cancer cells, which results in a 70–80% inhibition in cancer cell growth. PILs provide a new approach to gene targeting that is effective in vivo following intravenous administration without viral vectors. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

6.
Adenoviral delivery of human and viral IL-10 in murine sepsis.   总被引:16,自引:0,他引:16  
Adenovirus (Ad) gene therapy has been proposed as a drug-delivery system for the targeted administration of protein-based therapies, including growth factors and biological response modifiers. However, inflammation associated with Ad transduction has raised concern about its safety and efficacy in acute inflammatory diseases. In the present report, intratracheal and i.v. administration of a first-generation adenoviral recombinant (E1,E3 deleted) either containing an empty cassette or expressing the anti-inflammatory cytokines viral or human IL-10 (IL-10) was administered to mice subjected to zymosan-induced multisystem organ failure or to acute necrotizing pancreatitis. Pretreatment of mice with the intratracheal instillation of Ad expressing human IL-10 or viral IL-10 reduced weight loss, attenuated the proinflammatory cytokine response, and reduced mortality in the zymosan-induced model, whereas pretreatment with a control adenoviral recombinant did not significantly exacerbate the response. Pretreatment of mice with pancreatitis using adenoviral vectors expressing IL-10 significantly reduced the degree of pancreatic and liver injury and liver inflammation when administered systemically, but not intratracheally. We conclude that adenoviral vectors can be administered prophylactically in acute inflammatory syndromes, and expression of the anti-inflammatory protein IL-10 can be used to suppress the underlying inflammatory process.  相似文献   

7.
8.
9.
High-efficiency gene transfer into ex vivo expanded human hematopoietic progenitors and precursor cells by adenovirus vectorsFrey, B.M. et al. (1998)Blood 91, 2781–2792  相似文献   

10.
Gap junction channels formed of connexins directly link the cytoplasm of adjacent cells and have been implicated in intercellular signaling that may regulate the functions of vascular cells. To facilitate connexin manipulation and analysis of their roles in adult endothelial cells, we developed adenoviruses containing the vascular connexins (Cx37, Cx40, and Cx43). We infected cultured human umbilical vein endothelial cells with control or connexin adenoviruses. Connexin expression was verified by immunoblotting and immunofluorescence. Infection with the Cx37 adenovirus (but not control or other connexin adenoviruses) led to a dose-dependent death of the endothelial cells that was partially antagonized by the gap junction blocker alpha-glycyrrhetinic acid and altered the intercellular transfer of Lucifer yellow and neurobiotin. Cell morphology, Annexin V and TUNEL staining, and caspase 3 assays all implicated apoptosis in the cell death. These data suggest that connexin-specific alterations of intercellular communication may modulate endothelial cell growth and death.  相似文献   

11.
The establishment of efficient gene delivery to target human tissue is a major obstacle for transition of gene therapy from the pre-clinical phases to the clinic. The poor long-term patency rates for coronary artery bypass grafting (CABG) is a major clinical problem that lacks an effective and proven pharmacological intervention. Late vein graft failure occurs due to neointima formation and accelerated atherosclerosis. Since CABG allows a clinical window of opportunity to genetically modify vein ex vivo prior to grafting it represents an ideal opportunity to develop gene-based therapies. Adenoviral vectors have been frequently used for gene delivery to vein ex vivo and pre-clinical studies have shown effective blockade in neointima development by overexpression of candidate therapeutic genes. However, high titers of adenovirus are required to achieve sufficient gene delivery to provide therapeutic benefit. Improvement in the uptake of adenovirus into the vessel wall would therefore be of benefit. Here we determined the ability of an adenovirus serotype 5 vector genetically-engineered with the RGD-4C integrin targeting peptide inserted into the HI loop (Ad-RGD) to improve the transduction of human saphenous vein smooth muscle cells (HSVSMC), endothelial cells (HSVEC) and intact saphenous vein compared to a non-modified virus (Ad-CTL). We exposed each cell type to virus for 10, 30 or 60 mins and measured transgene at 24 h post infection. For both HSVSMC and HSVEC Ad-RGD mediated increased transduction, with the largest increases observed in HSVSMC. When the experiments were repeated with intact human saphenous vein (the ultimate clinical target for gene therapy), again Ad-RGD mediated higher levels of transduction, at all clinically relevant exposures times (10, 30 and 60 mins tissue:virus exposure). Our study demonstrates the ability of peptide-modified Ad vectors to improve transduction to human vein graft cells and tissue and has important implications for gene therapy for CABG.  相似文献   

12.
Controllable gene delivery via vector-based systems remains a formidable challenge in mammalian synthetic biology and a desirable asset in gene therapy applications. Here, we introduce a methodology to control the copies and residence time of a gene product delivered in host human cells but also selectively disrupt fragments of the delivery vehicle. A crucial element of the proposed system is the CRISPR protein Cas9. Upon delivery, Cas9 guided by a custom RNA sequence cleaves the delivery vector at strategically placed targets thereby inactivating a co-expressed gene of interest. Importantly, using experiments in human embryonic kidney cells, we show that specific parameters of the system can be adjusted to fine-tune the delivery properties. We envision future applications in complex synthetic biology architectures, gene therapy and trace-free delivery.  相似文献   

13.
14.
Specific targeting of ovarian carcinoma cells using pegylated polyethylenimine (PEG-PEI) conjugated to the antigen binding fragment (Fab') of the OV-TL16 antibody, which is directed to the OA3 surface antigen, was the objective of this study. OA3 is expressed by a majority of human ovarian carcinoma cell lines. To demonstrate the ability of the PEG-PEI-Fab' to efficiently complex DNA, an ethidium bromide exclusion assay was performed. Comparison with PEG-PEI or PEI 25 kDa showed only minor differences in the ability to condense DNA. Since conjugation of Fab' to PEG-PEI might influence complex stability, this issue was addressed by incubating the complexes with increasing amounts of heparin. This assay revealed stability similar to that of unmodified PEG-PEI/DNA or PEI 25 kDa/DNA complexes. Complexes displayed a size of approximately 150 nm with a zeta potential close to neutral. The latter property is of particular interest for potential in vivo use, since a neutral surface charge reduces nonspecific interactions. Binding studies using flow cytometry and fluorescently labeled DNA revealed a more than 6-fold higher degree of binding of PEG-PEI-Fab'/DNA complexes to epitope-expressing cell lines compared to unmodified PEG-PEI/DNA complexes. In OA3-expressing OVCAR-3 cells, luciferase reporter gene expression was elevated up to 80-fold compared to PEG-PEI and was even higher than that of PEI 25 kDa. The advantage of this system is its specificity, which was demonstrated by competition experiments with free Fab' in the cell culture media during transfection experiments and by using OA3-negative cells. In the latter case, only a low level of reporter gene expression could be achieved with PEG-PEI-Fab'.  相似文献   

15.
A prospective study of fungal and bacterial flora of burn wounds was carried out from February 2004 to February 2005 at the Burns Unit of Hospital Regional da Asa Norte, Brasília, Brazil. During the period of the study, 203 patients were treated at the Burns Unit. Wound swab cultures were assessed at weekly intervals for four weeks. Three hundred and fifty four sampling procedures (surface swabs) were performed from the burn wounds. The study revealed that bacterial colonization reached 86.6% within the first week. Although the gram-negative organisms, as a group, were more predominant, Staphylococcus aureus (28.4%) was the most prevalent organism in the first week. It was however surpassed by Pseudomonas aeruginosa form third week onwards. For S. aureus and P. aeruginosa vancomycin and polymyxin were found to be the most effective drugs. Most of the isolates showed high level resistance to antimicrobial agents. Fungi were found to colonize the burn wound late during the second week postburn, with a peak incidence during the third and fourth weeks. Species identification of fungi revealed that Candida tropicalis was the most predominant, followed by Candida parapsilosis. It is crucial for every burn institution to determine the specific pattern of burn wound microbial colonization, the time-related changes in the dominant flora, and the antimicrobial sensitivity profiles. This would enable early treatment of imminent septic episodes with proper empirical systemic antibiotics, without waiting for culture results, thus improving the overall infection-related morbidity and mortality.  相似文献   

16.
The localized, sustained delivery of growth factors for wound healing therapy is actively being explored by gene transfer to the wound site. Biocompatible matrices such as bovine collagen have demonstrated usefulness in sustaining gene therapy vectors that express growth factors in local sites for tissue repair. Here, new synthetic biocompatible materials are prepared and shown to deliver a protein to cultured cells via the use of an adenoviral delivery vector. The synthetic construct consists of a linear, beta-cyclodextrin-containing polymer and an adamantane-based cross-linking polymer. When the two polymers are combined, they create an extended network by the formation of inclusion complexes between the cyclodextrins and adamantanes. The properties of the network are altered by controlling the polymer molecular weights and the number of adamantanes on the cross-linking polymer, and these modifications and others such as replacement of the beta-cyclodextrin (host) and adamantane (guest) with other cyclodextrins (hosts such as alpha, gamma, and substituted members) and inclusion complex forming molecules (guests) provide the ability to rationally design network characteristics. Fibroblasts exposed to these synthetic constructs show proliferation rates and migration patterns similar to those obtained with collagen. Gene delivery (green fluorescent protein) to fibroblasts via the inclusion of adenoviral vectors in the synthetic construct is equivalent to levels observed with collagen. These in vitro results suggest that the synthetic constructs are suitable for in vivo tissue repair applications.  相似文献   

17.
18.
Background aimsGene-modified mesenchymal stromal cells (MSC) provide a promising tool for cell and gene therapy-based applications by potentially acting as a cellular vehicle for protein-replacement therapy. However, to avoid the risk of insertional mutagenesis, targeted integration of a transgene into a ‘safe harbor’ locus is of great interest.MethodsWe sought to determine whether zinc finger nuclease (ZFN)-mediated targeted addition of the erythropoietin (Epo) gene into the chemokine [C-C motif] receptor 5 (CCR5) gene locus, a putative safe harbor locus, in MSC would result in stable transgene expression in vivo.ResultsWhether derived from bone marrow (BM), umbilical cord blood (UCB) or adipose tissue (AT), 30–40% of human MSC underwent ZFN-driven targeted gene addition, as determined by a combination of fluorescence-activated cell sorting (FACS)- and polymerase chain reaction (PCR)-based analyzes. An enzyme-linked immunosorbent assay (ELISA)-based analysis of gene-targeted MSC expressing Epo from the CCR5 locus showed that these modified MSC were found to secrete a significant level of Epo (c. 2 IU/106cells/24 h). NOD/SCID/γC mice injected with ZFN-modified MSC expressing Epo exhibited significantly higher hematocrit and Epo plasma levels for several weeks post-injection, compared with mice receiving control MSC.ConclusionsThese data demonstrate that MSC modified by ZFN-driven targeted gene addition may represent a cellular vehicle for delivery of plasma-soluble therapeutic factors.  相似文献   

19.
BACKGROUND: Gene delivery to the pulmonary circulation has been studied in adult animals, but has not been extensively investigated in neonates. METHODS: We tested the ability of recombinant, replication-defective adenovirus to transduce the pulmonary circulation when delivered by percutaneous ventricular puncture. Five-day-old rat pups were injected with 10(7) to 10(10) particles (approximately 10(5) to 10(8) pfu) in 30 micro l total volume. RESULTS: Using RT-PCR, we detected transgene expression in both lung and liver at all dosages. However, whereas only 1/6 pups injected with 10(7) particles had detectable expression, 8/9 pups in the two highest dose groups had detectable expression. In the highest dose group expression was approximately 5-fold greater in lung than liver, though in the lower dose groups no difference between lung and liver was found. Expression decreased by only 25% from day 4 through the last time point at day 28 in lung, whereas liver expression was undetectable in 7 of 9 samples on day 28. Histopathological examination demonstrated expression both within the media of large arteries and in small, peripheral arteries and capillaries, with a concentration of expression in the most distal areas of both the lungs and liver. No evidence of inflammation was seen. CONCLUSIONS: We conclude that the neonatal pulmonary circulation can be effectively transduced using systemic adenoviral vector injection, has more sustained expression than liver, and may be a target for therapeutic gene delivery.  相似文献   

20.
We have previously reported effective gene transfer with a targeted molecular conjugate adenovirus vector through the c-kit receptor in hematopoietic progenitor cell lines. However, a c-kit-targeted recombinant retroviral vector failed to transduce cells, indicating the existence of significant differences for c-kit target gene transfer between these two viruses. Here we demonstrate that conjugation of an adenovirus to a c-kit-retargeted retrovirus vector enables retroviral transduction. This finding suggests the requirement of endosomalysis for successful c-kit-targeted gene transfer. Furthermore, we show efficient gene transfer to, and high transgene expression (66%) in, CD34-selected, c-kit(+) human peripheral blood stem cells using a c-kit-targeted adenovirus vector. These findings may have important implications for future vector development in c-kit-targeted stem cell gene transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号